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Sample Solutions 10

Lecturer: Bernhard Haeupler Teaching Assistant: Andor Vári-Kakas

1 L1 embedding of cycle

You are given an unweighted cycle C on n vertices.

1. Find a randomized algorithm that embeds the cycle C to R such that the expected stretch
of every edge is constant. That is, your randomized algorithm maps each vertex u ∈ C
to some number f(u). For every pair u, v ∈ C it has to be the case that dC(u, v)/K ≤
E[|f(u)− f(v)|] ≤ dC(u, v) for some constant K.

2. Find a deterministic algorithm that embeds C to R2 with L1 norm such that the stretch of
every edge is constant. That is, you should map each vertex u ∈ C to some number f(u).
For every pair u, v ∈ C it has to be the case that dC(u, v)/K ≤ ||f(u)− f(v)||1 ≤ dC(u, v)
for some constant K.

Solution

1.1 Cycle embedding in R with constant expected stretch

We want to embed a cycle C = (V,E) into R such that the expected stretch is constant, or
more formally, define a mapping: f : V → R and two constants K1,K2 ≥ 1 such that:

∀u, v ∈ V
dC(u, v)

K1
≤ E[|f(u)− f(v)|] ≤ K2 · dC(u, v). (1)

One possible way to do that is as follows. We choose one vertex of V at random and call
it v1. Then traverse the cycle in one direction and label each node with consecutive numbers
v2, v3, . . . , vn. Having done that we can define f as f(vi) = i. This construction is illustrated in
Figure ??. In the remainder of this section let “jump edge” be the edge {vn, v1}, i.e., the edge
that is mapped to a “jump” of length n−1 in R. Now we just need to prove the two inequalities
from Equation 1.

Claim: dC(u, v) ≤ |f(u)− f(v)|

Proof: In a cycle with n nodes the highest possible distance between two nodes is ⌊n/2⌋. If
we take any pair of nodes u and v in a cycle and consider their mappings in R, we can analyze
two cases. In the first case, the shortest path between u and v in C does not include the jump
edge, in which case |f(u)− f(v)| = dC(u, v). In the second case, the shortest path includes the
jump edge between v1 and vn, in which case |f(u) − f(v)| ≥ ⌊n/2⌋ ≥ dC(u, v). That is, the
distance along the R axis is at least as long as the shortest path in the cycle. This finishes the
argument.

Claim: E[|f(u)− f(v)|] ≤ 2 · dC(u, v)
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Proof: Let us fix a pair of vertices u and v on the cycle. We know that there are exactly
dC(u, v) edges between them and exactly n edges in the cycle in total. The question is where is
the jump edge. Any edge in the cycle can be mapped to the jump edge with uniform probability.
Therefore the probability that it is on the shortest path between u and v is exactly dC(u, v)/n
and the probability that it is outside that shortest path is 1 − dC(u, v)/n. If the jump edge is
outside the shortest path then |f(u)−f(v)| = dC(u, v). If it is inside, we can still use the trivial
upper bound |f(u)− f(v)| ≤ n.

The full expression for the expected value is therefore:

E[|f(u)− f(v)|] ≤ dC(u, v)

n
· n+

(
1− dC(u, v)

n

)
· dC(u, v)

≤ dC(u, v) + dC(u, v)

= 2 · dC(u, v).

1.2 Cycle embedding in R2 with constant deterministic stretch

In this task we are asked to define a mapping f : V → R2 and two constants K1,K2 ≥ 1 such
that:

∀u, v ∈ V :
dC(u, v)

K1
≤ ∥f(u)− f(v)∥1 ≤ K2 · dC(u, v).

Choose an arbitrary vertex of the cycle and call it v1. Then traverse the cycle in one
direction and label each node with consecutive numbers v2, v3, . . . , vn. With all nodes labelled,
we will now describe the map f from V to a square in R2. Let a = ⌊n/4⌋ be the side of the
square. Now we map v1 to (1, a) and in general for i = {1, . . . , ⌊n/4⌋ − 1} we set f(vi) = (i, a).
We proceed analogously for the remaining sides of the square. If n ≤ 4 we just map nodes
to corners (1, 2 or 3). If n is not divisible by 4, we make the last side “denser“ such that for
i ∈ {3 · ⌊n/4⌋+ 1, . . . , n} the ∥f(vi+1)− f(vi)∥1 ≤ 1. This construction is illustrated in Figure
??. Now we need to prove the two inequalities that define the constant stretch.

Claim: dC(u, v)/3 ≤ ∥f(u)− f(v)∥1

Proof: If we fix a pair of nodes u and v then we may consider exactly three cases:

• f(u) and f(v) are on the same side of the square. In this case dC(u, v) = ∥f(u)− f(v)∥1.

• f(u) and f(v) are on neighbouring sides of the square: dC(u, v) = ∥f(u)−f(v)∥1. Strictly
speaking the L1 norms on the last side of the square may be a bit smaller but still larger
than dC(u, v)/2. The smallest possible distance between two consecutive nodes in this
construction comes with n = 7, where a = 1 but the last side has 3 nodes spaced at
distances 1/3 from each other. In this case for u and v on the last side dC(u, v)/3 =
∥f(u)− f(v)∥1

• f(u) and f(v) are on opposite sides of the square: the norm is at least the length of the
side of the square ∥f(u) − f(v)∥1 ≥ ⌊n/4⌋ ≥ dC(u, v)/2 ≥ dC(u, v)/3. The penultimate
step is correct due to the fact that in any cycle, for any pair of nodes dC(u, v) ≤ ⌊n/2⌋
which means that dC(u, v)/2 ≤ ⌊n/2⌋/2 ≤ ⌊n/4⌋.

Claim: ∥f(u) − f(v)∥1 ≤ dC(u, v) This holds for any two consecutive vertices u, v on the
cycle and then can be extended to any two vertices via triangle inequality.
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2 Minimum bisection cut

A bisection cut is a cut (S, S′) such that |S| = |S′| = n/2. An r-balanced cut is a cut where
r · n ≤ |S| ≤ (1− r) · n. A size of a cut is the number of edges that go across the cut.

Give a polynomial-time algorithm that, given a graph G as input, outputs a 1/3-balanced
cut whose size is O(log n) factor from the size of the smallest-size bisection cut of G.

Hint:

Findablackboxreductiontotheresultyousawinthelectureviaagreedyalgorithm.

Solution

We will base the solution on the sparsest cut finding algorithm we have seen in the lecture notes.
SparsestCut(G) finds a cut S ∈ V (G) that gives O(log n) approximation for minimum value
of the following:

|E(S, V \ S)|
|S| · |V \ S|

.

Let us first modify SparsestCut(G) algorithm slightly so that it always returns a cut S

of the smaller size (i.e. if it would have returned S such that |S| > |V (G)|
2 , let it return V \ S

instead).

Let’s introduce the following sequence:

S1 = SparsestCut(G[V ])

S2 = SparsestCut(G[V \ S1]) G[V \W ] is the induced subgraph of G restricted to V \W
S3 = SparsestCut(G[V \ (S1 ∪ S2)])

...

Si+1 = SparsestCut(G[V \
i⋃

j=1

Si])

...

Claim 1. There exists t such that 1 ≤ t ≤ n and n
3 ≤ |

t⋃
i=1

Si| ≤ 2·n
3 .

Proof. Note that |Sk+1| > |Sk| for all k such that |
k⋃

i=1
Si| ≤ n− 2. Now let j be the maximum

index such that |
j⋃

i=1
Si| < n

3 . We have
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|
j+1⋃
i=1

Si| = |(
j⋃

i=1

Si) ∪ Sj+1|

= |(
j⋃

i=1

Si) ∪ SparsestCut(G[V \
j⋃

i=1

Si])|

= |(
j⋃

i=1

Si)|+ |SparsestCut(G[V \
j⋃

i=1

Si])|

≤ |(
j⋃

i=1

Si)|+
|V \

j⋃
i=1

Si|

2
Because SparsestCut(•) ≤ |V (•)|

2

= |(
j⋃

i=1

Si)|+
|V |
2

−
|

j⋃
i=1

Si|

2

=
|V |
2

+

|(
j⋃

i=1
Si)|

2
<

n

2
+

n
3

2
=

2 · n
3

as needed.

Claim 2. Let t be the smallest integer such that n
3 ≤ |

t⋃
i=1

Si| ≤ 2·n
3 . Then

t⋃
i=1

Si is a 1/3-

balanced cut whose size is O(log n) factor from the size of the smallest bisection cut of G. In

other words,
t⋃

i=1
Si is the 1/3-balanced cut we are looking for.

Proof. Denote (V \
i−1⋃
j=1

Sj) by Ri for 1 ≤ i ≤ t. Let T be the minimum bisection cut of G, and

Ci (for 1 ≤ i ≤ t) be the sparsest cut in G[Ri].

By the construction, Si is O(log n) approximation of the sparsest cut in G[Ri], hence:

E(Si, Ri \ Si)

|Si| · |Ri \ Si|
≤ E(Ci, Ri \ Ci)

|Ci| · |Ri \ Ci|
·O(log n) (2)

Because Ci is a sparsest cut in G[Ri], we have:

E(Ci, Ri \ Ci)

|Ci| · |Ri \ Ci|
·O(log n) ≤ E(T ∩Ri, (V \ T ) ∩Ri)

|T ∩Ri| · |(V \ T ) ∩Ri|
·O(log n)

≤ E(T, V \ T )
|T ∩Ri| · |(V \ T ) ∩Ri|

·O(log n)

(3)

Recall t is the smallest integer such that n
3 ≤ |

t⋃
j=1

Sj | ≤ 2·n
3 . Hence, |Ri| = |V \

i−1⋃
j=1

Sj | ≥

|V \
t−1⋃
j=1

Sj | ≥ 2·n
3 for all 1 ≤ i ≤ t. So, for 1 ≤ i ≤ t, |T ∩Ri| ≥ 2·n

3 − n
2 = n

6 and |(V \T )∩Ri| ≥
2·n
3 − n

2 = n
6 .

From eq. (2) and eq. (3) we get:
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E(Si, Ri \ Si) ≤
E(T, V \ T )

|T ∩Ri| · |(V \ T ) ∩Ri|
·O(log n) · |Si| · |Ri \ Si|

≤ E(T, V \ T )
n
6 · n

6

·O(log n) · |Si| · n =
E(T, V \ T )

n
·O(log n) · |Si|

(4)

Finally we calculate the cut-size of
t⋃

i=1
Si.

E(

t⋃
i=1

Si, V \
t⋃

i=1

Si) = E(

t⋃
i=1

Si, Rt \ St)

=
t∑

i=1

E(Si, Rt \ St)

≤
t∑

i=1

E(Si, Ri \ Si) Because (Rt \ St) ⊆ (Ri \ Si)

≤
t∑

i=1

(
E(T, V \ T )

n
·O(log n) · |Si|) By eq. (4)

= (
t∑

i=1

|Si|) ·
E(T, V \ T )

n
·O(log n)

≤ 2 · n
3

· E(T, V \ T )
n

·O(log n)

= E(T, V \ T ) ·O(log n)

(5)

That is, the cut-size of
t⋃

i=1
Si is O(log n) factor from the size of the smallest bisection cut T .

Claim 3.
t⋃

i=1
Si can be computed in poly(n) time.

Proof. In order to calculate
t⋃

i=1
Si, we run SparsestCut algorithm t times. Each run has

time complexity poly(n), thus the complete algorithm has time complexity O(t · poly(n)) =
O(n · poly(n)) = O(poly(n)).

To summarize, our algorithm is:

Find a cut S that is O(log n) approximation of the sparsest cut in G (s.t. |S| ≤ |V |
2 ). If S is

1/3-balanced cut, we have found the solution and stop here. Otherwise, find a sparsest cut in
G[V \ S] and add it to S. Repeat the procedure until a 1/3-balanced cut is found.

5


