
Towards Demystifying Serverless Machine Learning Training

Jiawei Jiang
∗,†
, Shaoduo Gan

∗,†
, Yue Liu

†
, Fanlin Wang

†

Gustavo Alonso
†
, Ana Klimovic

†
, Ankit Singla

†
, Wentao Wu

#
, Ce Zhang

†
†
Systems Group, ETH Zürich

#
Microsoft Research, Redmond

{jiawei.jiang, sgan, alonso, ana.klimovic, ankit.singla, ce.zhang}@inf.ethz.ch,

{liuyue, fanwang}@student.ethz.ch, wentao.wu@microsoft.com

ABSTRACT
The appeal of serverless (FaaS) has triggered a growing interest

on how to use it in data-intensive applications such as ETL, query

processing, or machine learning (ML). Several systems exist for

training large-scale ML models on top of serverless infrastructures

(e.g., AWS Lambda) but with inconclusive results in terms of their

performance and relative advantage over “serverful” infrastructures

(IaaS). In this paper we present a systematic, comparative study of

distributed ML training over FaaS and IaaS. We present a design

space covering design choices such as optimization algorithms and

synchronization protocols, and implement a platform, LambdaML,

that enables a fair comparison between FaaS and IaaS. We present

experimental results using LambdaML, and further develop an an-

alytic model to capture cost/performance tradeoffs that must be

considered when opting for a serverless infrastructure. Our results

indicate that ML training pays off in serverless only for models with

efficient (i.e., reduced) communication and that quickly converge.

In general, FaaS can be much faster but it is never significantly

cheaper than IaaS.

CCS CONCEPTS
•Computer systems organization→Cloud computing; •Com-
putingmethodologies→Machine learning; Parallel algorithms.

KEYWORDS
Serverless Computing, Machine Learning

ACM Reference Format:
Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana

Klimovic, Ankit Singla, Wentao Wu, Ce Zhang. 2021. Towards Demysti-

fying Serverless Machine Learning Training. In Proceedings of the 2021
International Conference on Management of Data (SIGMOD ’21), June 20–
25, 2021, Virtual Event, China. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3448016.3459240

*Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3459240

1 INTRODUCTION
Serverless computing has recently emerged as a new type of com-

putation infrastructure. While initially developed for web microser-

vices and IoT applications, recently researchers have explored the

role of serverless computing in data-intensive applications, which

stimulates intensive interests in the data management commu-

nity [5, 44, 58, 82, 95]. Previous work has shown that adopting a

serverless infrastructure for certain types of workloads can signifi-

cantly lower the cost. Example workloads range from ETL [35] to

analytical queries over cold data [76, 80]. These data management

workloads benefit from serverless computing by taking advantage

of the unlimited elasticity, pay per use, and lower start-up and

set-up overhead provided by a serverless infrastructure.

Serverless Computing and FaaS. Serverless computing has

been offered bymajor cloud service providers (e.g., AWS Lambda [14],

Azure Functions [73], Google Cloud Functions [37]) and is favored

by many applications (e.g., event processing, API composition, API

aggregation, data flow control, etc. [20]) as it lifts the burden of

provisioning and managing cloud computation resources (e.g., with

auto-scaling) from application developers. Serverless computing

also offers a novel “pay by usage” pricing model and can be more

cost-effective compared to traditional “serverful” cloud computing

that charges users based on the amount of computation resources

being reserved. With serverless, the user specifies a function that

she hopes to execute and is only charged for the duration of the

function execution. The users can also easily scale up the computa-

tion by specifying the number of such functions that are executed

concurrently. In this paper, we use the term FaaS (function as a ser-

vice) to denote the serverless infrastructure and use the term IaaS

(infrastructure as a service) to denote the VM-based infrastructure.

ML and Data Management. Modern data management sys-

tems are increasingly tightly integrated with advanced analytics

such as data mining and machine learning (ML). Today, many data-

base systems support a variety of machine learning training and

inference tasks [32, 43, 49, 78, 85]. Offering ML functionalities

inside a database system reduces data movement across system

boundaries and makes it possible for the ML components to take

advantage of built-in database mechanisms such as access con-

trol and integrity checking. Two important aspects of integrat-

ing machine learning into DBMS are performance and scalability.
As a result, the database community has been one of the driving

forces behind recent advancement of distributed machine learn-

ing [22, 31, 33, 40, 43, 47, 51, 67, 69, 79, 88, 103].

Motivation: FaaS Meets ML Training. Inspired by these two

emerging technological trends, in this paper we focus on one of their

https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240

intersections by enabling distributed ML training on top of server-

less computing.While FaaS is a natural choice for ML inference [48],

it is unclear whether FaaS can also be beneficial when it comes to

ML training. Indeed, this is a nontrivial problem and there has been

active recent research from both the academia and the industry. For

example, AWS provides one example of serverless ML training in

AWS Lambda using SageMaker and AutoGluon [10]. Such supports

are useful when building “training-as-a-service platforms” in which

requests of ML model training come in continuously from multiple

users or one model is continuously re-trained when new training

data arrives, and are also useful when providing users with “code-

free” experience of ML training without worrying about managing

the underlying infrastructure. Not surprisingly, training ML models

using serverless infrastructure has also attracted increasingly in-

tensive attention from the academia [21, 24, 25, 34, 39, 42, 92]. We

expect to see even more applications and researches focusing on

training ML models using FaaS infrastructures in the near future.

Our goal in this work is to understand the system tradeoff of
supporting distributed ML training with serverless infrastructures.
Specifically, we are interested in the following question:

When can a serverless infrastructure (FaaS) outperform
a VM-based, “serverful” infrastructure (IaaS) for dis-
tributed ML training?

State of the Landscape. Despite of these recent interests, these
early explorations depict a “mysterious” picture of the the relative

performance of IaaS and FaaS for training ML models. Although

previous work [25, 39, 42, 92] has illustrated up to two orders of

magnitude performance improvements of FaaS over IaaS over a

diverse range of workloads, the conclusion remains inconclusive.

In many of these early explorations, FaaS and IaaS are often not

put onto the same ground for comparison (see Section 6): either the

IaaS or FaaS implementations could be further optimized or only

micro-benchmarking is conducted. Moreover, similar to other non-

ML workloads, we expect a delicate system tradeoff in which FaaS

only outperforms IaaS in specific regimes [76, 80, 81]. However,

a systematic depiction of this tradeoff space, with an analytical

model, is largely lacking for ML training.

Summary of Contributions. In this paper, we conduct an ex-

tensive experimental study inspired by the current landscape of

FaaS-based distributed ML training. Specifically, we

systematically explore both the algorithm choice and
system design for both FaaS and IaaSML training strate-
gies and depict the tradeoff over a diverse range of ML
models, training workloads, and infrastructure choices.

In addition to the depiction of this empirical tradeoff using today’s

infrastructure, we further

develop an analytical model that characterizes the trade-
off between FaaS and IaaS-based training, and use it to
speculate performances of potential configurations used
by future systems.

In designing our experimental study, we follow a set of principles

for a fair comparison between FaaS and IaaS:

(1) Fair Comparison. To provide an objective benchmark and evalu-

ation of Faas and IaaS, we stick to the following principled method-

ology in this empirical study: (1) both FaaS and IaaS implement the

same set of algorithms (e.g., SGD and ADMM) to avoid apple-to-

orange comparisons such as comparing FaaS running ADMMwith

IaaS running SGD; and (2) we compare FaaS and IaaS running the

most suitable algorithms with the most suitable hyper-parameters

such as VM type and number of workers.

(2) End-to-end Benchmark. We focus on the end-to-end training

performance – the wall clock time (or cost in dollar) that each

system needs to converge to the same loss.
(3) Strong IaaS Competitors and Well-optimized FaaS System.

We use state-of-the-art systems as the IaaS solution, which are

often much faster than what has been used in previous work

showing FaaS is faster than IaaS. We also conduct careful system

optimizations and designs for FaaS. The prototype system, Lamb-

daML, can often pick a point in the design space that is faster than

what has been chosen by previous FaaS systems.

Summary of Insights. Our study leads to two key insights:

(1) FaaS can be faster than IaaS, but only in a specific regime: when
the underlying workload can be made communication efficient,

in terms of both convergence and amount of data communicated.

On one hand, there exists realistic datasets and models that can

take advantage of this benefit; on the other hand, there are also

workloads under which FaaS performs significantly worse.

(2) When FaaS is much faster, it is not much cheaper : One insight that
holds across all scenarios is that even when FaaS is much faster

than IaaS, it usually incurs a comparable cost in dollar. Thismirrors

the results for other workloads in Lambada [76] and Starling [80],

illustrating the impact of FaaS pricing model.

(Paper Organization) We start by an overview of existing dis-

tributed ML technologies and FaaS offerings (Section 2). We then

turn to an anatomy of the design space of FaaS-based ML systems,

following which we implement a Serverless ML platform called

LambdaML (Section 3). We present an in-depth evaluation of var-

ious design options when implementing LambdaML (Section 4).

We further present a systematic study of FaaS-based versus IaaS-

based ML systems, both empirically and analytically (Section 5).

We summarize related work in Section 6 and conclude in Section 7.

(Reproducibility and Open Source Artifact) LambdaML is pub-

licly available at https://github.com/DS3Lab/LambdaML. All experi-

ments can be reproduced following the instructions at https://github.

com/DS3Lab/LambdaML/blob/master/reproducibility.md.

2 PRELIMINARIES
In this section, we present a brief overview of state-of-the-art dis-

tributed ML technologies, as well as the current offerings of FaaS

(serverless) infrastructures by major cloud service providers.

2.1 Distributed Machine Learning
2.1.1 Data and Model. A training dataset 𝐷 consists of 𝑛 i.i.d. data

examples that are generated by the underlying data distribution

D. Let 𝐷 = {(x8 ∈ R=, 𝑦8 ∈ R)}#8=1, where x8 represents the feature
vector and 𝑦8 represents the label of the 𝑖th data example. The goal

of ML training is to find an ML model w that minimizes a loss
function 𝑓 over the training dataset 𝐷 : argminw

1

#

˝
8 𝑓 (x8 , 𝑦8 ,w).

2.1.2 Optimization Algorithm. Different ML models rely on differ-

ent optimization algorithms. Most of these optimization algorithms

 https://github.com/DS3Lab/LambdaML
https://github.com/DS3Lab/LambdaML/blob/master/reproducibility.md
https://github.com/DS3Lab/LambdaML/blob/master/reproducibility.md

are iterative. In each iteration, the training procedure would typ-

ically scan the training data, compute necessary quantities (e.g.,

gradients), and update the model. This iterative procedure termi-

nates/converges when there are no more updates to the model.

During the training procedure, each pass over the entire data is

called an epoch. For instance, mini-batch stochastic gradient descent

(SGD) processes one batch of data during each iteration, and thus

one epoch involves multiple iterations; on the other hand, k-means

processes all data, and thus one epoch, in each iteration.

(DistributedOptimization)When a singlemachine does not have

the computation power or storage capacity (e.g., memory) to host an

ML training job, one has to deploy and execute the job across mul-

tiple machines. Training ML models in a distributed setting is more

complex, due to the extra complexity of distributed computation

as well as coordination of the communication between executors.

Lots of distributed optimization algorithms have been proposed.

Some of them are straightforward extensions of their single-node

counterparts (e.g., k-means), while the others require more sophisti-

cated adaptations dedicated to distributed execution environments

(e.g., parallelized SGD [106], distributed ADMM [23]).

2.1.3 Communication Mechanism. One key differentiator in the

design and implementation of distributedML systems is the commu-

nication mechanism employed. In the following, we present a brief

summary of communication mechanisms leveraged by existing sys-

tems, with respect to a simple taxonomy regarding communication
channel, communication pattern, and synchronization protocol.
(Communication Channel) The efficiency of data transmission

relies on the underlying communication channel.While one can rely

on pure message passing between executors, this shared-nothing

mechanism may be inefficient in many circumstances. For example,

when running SGD in parallel, each executor may have to broadcast

its local versions of global states (e.g., gradients, model parame-

ters) to every other executor whenever a synchronization point is

reached. As an alternative, one can use certain storage medium,

such as a disk-based file system or an in-memory key-value store,

to provide a central access point for these shareable global states.

(Communication Pattern) A number of collective communica-

tion primitives can be used for data exchange between execu-

tors [70], such as Gather, AllReduce, and ScatterReduce.
(Synchronization Protocol) The iterative nature of the optimiza-

tion algorithms may imply certain dependencies across successive

iterations, which force synchronizations between executors at cer-

tain boundary points [94]. A synchronization protocol has to be

specified regarding when such synchronizations are necessary. Two

common protocols used by existing systems are bulk synchronous
parallel (BSP) and asynchronous parallel (ASP). BSP is preferred

if one requires certain convergence or reproducibility guarantees,

where no work can proceed to the next iteration without having

all workers finish the current iteration. In contrast, ASP does not

enforce such synchronization barriers, but could potentially hurt

the empirical convergence rate in some applications.

2.2 FaaS vs. IaaS for ML
Most of the aforementioned distributed ML technologies have only

been applied in IaaS environments on cloud, where users have to

build a cluster by renting VMs or reserve a cluster with predeter-

mined configuration parameters (e.g., Azure HDInsight [74]). As a

MPI/RPC

ModelTrain Data
Intermediate

State

IaaS-based FaaS-based

Merged

State

Storage

Channel

Figure 1: IaaS vs. FaaS-based ML system architectures.

result, users pay bills based on the computation resources that have

been reserved, regardless of whether these resources are in use or

not. Moreover, users have to manage the resources by themselves—

there is no elasticity or auto-scaling if the reserved computation

resources turn out to be insufficient, even for just a short moment

(e.g., during the peak of a periodic or seasonal workload). There-

fore, to tolerate such uncertainties, users tend to overprovisioning
by reserving more computation resources than actually needed.

The move towards FaaS infrastructures lifts the burden of man-

aging computation resources from users. Resource allocation in

FaaS is on-demand and auto-scaled, and users are only charged by

their actual resource usages. The downside is that FaaS currently

does not support customized scaling and scheduling strategies. Al-

though the merits of FaaS are very attractive, current offerings

by major cloud service providers (e.g., AWS Lambda [14], Azure

Functions [73], Google Cloud Functions [37]) impose certain limi-

tations and/or constraints that shed some of the values by shifting

from IaaS to FaaS infrastructures. Current FaaS infrastructures only

support stateless function calls with limited computation resource

and duration. For instance, a function call in AWS Lambda can use

up to 3GB of memory and must finish within 15 minutes [15]. Such

constraints automatically eliminate some simple yet natural ideas

on implementing FaaS-based ML systems. For example, one cannot

just wrap the code of SGD in an AWS Lambda function and execute

it, which would easily run out of memory or hit the timeout limit

on large training data. Indeed, state-of-the-art FaaS systems raise

lots of new challenges for designing ML systems and leads to a rich

design space, as we shall cover in the next section.

3 LAMBDAML
We implement LambdaML, a prototype FaaS-based ML system built

on top of Amazon Lambda, and study the trade-offs in training ML

models over serverless infrastructure.

3.1 System Overview
(Challenges) As mentioned in Section 2, we need to consider four

dimensions when developing distributed ML systems: (1) the dis-
tributed optimization algorithm, (2) the communication channel, (3)
the communication pattern, and (4) the synchronization protocol.
These elements remain valid when migrating ML systems from

IaaS to FaaS infrastructures, though new challenges arise. One

main challenge is that current FaaS infrastructures do not allow

direct communication between stateless functions. As a result, one

has to use certain storage channel to allow the functions to read-

/write intermediate state information generated during the iterative

training procedure. Figure 1 highlights this key difference between

IaaS and FaaS designs of ML training systems.

(Framework of LambdaML) Figure 2 shows the framework of

LambdaML. When one user specifies the training configurations in

AWS web UI (e.g., data location, resources, optimization algorithm,

Figure 2: Framework of LambdaML.

and hyperparameters), AWSsubmits jobto the serverless infrastruc-
ture that allocates resources(i.e., serverless instances) according to
the user request. Each running instance is aworkerin LambdaML.
Thetraining datais partitioned and stored in S3, a distributed stor-
age service in AWS. Each worker maintains alocal model copyand
uses the library of LambdaML to train a machine learning model.

(Job Execution) A training job in LambdaMLhas the steps below:
(1) Load data.Each worker loads the corresponding partition of train-

ing data from S3.
(2) Compute statistics.Each worker creates the ML model with Py-

Torch and computes statistics for aggregation using the train-
ing data and the local model parameters. Di�erent optimization
algorithms may choose di�erent statistics for aggregation, e.g.,
gradient in distributed SGD and local model in distributed model
averaging (see Section 3.2.1 for more details).

(3) Send statistics.In a distributed setting, the statistics are sent to a
communication channel (see Section 3.2.2).

(4) Aggregate statistics.The statistics from all the workers, which are
considered as intermediate states, are aggregated using a certain
pattern, generating a global state of the statistics (see Section 3.2.3).

(5) Update model.Each worker gets the merged state of the statistics,
with which the local model is updated. For an iterative optimiza-
tion algorithm, if one worker is allowed to proceed according to a
synchronization protocol (see Section 3.2.4), it goes back to step
(2) and runs the next iteration.

(Components of LambdaML Library) As shown in Figure 2, the
computation library ofLambdaMLis developed on top of PyTorch,
which provides a wide range of ML models andautograd function-
alities. To rundistributed optimization algorithms, the communica-
tion library of LambdaMLrelies on somecommunication channel
to aggregate local statistics via certaincommunication patternand
governs the iterative process using asynchronization protocol.

Figure 3: An FaaS-based data aggregation.

3.2 Implementation of LambdaML
In this section we elaborate the aforementioned four major aspects
in the implementation ofLambdaML� distributed optimization
algorithm, communication channel, communication pattern, and
synchronization protocol. Each aspect contains a rich design space
which should be studied carefully.

3.2.1 Distributed Optimization Algorithm.In our study, we focus
on the following distributed optimization algorithms.

(Distributed SGD) Stochastic gradient descent (SGD) is perhaps
the most popular optimization algorithm in today's world, partly
attributed to the success of deep neural networks. We consider
two variants when implementing SGD in a distributed manner:
(1)gradient averaging(GA) and (2)model averaging(MA). In both
implementations, we partition training data evenly and have one ex-
ecutor be in charge of one partition. Each executor runs mini-batch
SGD independently and in parallel, while sharing and updating the
global ML model at certain synchronization barriers (e.g., after one
or a couple of iterations). The di�erence lies in the way that the
global model gets updated. GA updates the global model inevery
iteration by harvesting and aggregating the (updated) gradients
from the executors. In contrast, MA collects and aggregates the
(updated) local models, instead of the gradients, from the executors
and do not force synchronization at the end of each iteration. That
is, executors may combine the local model updates accumulated in
a number of iterations before synchronizing with others to obtain
the latest consistent view of the global model. We refer readers
to [103] for a more detailed comparison between GA and MA.

(Distributed ADMM) Alternating direction method of multipliers
(ADMM) is another popular distributed optimization algorithm
proposed by Boyd et al. [23]. ADMM breaks a large-scale convex
optimization problem into several smaller subproblems, each of
which is easier to handle. In the distributed implementation of
LambdaML, each executor solves one subproblem (i.e., until conver-
gence of the local solution) and then exchanges local models with
other executors to obtain the latest view of the global model. While
this paradigm has a similar pattern as model averaging, it has been
shown that ADMM can have better convergence guarantees [23].

3.2.2 Communication Channel.As we mentioned, it is necessary
to have a storage component in an FaaS-based ML system to al-
low stateless functions to read/write intermediate state information
generated during the lifecycle of ML training. With this storage com-
ponent, we are able to aggregate data between running instances in
the implementation of distributed optimization algorithms. Often,
there are various options for this storage component, with a broad
spectrum of cost/performance tradeo�s. For example, in Amazon
AWS, one can choose between four alternatives�S3, ElastiCache
for Redis, ElastiCache for Memcached, and DynamoDB. S3 is a
disk-based object storage service [18], whereas Redis and Mem-
cached are in-memory key-value data stores provided by Amazon

Figure 4: AllReduce vs. ScatterReduce.

ElastiCache [13]. DynamoDB is an in-memory key-value database
hosted by Amazon AWS [11]. In addition to using external cloud-
based storage services, one may also consider building his/her own
customized storage layer. For instance, Cirrus [25] implements a
parameter server [51] on top of a virtual machine (VM), which
serves as the storage access point of the global model shared by the
executors (implemented using AWS Lambda functions). This design,
however, is not a pure FaaS architecture, as one has to maintain the
parameter server by himself. We will refer to it as ahybrid design.

Di�erent choices on communication channel lead to di�erent
cost/performance tradeo�s. For example, on AWS, it usually takes
some time to start an ElastiCache instance or a VM, whereas S3
does not incur such a startup delay since it is an �always on� service.
On the other hand, accessing �les stored in S3 is in general slower
but cheaper than accessing data stored in ElastiCache.

(An FaaS-based Data Aggregation)We now design a communi-
cation scheme for data aggregation using a storage service, such
as S3 or ElastiCache, as the communication channel. As shown in
Figure 3, the entire communication process contains the following
steps: 1) Each executor stores its generated intermediate data as a
temporary �le in S3 or ElastiCache; 2) The �rst executor (i.e., the
leader) pulls all temporary �les from the storage service and merges
them to a single �le; 3) The leader writes the merged �le back to the
storage service; 4) All the other executors (except the leader) read
the merged �le from the storage service; 5) All executors refresh
their (local) model with information read from the merged �le.

Figure 3 also presents an alternative implementation using a
VM-based parameter server as in the hybrid design exempli�ed by
Cirrus [25]. In this implementation, 1) each executor pushes local
updates to the parameter server, with which 2) the parameter server
further updates the global model. Afterwards, 3) each executor pulls
the latest model from the parameter server.

3.2.3 Communication Pa�ern.To study the impact of commu-
nication patterns, we focus on two MPI primitives,AllReduce
andScatterReduce , that have been widely implemented in dis-
tributed ML systems [103]. Figure 4 presents the high-level designs
of AllReduce andScatterReduce in an FaaS environment with
an external storage service such as S3 or ElastiCache.

(AllReduce) With AllReduce , all executors �rst write their local
updates to the storage. Then the �rst executor (i.e., the leader)
reduces/aggregates the local updates and writes the aggregated
updates back to the storage service. Finally, all the other executors
read the aggregated updates back from the storage service.

(ScatterReduce)When there are too many executors or a large
amount of local updates to be aggregated, the single leader executor
in AllReduce may become a performance bottleneck. This is alle-
viated by usingScatterReduce . Here, all executors are involved
in the reduce/aggregate phase, each taking care of one partition

Figure 5: Invocation structure of Lambda workers.

of the local updates being aggregated. Speci�cally, assume that
we have= executors. Each executor divides its local updates into
= partitions, and then writes each partition separately (e.g., as a
�le) to the storage service. During the reduce/aggregate phase, the
executor8(1 � 8 � =) collects the8th partitions generated by all
executors and aggregates them. It then writes the aggregated result
back to the storage service. Finally, each executor8pulls aggregated
results produced by all other executors to obtain the entire model.

3.2.4 Synchronization Protocol.We focus on two synchronization
protocols that have been adopted by many existing distributed ML
systems. One can simply implement these protocols on top of server-
ful architectures by using standard primitives of message passing
interface (MPI), such asMPI_Barrier. Implementations on top of
FaaS architectures, however, are not trivial, given that stateless
functions cannot directly communicate with each other.
(Synchronous) We design a two-phase synchronous protocol, which
includes a merging and an updating phase. We illustrate this in
FaaS architecture that leverages an external storage service:

� Merging phase.All executors �rst write their local updates to
the storage service. The reducer/aggregator (e.g., the leader in
AllReduce and essentially every executor inScatterReduce)
then needs to make sure that it has aggregated local updates from
all other executors. Otherwise it should just wait.

� Updating phase.After the aggregator �nishes aggregating all data
and stores the aggregated information back to the storage service,
all executors can read the aggregated information to update their
local models and then proceed with next round of training.

All executors are synchronized using this two-phase framework.
Moreover, one can rely on certain atomicity guarantees provided
by the storage service to implement these two phases. Here we
present the implementation of our proposed synchronous protocol.

� Implementation of the Merging Phase.We name the �les that store
local model updates using a scheme that includes all essential
information, such as the training epoch, the training iteration,
and the partition ID. The reducer/aggregator can then request the
list of �le names from the storage service (using APIs that are
presumedatomic), �lter out uninteresting ones, and then count
the number of �les that it has aggregated. When the number of
aggregated �les equals the number of workers, the aggregator can
proceed. Otherwise, it should wait and keep polling the storage
service until the desired number of �les is reported.

� Implementation of the Updating Phase.We name the merged �le
that contains the aggregated model updates in a similar manner,
which consists of the training epoch, the training iteration, and
the partition ID. For an executor that is pending on the merged
�le, it can then keep polling the storage service until the name of
the merged �le shows up.

(Asynchronous) Following the approach of SIREN [92], the imple-
mentation of asynchronous communication is simpler. One replica
of the trained model is stored on the storage service as a global
state. Each executor runs independently � it reads the model from
the storage service, updates the model with training data, writes
the new model back to the storage service � without caring about
the speeds of the other executors.

3.3 Other Implementation Details
This section provides the additional implementation details of
LambdaML that are relevant for understanding its performance.
3.3.1 Handling Limited Lifetime.One major limitation of Lambda
functions is their (short) lifetime, that is, the execution time cannot
be longer than 15 minutes. We implement ahierarchical invocation
mechanism to schedule their executions, as illustrated in Figure 5.
Assume that the training data has beenpartitionedand we have
one executor (i.e., a Lambda function) for each partition. We start
Lambda executors with the following steps: (1) astarterLambda
function is triggered once the training data has been uploaded
into the storage service, e.g., S3; (2) the starter triggers= worker
Lambda functions where= is the number of partitions of the training
data. Each worker is in charge of its partition, which is associated
with metadata such as the path to the partition �le and the ID of
the partition/worker. Moreover, a worker monitors its execution
to watch for the 15-minute timeout. It pauses execution when
the timeout is approaching, and saves a checkpoint to the storage
service that includes the latest local model parameters. It then
resumes execution by triggering its Lambda function with a new
worker. The new worker inherits the same worker ID and thus
would take care of the same training data partition (using model
parameters saved in the checkpoint).
(Limitation) Under the current design, this mechanism cannot
support the scenario in whicha single iterationtakes longer than
15 minutes. We have not observed such a workload in our evalua-
tion, and it would require a very large model and batch size for a
single iteration to exceed 15 minutes. Especially given the memory
limitation (3GB) of FaaS, we do not expect this to happen in most
realistic scenarios. A potential workaround to accommodate this
limitation is to use a smaller batch size so that one iteration takes
less than 15 minutes. A more fundamental solution might be to
explore model-parallelism [61, 77] in the context of FaaS, which is
an interesting direction for future research.

4 EVALUATION OF LAMBDAML
We evaluateLambdaMLwith the goal of comparing the various de-
sign options that have been covered in Section 3. We start by laying
out the experiment settings and then report evaluation results with
respect to each dimension of the design space.

4.1 Experiment Settings
(Datasets)Figure 6a presents the datasets used in our evaluation. In
this section, we focus on smaller datasets to understand the system
behavior and leave the larger datasets (YFCC100M and Criteo)
to the next section when we conduct the end-to-end study. We
focus onHiggs, RCV1 andCifar10 . Higgs is a dataset for binary
classi�cation, produced by using Monte Carlo simulations.Higgs
contains 11 million instances, and each instance has 28 features.

Dataset Size # Ins # Feat
Cifar10 220 MB 60 K 1 K
RCV1 1.2 GB 697 K 47 K
Higgs 8 GB 11 M 28

(a) Micro benchmark.

Dataset Size # Ins # Feat
Cifar10 220 MB 60 K 1 K

YFCC100M 110 GB 100 M 4 K
Criteo 30 GB 52 M 1M

(b) End-to-end benchmark.
Figure 6: Datasets used in this work.

RCV1 is a two-class classi�cation corpus of manually categorized
newswire stories made available by Reuters [62]. The feature of each
training instance is a 47236-dimensional sparse vector, in which
every value is a normalized TF-IDF value.Cifar10 is an image
dataset that consists of 60 thousand 32� 32 images categorized by
10 classes, with 6 thousand images per class.
(ML Models) We use the following ML models in our evaluation.
Logistic Regression (LR) and Support Vector Machine (SVM) are
linear models for classi�cation that are trained by mini-batch SGD
or ADMM. The number of the model parameters is equal to that of
input features. MobileNet (MN) is a neural network model that uses
depth-wise separable convolutions to build lightweight deep neural
networks. The size of each input image is224� 224� 3, and the size
of model parameters is 12MB. ResNet50 (RN) is a famous neural
network model that was the �rst to introduce identity mapping
and shortcut connection. KMeans (KM) is a clustering model for
unsupervised problems, trained byexpectation maximization(EM).

(Protocols) We randomly shu�e and split the data into a training
set (with 90% of the data) and a validation set (with 10% of the
data). We report the number forHiggs with batch size 100K, while
setting it as 10K or 1M will not change the insights and conclusions;
whereas it is 128 forMN and 32 forRN over Cifar10 according
to the maximal memory constraint (3GB) of Lambda. We tune the
optimal learning rate for each ML model in the range from 0.001
to 1. We set a threshold for the observed loss, and we stop training
when the threshold is reached. The threshold is 0.68 forLR on
Higgs, 0.2 forMN on Cifar10 , and 0.1 forKM on Higgs.

(Metrics) We decouple the system performance intostatistical e�-
ciencyandsystem e�ciency. We measure statistical e�ciency by
the loss observed over the validation set. Meanwhile, we measure
system e�ciency by the execution time of each iteration or epoch.

4.2 Distributed Optimization Algorithms
Carefully choosing the right algorithm goes a long way in
optimizing FaaS-based system, and the widely adopted SGD
algorithm is not necessarily �one-size-�ts-all.�

We implemented GA-SGD (i.e., SGD with gradient averaging),
MA-SGD (i.e., SGD with model averaging), and ADMM on top
of LambdaML, using ElastiCache for Memcached as the external
storage service. Figure 7 presents the results for various data and ML
models we tested. We measure the convergence rate in terms of both
the wall clock time and the number of rounds for communication.

(Results for LR and SVM) When trainingLR on Higgs using 300
workers, GA-SGD is the slowest because transmitting gradients
every batch can lead to high communication cost. ADMM converges
the fastest, followed by MA-SGD. Compared with GA-SGD, MA-
SGD reduces the communication frequency from every batch to
every epoch, which can be further reduced by ADMM. Moreover,
MA-SGD and ADMM can converge with fewer communication
steps, in spite of reduced communication frequency. We observe

(a) LR, Higgs.

(b) SVM, Higgs.

(c) MobileNet, Cifar10.

Figure 7: Comparison of distributed optimization methods.

similar results when trainingSVM on Higgs: ADMM converges
faster than GA-SGD and MA-SGD.

(Results for MN) We have di�erent observations when turning
to training neural network models. Figure 7c presents the results
of training MN on Cifar10 . First, we note that ADMM can only
be used for optimizing convex objective functions and therefore is
not suitable for training neural network models. Comparing GA-
SGD and MA-SGD, we observe that the convergence of MA-SGD
is unstable, though it can reduce the communication cost. On the
other hand, GA-SGD can converge steadily and achieve a lower
loss. As a result, in this case, we have no choice but to use GA-SGD.

4.3 Communication Channels
For many workloads, a pure FaaS architecture can be competi-
tive to the hybrid design with a dedicated VM as parameter
server, given the right choice of the algorithm; A dedicated PS
can de�nitely help in principle, but its potential is currently
bounded by the communication between FaaS and IaaS.

We evaluate the impact of communication channels. We train
LR, MN, andKM usingLambdaML. LR is optimized by ADMM,
MN is optimized by GA-SGD, andKM is optimized by EM. Table 1
presents the settings and compares using disk-based S3 with other
memory-based mediums.

(Pure FaaS Solutions)We compare design choices including Mem-
cached, S3, Redis, and DynamoDB.

� Memcached vs. S3.Memcached introduces a lower latency than
S3, therefore one round of communication using Memcached is
signi�cantly faster than using S3. Furthermore, Memcached has a
well-designed multi-threading architecture [17]. As a result, its
communication is faster than S3 over a large cluster with up to 50
workers, showing 7� and 7.7� improvements when trainingLR
andKM. Nonetheless, the overall execution time of Memcached is

Workload
Memcached vs. S3 DynamoDB vs. S3 VM-PS vs. S3
cost slowdown cost slowdown cost slowdown

LR,Higgs,W=10 5 4.17 0.95 0.83 4.7 3.85
LR,Higgs,W=50 4.5 3.70 0.92 0.81 4.47 3.70

KMeans,Higgs,W=50,k=10 1.58 1.32 1.13 0.93 1.48 1.23
KMeans,Higgs,W=50,k=1K 1.43 1.19 1.03 0.90 1.52 1.27
MobileNet,Cifar10,W=10 0.9 0.77 N/A N/A 4.8 4.01
MobileNet,Cifar10,W=50 0.89 0.75 N/A N/A 4.85 4.03

Table 1: Comparison of S3, Memcached, DynamoDB, and
VM-based parameter server. We present the slowdown and
relative costs of using di�erent mediums w.r.t. using S3. A
relative cost larger than 1 means S3 is cheaper, whereas a
slowdown larger than 1 means S3 is faster. DynamoDB can-
not handle a large model such as MobileNet.

Lambda Type EC2 Type Data Transmission Model Update
gRPC / Thrift gRPC / Thrift

1� Lambda-3GB (1.8vCPU) t2.2xlarge 2.62s / 21.8s 2.9s / 0.5s
1� Lambda-1GB (0.6vCPU) t2.2xlarge 3.02s / 34.4s 2.9s / 0.5s
1� Lambda-3GB (1.8vCPU) c5.4xlarge 1.85s / 19.7s 2.3s / 0.4s
1� Lambda-1GB (0.6vCPU) c5.4xlarge 2.36s / 32s 2.3s / 0.4s
10� Lambda-3GB (1.8vCPU) t2.2xlarge 5.7s / 68.5s 33s / 13s
10� Lambda-1GB (0.6vCPU) t2.2xlarge 8.2s / 82s 34s / 13s
10� Lambda-3GB (1.8vCPU) c5.4xlarge 3.7s / 52s 27s / 6s
10� Lambda-1GB (0.6vCPU) c5.4xlarge 5.6s / 84s 25s / 6s

Table 2: Hybrid solution: Communication between Lambda
and VM-based parameter server. Transferred data size is
75MB. The time is averaged over ten trials. Transfer time
includes time spent on serialization/deserialization . In each
pair, the le� is result of gRPCand the right is result of Thri� .

actually longer than S3, because it takes more than two minutes to
start Memcached whereas starting S3 is instant (as it is an �always
on� service). When we turn to trainingMN on Cifar10 , using
Memcached becomes faster than using S3, since it takes much
longer forMN to converge.

� Redis vs. Memcached.According to our benchmark, Redis is similar
to Memcached when training small ML models. However, when an
ML model is large or is trained with a big cluster, Redis is inferior
to Memcached since Redis lacks a similar high-performance multi-
threading mechanism that underlies Memcached.

� DynamoDB vs. S3.Compared to S3, DynamoDB reduces the com-
munication time by roughly 20% when training LR on Higgs,
though it remains signi�cantly slower than IaaS if the startup
time is not considered. Nevertheless, DynamoDB only allows
messages smaller than 400KB [12], making it infeasible for many
median models or large models (e.g., RCV1 and Cifar10).

(Hybrid Solutions) Cirrus [25] presents a hybrid design � having
a dedicated VM to serve as parameter server and all FaaS workers
communicate with this centralized PS. This design de�nitely has its
merit, in principle�giving the PS the ability of doing computation
can potentially save 2� communication compared with an FaaS
communication channel via S3/Memcached. However, we �nd that
this hybrid design has several limitations, which limit the regime
under which it outperforms a pure FaaS solution.

When training LR andKM, VM-based PS performs similarly
using Memcached or Redis, which are slower than S3 considering
the start-up time. In this case, a pure FaaS solution is competitive
even without the dedicated VM. This is as expected�when the mode
size is small and the runtime is relatively short, communication is
not a signi�cant bottleneck.

Model & Dataset Model Size AllReduce ScatterReduce
LR,Higgs,W=50 224B 9.2s 9.8s

MobileNet,Cifar10,W=10 12MB 3.3s 3.1s
ResNet,Cifar10,W=10 89MB 17.3s 8.5s

Table 3: Impact of di�erent communication patterns.

When model is larger and workload is more communication-
intensive, we would expect that the hybrid design performs sig-
ni�cantly better. However, this is not the caseunder the current
infrastructure. To con�rm our claim, we use two RPC frameworks
(Thrift and gRPC), vary CPUs in Lambda (by varying memory size),
use di�erent EC2 types, and evaluate the communication between
Lambda and EC2. The results in Table 2 reveal several constraints of
communication between Lambda and VM-based parameter server:
(1) The communication speed from the PS is much slower than
Lambda-to-EC2 bandwidth (up to 70MBps reported by [57, 95])
and EC2-to-EC2 bandwidth (e.g., 10Gbps for c5.4xlarge). Hybrid
solution takes at least 1.85 seconds to transfer 75MB. (2) Increasing
the number of vCPUs can decrease the communication time by
accelerating data serialization and deserialization. But the serializa-
tion performance is eventually bounded by limited CPU resource of
Lambda (up to 1.8 vCPU). (3) Model update on parameter server is
costly when the workload scales to a large cluster due to frequent
locking operation of parameters. As a result, HybridPS is currently
bounded not only by the maximal network bandwidth but also seri-
alization/deserialization and model update.However, if this problem
is �xed, we would expect that a hybrid design might be a perfect �t
for FaaS-based deep learning. We will explore this in Section 5.3.1.

We also study the impact of the number of parameter servers.
Intuitively, adding parameter servers can increase the bandwidth
for model aggregation. However, when we increase the number of
parameter servers from 1 to 5 for the hybrid solution, we do not
observe signi�cant performance change. As we explained above, the
hybrid architecture is not bounded by the bandwidth; instead, the
bottleneck is the serialization/deserialization operation in Lambda.
Therefore, adding parameter servers cannot solve this problem.

4.4 Communication Patterns
We use another model, called ResNet50 (RN), in this study to in-
troduce a larger model thanMN. We trainLR on Higgs, and train
MN andRN on Cifar10 , using S3 as the external storage service.
Table 3 shows the time spent on communication byAllReduce
and ScatterReduce . We observe that usingScatterReduce is
slightly slower thanAllReduce when trainingLR. Here commu-
nication is not a bottleneck andScatterReduce incurs extra over-
head due to data partitioning. On the other hand, the communica-
tion costs ofAllReduce andScatterReduce are roughly the same
when trainingMN. AllReduce is 2� slower thanScatterReduce
when trainingRN, as communication becomes heavy and the single
reducer (i.e., aggregator) inAllReduce becomes a bottleneck.

4.5 Synchronization Protocols
Finally, we study the impact of the two synchronization proto-
cols: Synchronous and Asynchronous. Note that the Asynchronous
protocol here is di�erent from ASP in traditional distributed learn-
ing. In traditional distributed learning, ASP is implemented in the
parameter-server architecture where there is an in-memory model
replica that can be requested and updated by workers [30, 45, 51].
However, this ASP routine is challenging, if not infeasible, in FaaS

Figure 8: Comparison of Synchronization Protocols.

infrastructure. We thus follow SIREN [92] to store a global model
on S3 and let every FaaS instance rewrite it. This makes the impact
of Asynchronous on convergence in our scenario more signi�cant
than that of ASP in distributed learning. We use GA-SGD to trainLR
on Higgs, LR on RCV1, andMN on Cifar10 , with Asynchronous
or Synchronous enabled for the executors. As suggested by previ-
ous work [104], we use a learning rate decaying with rate1•

p
) for

S-ASP(our Asynchronous implementation) where) denotes the
number of epochs. Figure 8 presents the results. We observe that
Synchronous converges steadily whereas Asynchronous su�ers
from unstable convergence, although Asynchronous runs faster per
iteration. The convergence problem of Asynchronous is caused by
the inconsistency between local model parameters. If stragglers ex-
ist, those faster executors may read stale model parameters from the
stragglers. Consequently, the bene�t of system e�ciency brought
by Asynchronous is o�set by its inferior statistical e�ciency.

5 FAAS VS. IAAS FOR ML TRAINING
We now compare FaaS and IaaS for ML training usingLambdaML.
Here we focus on the case of training asingle model. In this scenario,
a user submits a training job over a dataset stored on S3; the system
then (1) starts the (FaaS or IaaS) infrastructure and (2) runs the job
until it reaches the target loss.

5.1 Experiment Settings
Our experimental protocols are as follows:

(Competing Systems) We compareLambdaML, a pure FaaS-based
implementation, with the following systems:

� Distributed PyTorch.We partition training data and run PyTorch
1.0 in parallel across multiple machines. We use all available CPU
cores on each machine, if possible. To manage a PyTorch cluster,
we use StarCluster [75], a managing toolkit for EC2 clusters. We
use theAllReduce operator of Gloo, a collective communication
library, for cross-machine communication, and we implement
both mini-batch SGD and ADMM for training linear models.

� Distributed PyTorch on GPUs.For deep learning models, we also
consider GPU instances. The other settings are the same as above.

� Angel.Angel is an open-source ML system based on parameter
servers [51]. Angel works on top of the Hadoop ecosystem (e.g.,
HDFS, Yarn, etc.) and we use Angel 2.4.0 in our evaluation. We
chose Angel because it reports state-of-the-art performance on
workloads similar to our evaluations.

� HybridPS.Following the hybrid architecture proposed by Cir-
rus [25], we implement a parameter server on a VM using gRPC,
a cross-language RPC framework. Lambda instances use a gRPC
client to pull and push data to the parameter server. We also
implement the same SGD framework as in Cirrus.

(Datasets) In addition to Higgs, RCV1 and Cifar10 , Figure 6b
presents two more datasets that are used for the current set of
performance evaluations,YFCC100M and Criteo . YFCC100M

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Distributed Machine Learning
	2.2 FaaS vs. IaaS for ML

	3 LambdaML
	3.1 System Overview
	3.2 Implementation of LambdaML
	3.3 Other Implementation Details

	4 Evaluation of LambdaML
	4.1 Experiment Settings
	4.2 Distributed Optimization Algorithms
	4.3 Communication Channels
	4.4 Communication Patterns
	4.5 Synchronization Protocols

	5 FaaS vs. IaaS for ML Training
	5.1 Experiment Settings
	5.2 Experimental Results
	5.3 Analytical Model

	6 Related Work
	7 Conclusion
	References

