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1 Minimum Enclosing Circle

1. Loop over all subsets of three points in P , and check if the minimum enclosing circle of
just those three points contains all points in P . There are |P |3 subsets, and for each we
test |P | points, thus this takes O(|P |4) time total.

2. We give an algorithm that finds the minimum enclosing circle in time O(n log n) with
probability at least 1

2 . As checking if a circle is the minimum enclosing circle can be done
in linear time, repeating this algorithm until the minimum enclosing circle is found is
sufficient.

Let t = O(log n) and r = O(1) be values we fix later. We initialize the weight of every
point to w0(p) = 1, and repeat the following for i ∈ [t]: sample a set R using Lemma 1
based on the weights wi−1. We compute the minimum enclosing circle of R in constant
time using the algorithm of part 1. Then, for any point p such that p ̸∈ C(R), we let
wi(p) = wi−1(p) · e. For other points, we let wi(p) = wi−1(p). If every point is contained
in the minimum enclosing circle of R, we return the minimum enclosing circle of R.

For i ∈ [t], fix wi−1, and let R be a subset sampled using Lemma 1. We have

E

∑
p∈P

wi(p)

 =
∑
p∈P

w(p) (1 + e · P(p ̸∈ C(R))) ≤

∑
p∈P

w(p)

 ·
(
1 +

3e

r + 1

)
.

Thus, using Markov, with probability at least 1
2 , we have

∑
p∈P

wt(p) ≤ 2E

∑
p∈P

wt(p)

 ≤ 2n ·
(
1 +

3e

r + 1

)t

≤ exp

(
3e

r + 1
· t+ ln(2n)

)
.

Assume now this holds, and suppose that the minimum enclosing circle was not found.
Then, for each i ∈ [t], one of the points p1, p2 or p3 defining the minimum enclosed circle
must not have been contained in the minimum enclosing circle of R. Thus, there exists a
point p′ ∈ P such that p′ was contained in at most t

3 minimum enclosing circles of sets R,

thus in particular, we have wt(p′) ≥ et/3. But we also have wt(p′) <
∑

p∈P wt(p). Thus,
as long as

1

3
· t ≥ 3e

r + 1
· t+ ln(2n),

we have a contradiction, thus we must have found the minimum enclosing circle. Selecting
t = 6 ln(2n) = O(log n) and r = ⌈6 · 3e− 1⌉ = O(1) is sufficient.

3. Let x1, x2, . . . , xr+1 be r + 1 points sampled independently from the same distribution.
Let i ∈ [r + 1] be a random index. Then, the probability that xr+1 ̸∈ C(x1, x2, . . . , xr)
equals the probability that xi ̸∈ C(x1, . . . , xi−1, xi+1, . . . , xr+1).

We can now fix any arbitrary x1, x2, . . . , xr+1. Let p1, p2, p3 be any three points defining
the minimum enclosing circle of the set. Then, the event that xi is not in the minimum
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enclosing circle of the other points can only occur if xi ∈ {p1, p2, p3}, and the probability
of the event is at most 3

r+1 .

Thus, letting R be a set of points sampled by sampling r points weighted by w with
replacement from P , and x be a point sampled from P weighted by w, we have

P(x ̸∈ C(R)) ≤ 3

r + 1
,

thus, we are done, as the expected total weight of points not contained in the minimum
enclosing circle of R is

ER

 ∑
p∈P\C(R)

w(p)

 =
∑
p∈P

w(p)P(p ̸∈ C(R))

=

∑
p∈P

w(p)

 · P(x ̸∈ C(R))

≤ 3

r + 1
·
∑
p∈P

w(p).
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