
Advanced Algorithms 2024 18.11, 2024

Sample Solutions 08

Lecturer: Maximilian Probst Teaching Assistant: Patryk Morawski

1 A Near-Linear Time Algorithm for Spanners

1. We will split the edges we add into two categories: the edges we add during one of the
k − 1 main phases of the algorithm and the edges added in the last phase. We start with
the edges in each of the main phases.

Claim 1. The expected number of edges added in each phase is at most n1+1/k.

Proof. Let v be a vertex with d neighboring clusters at the begining of the phase. Then, v
adds at most d new edges to our spanner if both the cluster of v and all of the neighboring
clusters of v are marked as dead. Otherwise, v adds at most 1 vertex. Thus,

E[# edges added by v] ≤ (1− n−1/k)dd+ 1 ≤ e−d·n−1/k
d+ 1 = O(n1/k)

and by the linearity of expectation

E[# edges added] ≤ n · O(n1/k) = O(n1+1/k).

By the claim, during the k − 1 main phases we add O(n1+1/k edges in expectation. It
thus remains to show that we do not add too many edges in the last phase.

Claim 2. During the last phase of the algorithm, we add O(n1+1/k) edges in expectation.

Proof. Let X be the number of surviving clusters after the k − 1 main phases. Note that
in the last phase we add at most n · X new edges, since every vertex adds at most one
edges for a given cluster. Thus,

E[# edges added in the last phase] ≤ E[n ·X] = nE[X].

Now, a given cluster survives each phase with probability n−1/k. In particular, the prob-
ability that this cluster survives all of the k − 1 main phases is n−(1−1/k). By linearity
of expectation, since we started with n clusters, the expected number of surving clusters
after phase k − 1 is n · n−(1−1/k) = n1/k. Thus, we get

E[# edges added in the last phase] ≤ nE[X] = O(n1+1/k)

The two claims together show that we in expectation add O(n1+1/k) edges to our spanner.

Note that to obtain an algorithm that returns a spanner with O(n1+1/k) edges with high
probability, we could simply repeat this algorithm log n times and take the spanner with
minimum number of edges.

1

2. We first prove that in the beginning of each phase, the vertices that are in the same cluster
are not far away from each other in H. More specifically we prove the following lemma.

Claim 3. For any cluster C at the beginning of phase i, the distance (in H) of the root
of this cluster and any other vertex in this cluster is at most i− 1. This implies that the
distance between any two vertices in this cluster is at most 2(i− 1).

Proof. We prove this statement by induction. For i = 1, each cluster is just a single
vertex so the statement holds. For i > 1, we now know that at the start of phase i−1 the
distance between any vertex in C and the root was at most (i − 1) − 1 = i − 2. Later in
the phase i− 1 some new vertices might join our cluster. However, for every such vertex
v we add an edge to an existing vertex in the cluster. In particular, the distance from v
to the root of our cluster is now at most i− 2+1 = i− 1. This shows the first part of the
statement.

For the second part, notice that for any two vertices u, v in C we have

distH(u, v) ≤ distH(u, r) + distH(r, v) ≤ 2(i− 1)

by the triangle inequality, where r is the root of C.

Using the above claim, we will now argue that if uv is an edge in G, then the distance
between u and v in H at the end of the algorithm cannot be large.

Claim 4. Let uv ∈ E(G). Then, after the last phase of the algorithm, distH(u, v) ≤ 2k−1.

Proof. Suppose first in some main phase t of the algorithm, both u and v appeared in the
same cluster C. Then, by Claim 3, at the beginning of phase t+ 1, the distance between
u and v in H is at most 2(t− 1) < 2k − 1. Since we only add edges to H afterwards, the
distance at the end of the algorithm can only increase, so the claim holds.

Now suppose that u and v never belong to the same cluster during an execution of the
algorithm. Then, there is some phase (possibly the last one) where both u and v die at
the same time. But then, by definition, we add an edge from u to some vertex v′ in the
cluster of v. In particular, again by Claim 3 and by the triangle inequality we get

distH(u, v) ≤ 1 + distH(v′, v) ≤ 1 + (2k − 2) = 2k − 1.

We now show that Claim 4 implies that we get a (2k−1)-spanner. Indeed, let u, v ∈ V (G)
with distG(u, v) = d and let u = w0, w1, . . . , wd−1, wd = v be a shortest path between u
and v in G. By the triangle inequality and the fact that each wiwi+1 is an edge in G, we
get

distH(u, v) ≤
d−1∑
i=0

distH(wi, wi+1) ≤
d−1∑
i=0

2k − 1 = d · (2k − 1).

3. A single phase of the algorithm can clearly be implemented in timeO(m). Indeed, marking
the vertices as dead or surviving can be implemented in linear time. Then, scanning the
neighborhood of a vertex takes time proportional to its degree, and thus for all vertices
this will again give O(m) time. Since we have Õ(1) phases of our algorithm, we get the
total runtime of Õ(m).

2

2 Very Sparse Spanners

1. Let m be the number of edges in H. For a vertex v ∈ V (H) let B
(i)
v ⊆ V (H) denote

the set of vertices with distance at most i to v. Let now u, v ∈ V (H) be arbitrary and
assume for contradiction that distH(u, v) > d = 20ϕ−1 logm. Then, it must hold that

B
(d/2)
v ∩ B

(d/2)
u = ∅. Indeed, if w ∈ B

(d/2)
v ∩ B

(d/2)
u , then distH(u, v) ≤ distH(u,w) +

distH(w, v) ≤ d/2 + d/2 = d.

Therefore at least one of the induced subgraphs H[B
(d/2)
v] and H[B

(d/2)
u] has to contain

less than m/2 edges. W.l.o.g. assume that this holds for H[B
(d/2)
v]. We now want to show

that this cannot hold, because the balls B
(i)
v grow exponentially as i increases. To prove

this, we will use that H is a ϕ-expander.

Let now mi denote the number of edges in the induced subgraph H[B
(i)
v]. We have m1 ≥ 1

and md/2 ≤ m/2. Moreover,

mi+1 = |E(B(i+1)
v)| ≥ |E(B(i)

v)|+ |E(B(i)
v , B(i+1)

v)|.

By the definition of B
(i)
v we get that E(B

(i)
v , B

(i+1)
v) = E(B

(i)
v , V (H) \ B

(i)
v). Moreover,

since H is a ϕ-expander,

|E(B(i)
v , V (H) \B(i)

v)| ≥ ϕ ·min{degH(B(i)
v), degH(V (H) \B(i)

v)}.

We have mi ≤ degH(B
(i)
v) ≤ mi+1 < m/2 and thus min{degH(B

(i)
v), degH(V (H)\B(i)

v)} =

degH(B
(i)
v).

All together we get mi+1 ≥ (1 + ϕ)mi. Thus,

m2ϕ−1 logm+1 ≥ (1 + ϕ)2ϕ
−1 logm ≥ eϕ·2ϕ

−1 logm/2 = m > m/2,

where we use that 1 + ϕ ≥ e
ϕ

1+ϕ ≥ e
ϕ
2 . In particular, we get a contradiction to m/2 >

md/2 ≥ m2ϕ−1 logm+1.

2. Recall that with high probability for each Gi the weighted graph after the down-sampling
preserves the cuts of Gi up to a factor of (1 ± ϵ). In particular, since each edge in the
down-sampling process receives the same weight w we get that for all S ⊆ V (Gi)

(1− ϵ)|EG′
i
(S, V (Gi)| \ S)| ≤

1

w
|EGi(S, V (Gi) \ S)| ≤ (1 + ϵ)|EG′

i
(S, V (Gi) \ S)|.

Since for any v ∈ V (Gi) we have that degGi(v) = |E({v}.V (Gi) \ {v})|, we in particular
get that for each v ∈ Gi,

degG′
i
(v) ≤ 1

(1− ϵ)w
degGi(v).

Now, let ϕ′ = 1−ϵ
1+ϵϕ = Õ(1). We claim that G′

i is a ϕ′-expander. Indeed, by the above
considerations, and the fact that Gi is a ϕ-expander, for any S ⊆ V (Gi) we get

ϕ′min{degG′
i
(S), degG′

i
(V (Gi) \ S)} ≤ ϕ

(1 + ϵ)w
min{degGi(S), degGi(V (Gi) \ S)}

≤ 1

(1 + ϵ)w
|EGi(S, V (Gi) \ S)|

≤ |EG′
i
(S, V (Gi) \ S)|.

3

3. We first notice that if uv is an edge of G, then distH(u, v) = Õ(1). Indeed, let Gi be
such that uv ∈ E(Gi). Such a Gi exists, because by construction the Gi’s partition the
edges of G. By part 2, we get that G′

i is a Ω̃(1)-expander. Therefore, since u, v ∈ V (G′
i)

by part 1 and the fact that H is a graph obtained by adding edges to G′
i, we get that

distH(u, v) ≤ distG′
i
(u, v) = Õ(1).

Now, let u, v ∈ V (G) be arbitrary and let u = w0, w1, . . . , wd = v be a shortest path
between and v. Then, by the triangle inequality and the fact that each wiwi+1 is an edge
in G

distH(u, v) ≤
d−1∑
i=0

distH(wi, wi+1) ≤
d−1∑
i=0

Õ(1) = d · Õ(1).

So H is a Õ(1)-spanner.

3 Cut-Preserving Sparsifiers for Graphs with Large Min-Cut

Similarly as for the Kn and expanders in the lecture, we want to simply randomly sample some
edges from G. Specifically, we set p = 10·logn

ϵ2k
and return a graph H obtained from G by making

every edge of G appear in H independently, with probability p. Moreover, we set the weight of
each edge in H to p−1.

Let us now show that the graph H obtained in this way is indeed a cut-preserving sparsifier.
Let first X denote the number of edges in H. Then, X ∼ Bin(m, p), E[X] = mp and thus by
Chernoff

Pr[X > 20 · log n
ϵ2m

m] ≤ Pr[X − E[X] ≥ E[X]] ≤ eE[X] = o(1).

Now let us consider an arbitrary cut (S, V (G) \ S) in G and let α ≥ 1 be such that this
cut has size αk. Let Y denote the number of edges between S and V (G) \ S in H such that
|EH(S, V (H)\S)| = p−1Y . We have Y ∼ Bin(αk, p) and E[Y] = αkp. Then, again by Chernoff.
we get that

Pr[||EH(S, V (H) \ S)| − αk| > ϵαk] = Pr[|Y − E[Y]| > ϵE[Y]]

≤ 2 exp(−ϵ2E[Y]

3
)

≤ 2 exp(−10α

3
log n)

≤ n−3α,

where the last inequality holds for n large enough.
We now want to use union bound to bound the probability that some cut C is not preserved

in H. We get

Pr[∃C not preserved in H] ≤
∑

C cut in G

Pr[C not preserved in H]

≤
n2∑
s=k

(2n)
s
k · n−3 s

k

≤ n2 · n−2.5 = o(1),

where we used the probability calculated above and the bound (2n)
s
k on the number of cuts of

size s = s
k · k in G. In particular, with high probability all the cuts are preserved in H and H

has at most 20 · logn
ϵ2k

m edges.

4

	A Near-Linear Time Algorithm for Spanners
	Very Sparse Spanners
	Cut-Preserving Sparsifiers for Graphs with Large Min-Cut

