
Advanced Algorithms 2024 14/10 2024

Sample Solutions 04

Lecturer: Johannes Lengler Teaching Assistant: Andor Vari-Kakas

1 Online Edge Coloring

Given a fixed set of vertices V , a set of edges E ⊆ V × V arrives over time and upon arrival
of each edge, we should color it with one of colors {1, 2, . . . , q}. This is the permanent color of
that edge and cannot be changed later. The coloring should be a proper coloring at all times,
i.e., no two edges that share an endpoint should receive the same color. Suppose that we are
given the guarantee that at all times, the maximum degree of any node is at most ∆. Notice
that by Vizing’s theorem, the offline algorithm can color the edges using just ∆+ 1 colors.

(A) Devise an online algorithm that computes a (2∆− 1)-edge-coloring.
Solution: Consider the greedy online coloring algorithm, i.e., the algorithm that always
colors the next incoming edge with the smallest possible color.
Observe now that the highest color that this algorithm will use for an edge {u, v} will
occur if all edges incident to either vertex have different colors. The algorithm will then
use deg(u) + deg(v) − 1 colors to color all edges incident to these two vertices. We can
therefore conclude that the algorithm uses at most 2∆− 1 colors, namely if both incident
vertices have degree ∆ and already use 2∆− 2 different colors.

(B) More interestingly, prove that any deterministic online edge-coloring algorithm requires
at least 2∆− 1 colors, i.e., no deterministic online algorithm can get a competitive ratio
better than 2.
Solution: We will show that there exists a sequence of edge arrivals such that any
deterministic algorithm will have to use at least 2∆− 1 colors, for any ∆ ≥ 1.
The adversary will start by sending edges to create vertex disjoint stars, where the central
vertex in each star has degree ∆ − 1. By doing that, one of two cases will occur first.
Either there will be ∆ different stars that all use the same edge colors, or there will be so
many stars that do not use the same colors, that the algorithm will have already used at
least 2∆− 1 colors. After at most

(
2∆−2
∆−1

)
(∆− 1) + 1 stars have been added, at least one

of the cases will have occurred. This holds as each distinct star can occur at most ∆− 1
times, and there are

(
2∆−2
∆−1

)
possible differently colored stars, using at most 2∆−2 colors.

Suppose the algorithm did not yet use 2∆− 1 colors. It then follows that there must be
∆ stars that use exactly the same colors. The adversary can then add an additional ∆
edges, connecting a new vertex to each of the identically colored stars. By doing that,
another ∆ colors will need to be introduced, which, with the already used ∆ − 1 colors,
in each of the stars, brings the total number of colors used to ∆ + ∆ − 1 = 2∆ − 1, as
claimed.

2 Hungry Cow

Consider the following hungry cow problem—a cow stands on the x-axis at the origin, and is
looking for a nice patch of yummy green grass, which it knows exists somewhere on the x-axis at
some integer distance d ≥ 1 either to the left or to the right of the origin. Neither the distance

1

nor the side are known to the cow. Devise a 9-competitive algorithm for the cow with respect
to the distance it needs to travel to get to the food.

Solution: Let Xi := (−2)i, for every i ≥ 0. Consider the strategy in which the cow moves
directly towards the point Xi at every iteration i, i.e., starting at X−1 := 0, the cow goes from
the point Xi−1 directly towards the point Xi, at the ith iteration, for i ≥ 0. We make the
following two remarks. First, note that, for all i > 0, the distance d(i) traversed by the cow at
the ith iteration is equal to

d(i) = |Xi −Xi−1| = |(−2)i − (−2)i−1| = 2i + 2i−1 = 3 · 2i−1. (1)

Second, note that X2i = 22i and that X2j+1 = −22j+1, for every i, j ≥ 0. With this in mind we
consider the following two cases, where x denotes the location of the patch of grass:

Case 1: x > 0.

Suppose that x > 0. If x = 1 then the cow will get to x directly, so from now on we
assume that x > 1. Let k ≥ 0 be the unique integer such that

X2k = 22k < x ≤ 22k+2 = X2k+2. (2)

Note that the cow will reach the desired destination x at some point during the (2k+2)th

iteration. By the above remarks the distance D(x) that the cow needs to travel in order
to get to point x is given by

D(x) = 1 +

(
2k+1∑
i=1

d(i)

)
+ |x−X2k+1|

= 1 +

(
2k+1∑
i=1

d(i)

)
+ x+ 22k+1

= 1 +

(
2k+1∑
i=1

3 · 2i−1

)
+ x+ 22k+1 (by equation (1))

= 1 +

(
3

2k∑
i=0

2i

)
+ x+ 22k+1

= 1 + 3 · 2
2k+1 − 1

2− 1
+ x+ 22k+1 (since

∑n
i=0 z

i = zn+1−1
z−1 for z 6= 1)

= 1 + 4 · 22k+1 − 3 + x

≤ 4 · 22k+1 + x

= 8 · 22k + x

≤ 9x. (by (2)) (3)

Hence, the cow will need to travel at most 9 times the minimum distance x required to
reach its destination.

Case 2: x < 0.

Suppose that x < 0. It is straightforward to check that if x ∈ {−1,−2}, then our cow is
9-competitive, hence assume that x < −2. Let k > 0 be the unique integer such that

|X2k−1| = 22k−1 < |x| ≤ 22k+1 = |X2k+1|. (4)

The cow will reach the desired destination x at some point during the (2k+1)th iteration.
Similarly as case 1 the distance D(x) that the cow needs to travel in order to get to point

2

x is given by

D(x) = 1 +

(
2k∑
i=1

d(i)

)
+ |x−X2k|

= 1 +

(
2k∑
i=1

d(i)

)
+ |x|+ 22k

= 1 +

(
2k∑
i=1

3 · 2i−1

)
+ |x|+ 22k (by equation (1))

= 1 +

(
3
2k−1∑
i=0

2i

)
+ |x|+ 22k

= 1 + 3 · 2
2k − 1

2− 1
+ |x|+ 22k (since

∑n
i=0 z

i = zn+1−1
z−1 for z 6= 1)

= 1 + 4 · 22k − 3 + |x|
≤ 4 · 22k + |x|
= 8 · 22k−1 + |x|
≤ 9|x|. (by (4)) (5)

Therefore we conclude that the proposed algorithm is 9−competitive.

3 Optimal Offline Algorithm for Paging

Devise a polynomial-time algorithm for computing the optimal offline solution for the paging
problem. Prove its correctness and analyze its time complexity.

Solution:

Claim 1. The offline scheduling algorithm that always evicts the element that, among all ele-
ments, will be requested the farthest in the future solves the cache scheduling problem optimally,
i.e., has the minimum number of cache misses.

For an eviction schedule S, define S(i) to be the state of the cache at the time of the i-th
request. Furthermore, let S[i, j] be the sequence of cache states according to the schedule,
between the i-th and j-th request.

Let SA be a schedule created by the algorithm. We will use the following claim to construct
a sequence of schedules Si, and use that sequence to show that any schedule will have at least
as many cache misses as the algorithm. In particular, an optimal schedule can not be better
than the algorithm’s schedule.

Claim 2. Let i ∈ [n], where n is the number of requests. Suppose that for the schedule Si it
holds that Si[1, i] = SA[1, i], then there exists a schedule Si+1 such that Si+1[1, i+1] = SA[1, i+1]
and Si+1 has at most as many cache misses as Si.

Proof. Consider the i-th request, and call the requested element x. There are then 3 cases to
consider.

If x is already in SA(i) and Si(i), we can simply define Si+1 := Si, as then it also holds that
Si+1[1, i+ 1] = SA[1, i+ 1], and furthermore, it certainly has the same amount of cache misses
as Si.

3

If x is not in SA(i) and Si(i), and both of them evict the same element, we can again define
Si+1 := Si, which, by the same reasoning as before satisfies the conditions.

Suppose now that x is not in Si(i) and SA(i), and Si evicts a different element than SA.
Call the elements evicted a and b, respectively.
In this case, we have to do a bit more analysis. First off, we define Si+1 such that Si+1[1, i+1] =
SA[1, i+ 1]. The following steps will be defined according to the remaining requests.
At this point, it holds that a is in Si+1, and b is in Si, but otherwise they are identical. We will
preserve the property P that at all times until b is requested next, Si+1 and Si differ in at most
one element, and after b is requested (and the request processed), they will be identical again.

For each request before b is requested, Si+1 will not evict anything if the requested item
is in the cache, and evict the same element as Si if the requested item is not in the cache of
Si+1. If, in the latter case, the item Si evicts is not in the cache of Si+1, then Si+1 simply
evicts a, and, assuming Property P , Si and Si+1 have completely identical cache content again,
and from then on Si+1 will behave identical to Si. As, in this case, Si+1 has at most as many
cache misses as Si, Claim 2 follows. Hence, assume this case does not occur. In particular, this
implies that if Si evicts b, then the request must have been a as otherwise (assuming Property
P) Si+1 would have incurred a cache miss and could not have evicted the same element as Si.
But, in this case, Si+1 and Si are identical after the request, and Claim 2 follows as well. Hence,
we will also assume that b is not evicted by Si before b is requested.

It is easy to check that the above definition of Si+1 indeed preserves Property P until b is
requested. Note that a will always be requested before b, by definition of the algorithm. Hence,
at some point before b is requested, Si will incur a cache miss whereas Si+1 does not, and thus
in total Si+1 will incur strictly fewer cache misses than Si, until b is requested. Now, when b is
requested, Si+1 simply evicts the element that is not contained in the cache of Si, and since our
above observations ensure that Si contains b, Si and Si+1 are again identical after the request
of b. From now on, Si+1 will behave exactly like Si. This proves the second part of Property
P . Since Si+1 incurs strictly fewer cache misses than Si before the request of b, potentially one
more when b is requested, and the same number after the request of b, the claim follows.

By construction of the claim, it follows that Sn = SA.

Consider an optimal schedule SO which has fewer cache misses than SA. It is clear that at
some point SO will evict a different element than SA. By the previous claim, however, we can
conclude that the number of cache misses that Sn incurs is at most the number of cache misses
that SO has. Therefore, we get a contradiction, showing that SA indeed minimizes the number
of cache misses, thereby proving Claim 1.

4

