
Advanced Algorithms 2024 05/11 2024

Sample Solutions 07

Lecturer: Maximilian Probst Teaching Assistant: Jakob Nogler

1 Streaming a Minimum Spanning Tree

To construct a maximal spanning forest, we developed a streaming algorithm that uses Õ(n)
memory, handles edge additions and deletions, and in the end, given disjoint subsets S1, . . . , St

of vertices, outputs with high probability an edge crossing the cut (Si, V \ Si), if one exists, for
every i ∈ [t].

To construct a maximal spanning forest, we ran Boruvka’s algorithm for constructing a
minimum spanning tree, ignoring the edge weights: we started with every vertex in its own
component, then for log n rounds, found an arbitrary edge leaving each component, and added
a maximal amount of those edges to the forest without creating a cycle. To find a minimum
spanning tree instead, we need to find the minimum cost edge leaving each component instead
of an arbitrary one.

1.1 Part A

For a 2-approximation, we can round the weight of every edge to a power of two, then find
the exact minimum spanning tree. With this approach, we only have to consider k = O(log n)
different edge weights (as the original edge weights are polynomially bounded).

We replace every instance of the streaming algorithm with k instances, where the ith only
considers edges with weights at least 2i−1 but strictly less than 2i (and rounds the weight of
those edges down to 2i−1). To find the cheapest edge leaving each current component, for every
power of two we find up to one edge leaving the component of that weight, and then out of
those select the minimum weight one.

This approach uses only a O(log n)-factor more memory than the Õ(n)-memory algorithm
for constructing a maximal spanning forest, as desired.

1.2 Part B

In part A, we found a 2-approximation of the minimum spanning tree. Now, we find the exact
minimum spanning tree using O(log2 n) passes, O(log n) for each of the O(log n) rounds of
Boruvka.

We do this by employing binary search, more specifically a generic technique called parallel
binary search. We consider some round of Boruvka. Let S1, . . . , St be the components at the
start of the round. For every component i, we have a lower bound li,j and a upper bound hi,j ,
with initial values li,0 = 1 and hi,0 = 2k − 1. In the jth subround of the round of Boruvka, we

let mi,j =
⌊
li,j−1+hi,j−1

2

⌋
and find if there exists an edge of weight [li,j−1,mi,j] between Si and

V \ Si for every i ∈ [t] in one pass over the input. For every cluster i for which such an edge
existed, we update li,j = li,j−1 and hi,j = mi,j , and for every cluster for which no such edge
existed we update li,j = mi,j + 1 and hi,j = hi,j−1. This approach finds for every cluster the
minimum weight of an outgoing edge (and the edge itself) in O(log n) passes over the input.

It remains to perform one such pass. For this, we perform a simple modification to the
streaming algorithm: each vertex in Si will only consider edges with weights in [li,j−1,mi,j].

1

2 Streaming 3-Connectivity

Let T1 be a maximal spanning forest of G, T2 a maximal spanning forest of G \ T1 and T3 a
maximal spanning forest of G \ (T1 ∪ T2). Then, G is 3-connected if and only if T1 ∪ T2 ∪ T3 is
3-connected. To see this, note that a graph is 3-connected if and only if every cut has at least
3 crossing edges, and either each of T1, T2 and T3 contain an edge crossing the cut (thus the
union contains at least 3 total), or there are less than 3 edges crossing the cut.

To find these three maximal spanning forests, we run three copies of the streaming algorithm
for a maximal spanning forest in parallel. To answer if the graph is 3-connected, we extract
T1 from the first instance, and perform edge deletions with edges of T1 from the second and
third instances. Then, we extract T2 from the second instance, remove its edges from the third
instance, and extract T3 from the third instance.

Finally, to check if the graph T1 ∪ T2 ∪ T3 is 3-connected, we can simply try deleting every
combination of two edges, and check if the graph always remains connected. This check can
easily be performed with linear memory usage to |T1 ∪ T2 ∪ T3| = O(n).

3 Communication with a Coordinator

Instead of sending one O(log n)-bit message, each node will send k = O(log n) independent
b = O(log n)-bit messages (for parameters k and b, the exact values of which will be chosen
later). This is equivalent (we can just concatenate the messages to form a O(log2 n)-bit string).

Let ai =
√
2
i
. To generate a b-bit message, the node sets each bit to 1 if they are not in S,

and set the ith bit (i ∈ {0, 1, . . . , b− 1}) to 1 with probability 2
− 1

ai if they are in S.
Let ci ∈ [k] be the number of ANDs of messages where the ith bit is 1. The coordinator

will return ai, where i is the minimum integer such that ci ≥ k
2 . Thus, if t is selected such

that at ≤ s ≤ at+1 (where s = |S|), the coordinator returns a 2-approximation of s if i ∈
{t− 1, t, t+ 1, t+ 2}. Note that this is guaranteed to happen if ci <

k
2 for all i < t, and ci ≥ k

2
for all i > t + 1. To bound the probability of failure, we bound the probability that this does
not happen.

We now analyse the probability that ci ≥ k
2 . Consider the ith bit of some fixed message

AND: it is 1 with probability exactly 2
− s

ai . If s ≤ ai−1 = 1√
2
ai, the probability the bit is 1 is

at least 2
− 1√

2 ≥ 0.6, and if s ≥ ai+1 =
√
2ai, the probability it is 1 is at most 2−

√
2 ≤ 0.4.

Thus, for i < t, ci is a sum of k independent random variables, each 1 with probability at
most 0.4, and for i > t+ 1, k− ci is similarly a sum of k independent random variables, each 1
with probability at most 0.4.

We use Chernoff to bound the probability that the sum of these random variables is greater
than k

2 . Chernoff gives

P
(
ci ≥

k

2

)
= P

(
ci ≥

(
1 +

1

4

)
E[ci]

)
≤ exp

(
− 1

16
E[ci]/(2 +

1

4
)

)
≤ exp

(
1

90
k

)
Thus, by a union bound, the probability of failure will be at most b exp(− 1

90k) and selecting
k ≥ 90(log(n2)+log(b)) = O(log n) is sufficient. The only requirement for b is that at ≤ s ≤ at+1

holds for some t+ 1 ≤ b− 1, thus we can simply select b to equal 2⌈log n⌉+ 2 as s ≤ n.

2

