
Journal of Automated Reasoning (2020) 64:1445–1481
https://doi.org/10.1007/s10817-020-09568-7

Natural Projection as Partial Model Checking

Gabriele Costa1 · Letterio Galletta1 · Pierpaolo Degano2 · David Basin3 ·
Chiara Bodei2

Received: 22 June 2020 / Accepted: 26 June 2020 / Published online: 13 August 2020
© The Author(s) 2020

Abstract
Verifying the correctness of a system as a whole requires establishing that it satisfies a global
specification.When it does not, it would be helpful to determine whichmodules are incorrect.
As a consequence, specification decomposition is a relevant problem from both a theoretical
and practical point of view. Until now, specification decomposition has been independently
addressed by the control theory and verification communities through natural projection
and partial model checking, respectively. We prove that natural projection reduces to partial
model checking and, when cast in a common setting, the two are equivalent. Apart from
their foundational interest, our results build a bridge whereby the control theory community
can reuse algorithms and results developed by the verification community. Furthermore,
we extend the notions of natural projection and partial model checking from finite-state to
symbolic transition systems and we show that the equivalence still holds. Symbolic transition
systems are more expressive than traditional finite-state transition systems, as they canmodel
large systems, whose behavior depends on the data handled, and not only on the control flow.
Finally, we present an algorithm for the partial model checking of both kinds of systems that
can be used as an alternative to natural projection.

Keywords Natural projection · Partial evaluation · Formal verification ·Model checking

B Gabriele Costa
gabriele.costa@imtlucca.it

Letterio Galletta
letterio.galletta@imtlucca.it

Pierpaolo Degano
degano@di.unipi.it

David Basin
basin@inf.ethz.ch

Chiara Bodei
chiara@di.unipi.it

1 SysMA Unit, IMT School for Advanced Studies, Lucca, Italy

2 Department of Informatics, Università di Pisa, Pisa, Italy

3 Department of Computer Science, ETH Zurich, Zurich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09568-7&domain=pdf
http://orcid.org/0000-0002-9385-3998


1446 G. Costa et al.

1 Introduction

System verification requires comparing a system’s behavior against a specification. When
the system is built from several components, we can distinguish between local and global
specifications. A local specification applies to a single component, whereas a global specifi-
cation should hold for the entire system. Since these two kinds of specifications are used to
reason at different levels of abstraction, both kinds are often needed.

Ideally one aims at freely passing from local to global specifications and vice versa.
Most specification formalisms natively support specification composition and there are well-
studied examples of operators for composing them, e.g., logical conjunction, set intersection,
and the synchronous product of automata. Unfortunately, the same does not hold for specifi-
cation decomposition: obtaining local specifications from a global one is, in general, much
more difficult.

Over the past decades, many research communities have independently investigated
decomposition methods, each focussing on the specification formalisms and assumptions
appropriate for their application context. In particular, important results were obtained in the
fields of control theory and formal verification.

In control theory, natural projection [40] is exploited to simplify systems built from mul-
tiple components, modeled as automata. Natural projection is often applied component-wise
to solve the controller synthesis problem, i.e., for synthesizing local controllers from a global
specification of an asynchronous discrete-event system [11]. In this way, by interacting only
with a single component of a system, local controllers guarantee that the global specification
is never violated. By composing local controllers in parallel with other sub-systems, it is
possible to implement distributed control systems [41,42].

The formal verification community proposed partial model checking [1] as a technique to
mitigate the state explosion problem arising when verifying large systems composed from
many parallel processes. Partial model checking tackles this problem by decomposing a
specification, given as a formula of the μ-calculus [27], using a quotienting operator, and
thereby supporting the analysis of the individual processes independently. Quotienting carries
out a partial evaluation of a specification while preserving the model checking problem.
Thus for instance, a system built from two modules satisfies a specification if and only if
one of the modules satisfies the specification after quotienting against the other [1]. The use
of quotienting may reduce the problem size, resulting in smaller models and hence faster
verification.

Table 1 summarizes some relevant results about the two approaches for finite-state Labeled
Transitions Systems; for more details, we refer the reader to Sect. 6. Since natural projection
and partial model checking apply to different formalisms, they cannot be directly compared

Table 1 Summary of existing results on natural projection and partial model checking for finite-state Labeled
Transition Systems

Natural projection Partial MC

Spec. Lang. FSA [24,37] μ-calculus [1,3]

Theory FSA [24,37] LTS [1,3]

Complexity EXPTIME1 [19,39] EXPTIME [1,3]

Tools TCT [18], IDES3 [35], DESTool [33] mCRL2 [23], CADP [28], MuDiv [2]

Notice that the algorithm in [39] runs in PTIME on a specific class of discrete-event systems

123



Natural Projection as Partial Model Checking 1447

without defining a common framework. For example, a relevant question is to compare how
specifications grow under the two approaches. Although it is known that both may lead
to exponential growth (see [26,39] and [3]), these results apply in one case to finite-state
automata (FSAs) and in the other case to μ-calculus formulae.

Although decomposition work has been carried out in different communities, there have
also beenproposals for the cross-fertilizationof ideas andmethods [17]. For instance,methods
for synthesizing controllers using partial model checking are given in [7,31]. The authors
of [20] and [22] propose similar techniques, using fragments of the μ-calculus and CTL∗,
respectively.

One of our starting points was suggested by Ehlers et al. [17], who advocate establishing
formal connections between these two approaches. In their words:

Such a formal bridge should be a source of inspiration for new lines of investiga-
tion that will leverage the power of the synthesis techniques that have been developed
in these two areas. […] It would be worthwhile to develop case studies that would
allow a detailed comparison of these two frameworks in terms of plant and specifica-
tion modeling, computational complexity of synthesis, and implementation of derived
supervisor/controller.

We address the first remark about a formal bridge by showing that, under reasonable assump-
tions, natural projection reduces to partial model checking and, when cast in a common
setting, they are equivalent. To this end, we start by defining a common theoretical frame-
work for both. In particular, we slightly extend both the notion of natural projection and the
semantics of the μ-calculus in terms of the satisfying traces. These extensions allow us to
apply natural projection to the language denoted by a specification. In addition, we extend
the main property of the quotienting operator by showing that it corresponds to the natural
projection of the language denoted by the specification, and vice versa (Theorem 3.2).

We also provide additional results that contribute to the detailed comparison, referred to
in the second remark. In particular, we propose a new algorithm for partial model checking
that operates directly on Labeled Transition Systems (LTS), rather than on the μ-calculus.
We prove that our algorithm is correct with respect to the traditional quotienting rules and
we show that it runs in polynomial time, like the algorithms based on natural projection.

A preliminary version of the above results have been previously presented in [13], and
are systematized and formally proved here.1 In this paper we additionally lift these results
to symbolic Labeled Transition Systems (s-LTS), a slight generalization of symbolic FSAs
[15], which themselves substantially generalize traditional FSAs. Roughly speaking, the
transitions of an s-LTS carry predicates rather than letters, as LTS do, and can thus handle
rich, non-finite alphabets. In particular, the alphabet of an s-LTS is the carrier of an effective
boolean algebra, thereby maintaining the operational flavor of transition systems. In the next
section, we give an example of a concurrent program running on a GPU that shows the added
expressive power of specifications rendered by s-LTSs.

Our lifting of results proceeds in several steps. First we define the notion of symbolic traces
composed by transitions with predicates as labels, and we show their relationship to the more
standard traces labeled by the elements of a given finite alphabet.More significantlywe define
symbolic synchronous composition of s-LTSs, which is crucial for composing these richer
system specifications. We then introduce novel symbolic versions of partial model checking
and of natural projection. Also, for the symbolic case, we prove a theorem (Theorem 5.2) that

1 In particular, Sects. 3 and 4 previously appeared in [13], while Sects. 2 and 5, and the entire “Technical
Appendix” are new.

123



1448 G. Costa et al.

extends the statement of Theorem 3.2 to the s-LTSs, i.e., that establishes the correspondence
between partial model checking and natural projection for s-LTSs. Finally, we define a new
algorithm for symbolic partialmodel checking directly on s-LTSs, andweprove it correctwith
respect to the symbolic quotienting operator. As expected, our algorithm’s time complexity
is exponential. This is due to the need to check the satisfiability of the predicates labeling the
symbolic transitions.

We have implemented our algorithm for partial model checking on Labeled Transition
Systems in the tool available online [14]. Along with the tool, we developed several case
studies illustrating its application to the synthesis of both submodules and local controllers.
The implementation of the algorithm for s-LTS is still under development.
Structure of the paper We start by presenting a motivating example in Sect. 2. Section 3
presents our unified theoretical framework for natural projection and partial model checking
as well as its formal properties. In Sect. 4 we present the quotienting algorithm, discuss its
properties, and apply it to our running example. We extend our framework to the symbolic
transition systems in Sect. 5. Section 5.4 presents our novel symbolic quotienting algorithm.
In Sect. 6 we briefly survey the related literature and in Sect. 7 we draw conclusions. The
“Technical Appendix” contains all the formal proofs together with the correctness and the
complexity of our algorithms. Finally, all the additional material about (i) implementation of
the algorithms, (ii) tool usage and (iii) replication of the experiments is available at https://
github.com/gabriele-costa/pests.

2 A Running Example: A GPU Kernel

In this section we introduce a simple yet realistic example that we use as running throughout
the paper.The example illustrates an instanceof a systemmadeof twoconcurrent components,
and its global specification consisting of two properties intuitively presented below. We
will show how the decomposition of the global specification is done by partially evaluating
it against one of the components. Then, we model check the obtained local specification
against the other component, so verifying the original global specification. The first of the
two properties is expressed through an LTS and discussed in Sect. 4. For the second we take
advantage of the richer expressive power of s-LTS to reason about both data and control. In
Sect. 5 we show how this enables a fine-grained analysis of the system behavior.

We consider a concurrent program (called kernel) running on a Graphical Processing Unit
(GPU). The program implements a producer-consumer schema relying on a circular queue.
The program is written in OpenCL,2 a C-like language for programming GPUs. A sequential
application P embodies an OpenCL kernel and uses it to accelerate some computations. In
practice, P compiles the kernel at run time, loads it on the GPU memory, and launches its
execution, which is carried on by a group of threads running concurrently on the different
GPU cores. During the execution, each thread is bound to an identifier, called local id, and
threads share a portion of the GPU memory, called local memory. A group of threads can
synchronize through a barrier. Intuitively, a barrier is an operator that blocks the execution of
each thread at a particular point. When all the threads reach the same barrier, their execution
is resumed.

Consider the OpenCL kernel of Fig. 1 that implements a simple producer-consumer
schema. Briefly, one instance of the kernel function manager is executed on each core
of a GPU. Here, for simplicity, we assume that only two cores exist. A manager kernel

2 https://www.khronos.org/opencl/.

123

https://github.com/gabriele-costa/pests
https://github.com/gabriele-costa/pests
https://www.khronos.org/opencl/


Natural Projection as Partial Model Checking 1449

Fig. 1 A fragment of OpenCL

iteratively invokes one of two functions, produce and consume, depending on the thread
identifier (either 0 or 1) returned by get_local_id(0). Hence, the manager kernel
forces each thread to assume one of the two roles, either a producer or a consumer. The
two functions use the local memory to share a vector, called buffer, which implements a
circular queue. The queue has eight slots: a new item (i.e., a four-byte integer) is inserted
(by the producer) in position L[1] and removed (by the consumer) from position L[0].
In practice, the first two bytes of L contain the head and tail pointers of the circular queue.
Thus, they are incremented after each enqueue/dequeue operation and set to 0 when they
exceed the buffer limit. The two threads iterate until both the producer and the consumer
processed exactly *N items.

The code of Fig. 1 suffers from several typical flaws. The first flaw concerns the buffer’s
consistency. Provided that the buffer’s size is at least 8, the two threads cannot cause a buffer
overflow. Nevertheless, there is no guarantee that enqueue (line 15) and dequeue (line 5)
always occur in the right order. In fact, since the two threads run in parallel with no priority
constraints, two unsafe configurations may be reached: (i) the consumer attempts to extract
an element from the empty buffer and (ii) the producer attempts to insert an element into a
full buffer.

The second potential flaw is a data race. Data races occurwhen two threads simultaneously
access the same, shared memory location and at least one of them modifies the data. When

123



1450 G. Costa et al.

both the threads access the same memory in write mode, it is called a write-write data race.
Otherwise we have a write-read data race. The two threads of Fig. 1 handle three pointers to
the shared memory space, i.e., L, buffer, and N (line 22). These variables are identified by
the local modifier. No data races can occur on N as it is never modified. A write-read data
race on buffer happens when the producer and the consumer access the same location.
Notice that this happens under conditions similar to those discussed for the buffer consistency,
e.g., enqueue and dequeue are not executed in the right order. The case of L is more subtle.
Both produce() and consume() modify the four bytes of the variable L (of type int).
However, the two functions operate on different bytes, i.e., L[0] and L[1]. The single byte
granularity is achieved through a cast to type char * (lines 4 and 14). Hence, no data race
actually affects L.

Verifying the correctness of GPU kernels, in general, and producer-consumer schemas,
in particular, are active research fields. Static analysis techniques such as [9] and [36] aim at
validating a kernel against some specific property, such as absence of data races. The tools
based on these techniques support developers by identifying potentially dangerous code.
Still, the developer must manually confirm these alerts since the static analysis commonly
considers an over-approximation of the program’s actual behavior. For instance, GPUVerify
[9], a prominent static verification tool, reports a possible write-read data race on L when
applied to the kernel of Fig. 1 (see the “Technical Appendix”). As we will see in Sect. 5, we
avoid this false positive through our symbolic algorithm.

Systems are usually composed of several modules, in our example the consumer and
the producer. Verifying that the system as a whole complies with a specification requires
checking that it satisfies a global specification. If the check fails, often there is no indication
of which module is not compliant, and thus one must rethink the entire implementation.
Instead, through decomposition, one can specialize the specification to operate on the single
modules, thereby possibly enhancing the verification of the whole system. In addition, given
a global specification and a system missing some components, one can just synthesize the
specifications for the missing parts. For instance, as we will show in Example 3, the program
in Fig. 1 suffers from a buffer inconsistency flaw. Given a model of the producer, in Sect. 4.2
we decompose a buffer consistency specification into a partial one that the consumer must
obey to avoid this misbehavior.

3 A General Framework

In this section we cast both natural projection and partial model checking in the common
framework of Labeled Transition Systems.

3.1 Language Semantics Versus State Semantics

Natural projection is commonly defined over (sets of)words [40]. Words are finite sequences
of actions, i.e., symbols labeling the transitions between the states of a finite-state automaton
(FSA). The language of an FSA is the set of all words that label a sequence of transitions
from an initial state to some distinguished state, like a final or marking state. We let L
denote the function that maps each FSA to the corresponding language semantics. Given a
system Sys and a specification Spec, both FSAs, then Sys is said to satisfy Spec whenever
L(Sys) ⊆ L(Spec).

123



Natural Projection as Partial Model Checking 1451

p0 p1 · · · p8

e
b

d

e
b

d

e

d

b

Fig. 2 The specification P of the consistency of a buffer with 8 positions, namely P(8)

Rather than an FSA, here we use a labeled transition system (LTS) to specify a system
Sys. An LTS is similar to an FSA, but with a weaker notion of acceptance, where all states
are final. We specify our running example below as an LTS.

Example 1 (Running example) Consider again the OpenCL program from Sect. 2 where the
buffer positions are fixed to 8. Figure 2 depicts a transition system that encodes the specifica-
tion P for the buffer’s consistency, where the symbols e and d represent the (generic) enqueue
and dequeue operations, respectively. Intuitively, the threads cannot perform e actions when
the buffer is full (state p8) and d actions when the buffer is empty (state p0). Barrier syn-
chronizations do not affect the specification’s state. We indicate these actions with self-loops
labeled with b. Only the three operations mentioned above are relevant for the specification
P . Thus, we do not introduce further action labels. ��

For partial model checking, the specification Spec is defined by a formula of the μ-
calculus. The standard interpretation of the formulas is given by a state semantics, i.e., a
function that, given an LTS (for a system) Sys and a formula Φ, returns the set of states of
Sys that satisfy Φ. A set of evaluation rules formalizes whether a state satisfies a formula or
not. Given an LTS Sys and a μ-calculus formula Φ, we say that Sys satisfies Φ whenever
its initial state does.

The language semantics of temporal logics is strictly less expressive than the state-based
one [21]. A similar fact holds for FSAs and regular expressions [6]. Belowwe use a semantics
from which both the state-based and the language semantics can be obtained.

3.2 Operational Model and Natural Projection

We now slightly generalize the existing approaches based on partial model checking and
on supervisory control theory used for locally verifying global properties of discrete event
systems. We then constructively prove that the two approaches are equally expressive so that
techniques fromone can be transferred to the other. To this end,we considermodels expressed
as (finite) labeled transition systems, which describe the behavior of discrete systems. In
particular, we restrict ourselves here to deterministic transition systems.

Definition 3.1 A(deterministic) labeled transition system (LTS) is a tuple A = (SA,ΣA,→A

, ı A), where SA is a finite set of states (with ı A the initial state), ΣA is a finite set of action
labels, and→A: SA ×ΣA → SA is the transition function. We write t = s

a−→ s′ to denote a
transition, whenever→A (a, s) = s′, and we call s the source state, a the action label, and
s′ the destination state.

A trace σ ∈ T of an LTS A is either a single state s or a finite sequence of transitions
t1 · t2 · . . . such that for each ti , its destination is the source of ti+1 (if any).When unnecessary,
we omit the source of ti+1, and write a trace simply as the sequence σ = s0a1s1a2s2 . . . ansn ,

123



1452 G. Costa et al.

if(receiving > 0)

barrier(); // action b
int val = buffer[*head]; // action d
*head++;
if(*head == SIZE)

receiving--;

*head = 0;

false

true

true
false

q0

q1

bd

r0

r1

be

Fig. 3 From left to right: CFG of the consumer, and LTSs for the consumer (A) and producer (B)

alternating elements of SA and ΣA (written in boldface for readability). Finally, we denote
by �A, s� the set of traces of A starting from state s and we write �A� for �A, ı A�, i.e., for
those traces starting from the initial state ı A. ��
Example 2 Consider again our running example. Figure 3 depicts the LTSs A and B that
model the behavior of the consumer and producer, respectively. On the left-hand side we
show the control flow graph (CFG) of the consumer thread where we use a light grey font
for the irrelevant instructions. Intuitively, the CFG consists of a loop iterating the execution
of the central block. For this reason, the LTS A alternates actions b (for barrier) and d (for
dequeue). The CFG of the producer is similar: the only difference is that it increments the
tail pointer, rather than the head pointer. Hence, B is symmetric: it performs e (for enqueue)
in place of d . The traces starting from the initial states of A and B are, respectively,

�A� = {q0, q0bq1, q0bq1dq0, q0bq1dq0bq1, . . .}
�B� = {r0, r0br1, r0br1er0, r0br1er0br1, . . .}

��
Typically, a system, or plant in control theory, consists of multiple interacting components

running in parallel. Intuitively, when two LTSs are put in parallel, each proceeds asyn-
chronously, except on those actions they share, upon which they synchronize. We render this
behavior by means of the synchronous product [4]. In particular, we rephrase the definition
given in [40].

Definition 3.2 Given two LTSs A and B such that ΣA ∩ΣB = Γ , the synchronous product
of A and B is A ‖ B = (SA × SB ,ΣA ∪ΣB ,→A‖B , 〈ı A, ıB〉), where→A‖B is as follows:

〈sA, sB〉 a−→A‖B 〈s′A, sB〉 if sA a−→A s′A and a ∈ ΣA \ Γ

〈sA, sB〉 b−→A‖B 〈sA, s′B〉 if sB
b−→B s′B and b ∈ ΣB \ Γ

〈sA, sB〉 γ−→A‖B 〈s′A, s′B〉 if sA
γ−→A s′A, sB

γ−→A s′B , and γ ∈ Γ .

��
Example 3 Consider again the LTSs A and B from Fig. 3. Their synchronous product A ‖ B
(with Γ = {b}) is depicted in Fig. 4. We use bold edges to denote synchronous transitions.

Intuitively, A ‖ B does not satisfy P(n), for any n > 0. In fact 〈q0, r0〉 b−→ 〈q1, r1〉 d−→ 〈q0, r1〉
but bd /∈ L(P(n)). ��

123



Natural Projection as Partial Model Checking 1453

q0, r0 q1, r0 q1, r1 q0, r1

b

d
ed

e

Fig. 4 Synchronous product A ‖ B, where bold transitions denote synchronous moves

Next, we generalize the notion of natural projection on languages. Intuitively, natural
projection can be seen as the inverse operation with respect to the synchronous product of
two LTSs. Indeed, through natural projection one recovers the LTS of one of the components
of the parallel composition.

Given a computation of A ‖ B, natural projection extracts the relevant trace of one of
the two LTSs, including the synchronized transitions (see the second case below). Note that,
unlike other definitions, e.g., in [40], our traces are sequences of transitions including both
states and actions. We also define the inverse projection in the expected way.

Definition 3.3 Given LTSs A and B with Γ = ΣA ∩ ΣB , the natural projection on A of a
trace σ of A ‖ B, in symbols PA(σ ), is defined as follows:

PA(〈sA, sB〉) = sA
PA(〈sA, sB〉a〈s′A, s′B〉 · σ)= sAas′A · PA(σ ) if a ∈ ΣA

PA(〈sA, sB〉b〈sA, s′B〉 · σ) = PA(σ ) if b ∈ ΣB \ Γ .

Natural projection on the second component B is analogously defined. We extend the
natural projection to sets of traces in the usual way: PA(T) = {PA(σ ) | σ ∈ T}.

The inverse projection of a trace σ over an LTS A ‖ B, in symbols P−1A (σ ), is defined as
P−1A (σ ) = {σ ′ | PA(σ ′) = σ }. Its extension to sets is P−1A (T) = ⋃

σ∈T P−1A (σ ). ��

Example 4 Consider the following two traces σ1 = 〈q0, r0〉b〈q1, r1〉d〈q0, r1〉e〈q0, r0〉 and
σ2 = 〈q0, r0〉b〈q1, r1〉e〈q1, r0〉d〈q0, r0〉. We have that the projections PA(σ1) = PA(σ2) =
q0bq1dq0 ∈ �A� and σ1, σ2 ∈ P−1B (q0bq1dq0). ��

Two classical properties [40] concerning the interplay between the synchronous product
and the natural projection hold. Their proofs are trivial.

Fact 3.1 PA(�A ‖ B�) ⊆ �A� and �A ‖ B� = P−1B (�A�) ∩ P−1A (�B�).

3.3 Equational�-Calculus and Partial Model Checking

Below,we recall the variant of theμ-calculus commonly used in partialmodel checking called
modal equations [1]. A specification is given as a sequence of modal equations, and one is
typically interested in the value of the top variable that is the simultaneous solution of all the
equations. Equations have variables on the left-hand side and assertions on the right-hand side.
Assertions are built from the boolean constants ff and tt, variables x , boolean operators∧ and
∨, and modalities for necessity [·] and possibility 〈·〉. Equations also have fix-point operators
(minimum μ and maximum ν) over variables x, and can be organized in equation systems.

123



1454 G. Costa et al.

Definition 3.4 (Syntax of the μ-calculus) Given a set of variables x ∈ X and an alphabet of
actions a ∈ Σ , assertions φ, φ′ ∈ A are given by the syntax:

φ ::= ff | tt | x | φ ∧ φ′ | φ ∨ φ′ | [a]φ | 〈a〉φ.

An equation is of the form x =π φ, where π ∈ {μ, ν}, μ denotes a minimum fixed point
equation, and ν a maximum one. An equation system Φ is a possibly empty sequence (ε) of
equations, where each variable x occurs in the left-hand side of at most a single equation.
Thus Φ is given by

Φ ::= x =π φ;Φ | ε.

A top assertion Φ ↓ x amounts to the simultaneous solution of an equation system Φ onto
the top variable x . ��

We define the semantics of modal equations in terms of the traces of an LTS by extending
the usual state semantics of [1] as follows. First, given an assertion φ, its state semantics
‖φ‖ρ is given by the set of states of an LTS that satisfy φ in the context ρ, where the func-
tion ρ assigns meaning to variables. The boolean connectives are interpreted as intersection
and union. The possibility modality ‖〈a〉φ‖ρ (respectively, the necessity modality ‖[a]φ‖ρ)
denotes the states for which some (respectively, all) of their outgoing transitions labeled by
a lead to states that satisfy φ. For more details on μ-calculus see [10,27].

Definition 3.5 (Semantics of the μ-calculus [1]) Let A be an LTS, and ρ : X → 2SA be an
environment that maps variables to sets of A’s states. Given an assertionφ, the state semantics
of φ is the mapping ‖·‖ : A→ (X → 2SA ) → 2SA inductively defined as follows.

‖ff ‖ρ = ∅ ‖tt‖ρ = SA ‖x‖ρ = ρ(x)

‖φ ∧ φ′‖ρ = ‖φ‖ρ ∩ ‖φ′‖ρ ‖[a]φ‖ρ = {s ∈ SA | ∀s′.s a−→A s′ ⇒ s′ ∈ ‖φ‖ρ}
‖φ ∨ φ′‖ρ = ‖φ‖ρ ∪ ‖φ′‖ρ ‖〈a〉φ‖ρ = {s ∈ SA | ∃s′.s a−→A s′ ∧ s′ ∈ ‖φ‖ρ}

Weextend the state semantics fromassertions to equation systems. Firstwe introduce some
auxiliary notation. The empty mapping is represented by [ ], [x �→ U ] is the environment
where U is assigned to x , and ρ ◦ ρ′ is the mapping obtained by composing ρ and ρ′. Given
a function f (U ) on the powerset of SA, let πU . f (U ) be its fixed point. We now define the
semantics of equation systems by:
‖ε‖ρ = [ ]
‖x =π φ;Φ‖ρ = R(U∗) where U∗ = πU .‖φ‖ρ◦R(U )

and R(U ) = [x �→ U ] ◦ ‖Φ‖ρ◦[x �→U ].
Finally, for top assertions, let ‖Φ ↓ x‖ be a shorthand for ‖Φ‖[ ](x). ��

Note that whenever we apply function composition ◦, its arguments have disjoint domains.
Next, we present the trace semantics: a trace starting from a state s satisfies φ if s does.

Definition 3.6 Given an LTS A, an environment ρ, and a state s ∈ SA, the trace semantics
of an assertion φ is a function 〈〈·〉〉 : A→ SA → (X → 2SA ) → T, which we also extend to
equation systems, defined as follows.

〈〈φ〉〉sρ =
{

�A, s� if s ∈ ‖φ‖ρ
∅ otherwise 〈〈Φ〉〉ρ = λx .

⋃

s∈‖Φ‖ρ(x)
�A, s�.

We write 〈〈Φ ↓ x〉〉 in place of λx .〈〈Φ〉〉[ ]. ��

123



Natural Projection as Partial Model Checking 1455

Example 5 Consider Φ ↓ x where Φ = {
x =μ [e]y ∧ 〈d〉tt; y =ν 〈e〉x ∨ 〈b〉x

}
.

This system consists of two equations. Intuitively, the first equation says that after every
e transition a state satisfying the second equation for y is reached ([e]y) and that, from the
current state, there must exist at least one d transition (〈d〉tt) The second equation states that
there must exist either a e transition or a b transition. In both cases, the reached state must
satisfy the x equation.

We compute ‖Φ ↓ x‖ with respect to A ‖ B. ‖Φ ↓ x‖ = U∗ = μU .F(U ), where
F(U ) = ‖[e]y ∧ 〈d〉tt‖[x �→U ,y �→G(U )] and G(U ) = νU ′.‖〈e〉x ∨ 〈b〉x‖[x �→U ,y �→U ′] =‖〈e〉x ∨ 〈b〉x‖[x �→U ] (since y does not occur in the assertion). Following the Knaster-Tarski
theorem, we compute U∗ = ⋃n Fn(∅):
1. G(∅) = ‖〈e〉x ∨ 〈b〉x‖[x �→∅] = ∅ and U 1 = F(∅) = ‖[e]y ∧ 〈d〉tt‖[x �→∅,y �→∅] ={〈q1, r0〉} (i.e., the only state that admits d but not e).

2. G({〈q1, r0〉}) = ‖〈e〉x ∨ 〈b〉x‖[x �→{〈q1,r0〉}] = {〈q1, r1〉} (since 〈q1, r1〉
e−→ 〈q1, r0〉) and

U 2 = F({〈q1, r0〉}) = ‖[e]y ∧ 〈d〉tt‖[x �→{〈q1,r0〉},y �→{〈q1,r1〉}] = {〈q1, r0〉}.

Since U 2 = U 1, we have obtained the fixed point U∗. Finally, we can compute 〈〈Φ ↓ x〉〉,
which amounts to �A ‖ B, 〈q1, r0〉�. ��

We now define when an LTS satisfies an equation system. Recall that �A� stands for �A, ı A�.

Definition 3.7 An LTS A satisfies a top assertion Φ ↓ x , in symbols A |�s Φ ↓ x , if and
only if ı A ∈ ‖Φ ↓ x‖. Moreover, let A |�σ Φ ↓ x if and only if �A� ⊆ 〈〈Φ ↓ x〉〉. ��

The following fact relates the notion of satisfiability defined in terms of the state semantics
(|�s) with the one based on the trace semantics (|�σ ); its proof is immediate byDefinition 3.6.

Fact 3.2 A |�s Φ ↓ x if and only if A |�σ Φ ↓ x.

As previously mentioned, partial model checking is based on the quotienting operation
//. Roughly, the idea is to specialize the specification of a composed system on a particular
component. Below, we define the quotienting operation [1] on the LTS A ‖ B. Quotienting
reduces A ‖ B |�s Φ to B |�s Φ ↓ x//B A. Note that each equation of the system Φ gives
rise to a system of equations, one for each state si of A, all of the same kind, minimum or
maximum (thus forming a π -block [3]). This is done by introducing a fresh variable xsi for
each state si . Intuitively, the equation xsi =π φ//ΣB si represents the requirements on B when
A is in state si . Since the occurrence of the variables on the right-hand side depends on A’s
transitions, Φ ↓ x//B A embeds the behavior of A.

Definition 3.8 Given a top assertion Φ ↓ x , we define the quotienting of the assertion on an
LTS A with respect to an alphabet ΣB as follows.

Φ ↓ x//ΣB A = (Φ//ΣB A) ↓ xıA , where

ε//ΣB A = ε (x =π φ;Φ)//ΣB A =

⎧
⎪⎨

⎪⎩

xs1 =π φ//ΣB s1
...

xsn =π φ//ΣB sn

; Φ//ΣB A (∀ si ∈ SA)

x//ΣB s = xs tt//ΣB s = tt ff //ΣB s = ff

123



1456 G. Costa et al.

φ ∨ φ′//ΣB s = φ//ΣB s ∨ φ′//ΣB s φ ∧ φ′//ΣB s = φ//ΣB s ∧ φ′//ΣB s

(〈a〉φ)//ΣB s =
∨

s
a−→s′

φ//ΣB s
′ ([a]φ)//ΣB s =

∧

s
a−→s′

φ//ΣB s
′ if a ∈ ΣA \ Γ

(〈b〉φ)//ΣB s = 〈b〉(φ//ΣB s) ([b]φ)//ΣB s = [b](φ//ΣB s) if b ∈ ΣB \ Γ

(〈γ 〉φ)//ΣB s =
∨

s
γ−→s′
〈γ 〉(φ//ΣB s

′) ([γ ]φ)//ΣB s =
∧

s
γ−→s′
[γ ](φ//ΣB s

′) if γ ∈ Γ .

��
Example 6 Consider the top assertion Φ ↓ x of Example 5 and the LTSs A and B of Exam-
ple 2. Quotienting Φ ↓ x against A, we obtain Φ//ΣB A ↓ xq0 , where

Φ//ΣA B =

⎧
⎪⎪⎨

⎪⎪⎩

xq0 =μ [e]yq0 ∧ ff
xq1 =μ [e]yq1 ∧ tt
yq0 =ν 〈e〉xq0 ∨ ff
yq1 =ν 〈e〉xq1 ∨ 〈b〉xq0

=

⎧
⎪⎪⎨

⎪⎪⎩

xq0 =μ ff
xq1 =μ [e]yq1
yq0 =ν 〈e〉xq0
yq1 =ν 〈e〉xq1 ∨ 〈b〉xq0

= {
xq0 =μ ff

}
.

The leftmost equations are obtained by applying the rules of Definition 3.8. Then we simplify
on the right-hand sides of the first three equations, i.e., those of xq0 , xq1 and yq0 . In particular,
we apply the standard boolean transformations ψ ∧ ff ≡ ff , ψ ∧ tt ≡ ψ , and ψ ∨ ff ≡ ψ .
Finally we reduce the number of equations by removing those unreachable from the top
variable xq0 . For a detailed description of our simplification strategies, see [3]. Therefore
〈〈Φ ↓ x//ΣB A〉〉 = ∅. This was expected since, as shown in Example 5, 〈q0, r0〉 /∈ ‖Φ ↓ x‖.

��

3.4 Unifying the Logical and the Operational Approaches

Here we prove the equivalence between natural projection and partial model checking (The-
orem 3.2), establishing the correspondence between quotienting and natural projection.

Theorem 3.1 For all A, B, x, and Φ on A ‖ B, 〈〈Φ ↓ x//ΣB A〉〉 = PB(〈〈Φ ↓ x〉〉).
The following theorem states that the synchronous product of two LTSs satisfies a global

equation system if and only if its components satisfy their quotients, i.e., their local assertions.

Theorem 3.2 For all A, B, x and Φ on A ‖ B,

A ‖ B |�ς Φ ↓ x (ς ∈ {s, σ })
if and only if any of the following equivalent statements holds:

1. A |�ς Φ ↓ x//ΣA B 2. B |�ς Φ ↓ x//ΣB A
3. A |�σ PA(〈〈Φ ↓ x〉〉) 4. B |�σ PB(〈〈Φ ↓ x〉〉).

4 Quotienting Finite-State Systems

In this section we present an algorithm for quotienting a finite-state system defined as an
LTS. Afterwards, we prove its correctness with respect to the standard quotienting operator
and we study its complexity. Finally, we apply it to our running example to address three
problems: verification, submodule construction, and controller synthesis.

123



Natural Projection as Partial Model Checking 1457

Table 2 The quotienting algorithm

4.1 Quotienting Algorithm

Our algorithm consists of two procedures that are applied sequentially. The first, called
quotient (Table 2), builds a non-deterministic transition system starting from two LTSs,
i.e., a specification P and an agent A. Moreover, it takes as an argument the alphabet of
actions ΣB of the new transition system B. Non-deterministic transition systems have a
distinguished label λ, and serve as an intermediate representation. The states of the resulting
transition system include all the pairs of states of P and A, except for those that denote a
violation of P (line 1). The transition relation (line 3) is defined using the quotienting rules
from Sect. 3. Also, note that the relation→ is restricted to the states of S (denoted→S).

The second procedure, called unify (in Table 3) translates a non-deterministic transition
system back to an LTS. By using closures over λ,unify groups transition system states. This
process is similar to the standard subset construction [24], except that we put an a ∈ ΣB\Γ
transition between two groups Q and M only if (i) M is the intersection of the λ-closures of
the states reachable from Q with an a transition and (ii) all the states of Q admit at least an a
transition leading to a state ofM (∧-move). The procedureunifyworks as follows. Starting
from the λ-closure of B’s initial state (line 1), it repeats a partition generation cycle (lines 4–
13). Each cycle removes an element Q from the set S of the partitions to be processed. Then,
for all the actions in ΣB\{λ}, a partition M is computed by ∧-move (line 7). If the partition
is nonempty, a new transition is added from Q to M (line 9). Also, if M is a freshly generated
partition, i.e., M /∈ R, it is added to both S and R (line 10). The procedure terminates when
no new partitions are generated.

Our quotienting algorithm is correct with respect to the quotienting operator and runs in
PTIME. More precisely, assuming that Γ ,ΣA\Γ , and ΣB\Γ have m elements, and that P
and A have n states, the complexity is O(n6m2) (see Appendix A.4 for more details). We
avoid an exponential blow-up in our algorithm (in contrast to Table 1) since we only con-
sider deterministic transition systems. Note that a determinization step for non-deterministic
transition systems is exponential in the worst case.

123



1458 G. Costa et al.

Ta
bl
e
3

T
he

un
ifi
ca
tio

n
al
go

ri
th
m

123



Natural Projection as Partial Model Checking 1459

w0 w1 w2 · · · w7 w8
b

b b

d b

d b

d d

Fig. 5 Graphical representation of the consumer A′

4.2 Application to Our Running Example

Recall from Example 3 that A ‖ B does not satisfy the buffer consistency property P .
Informally the reason is that the barrier does not prevent the consumer A from accessing the
buffer before the producer B. However, the barrier does ensure that iterations of the producer
and the consumer are always paired. This implies that only the first position of the buffer is
actually used.

We apply our quotienting algorithm to find an A′ such that A′ ‖ B |� P . That is, we
solve an instance of the submodule construction problem for B and P . The resulting LTS is
given in Fig. 5. Intuitively, A′ behaves as follows. Initially, it synchronizes (action b) twice
to ensure that B enqueues at least one item. Then, it either (i) synchronizes again and moves
to the next state or (ii) dequeues an item (action d) and goes back one state. The reason is
that each state wi denotes a configuration under which the buffer contains i or i − 1 items.
As a result, there cannot be a state w9 and also the state w0 can be reached only once at
the start. Finally, note that a similar construction also applies to the controller synthesis
and verification problems. For the former it suffices to constrain the alphabet of A′ to only
contain synchronization actions, while for the latter we check that the submodule A′ accepts
the empty string.

5 Quotienting Symbolic Finite-State Systems

In this section, we extend our results to symbolic Finite-State Transition Systems (s-LTSs).
This rather expressive formalism is a variant of symbolic Finite State Automata [16] where all
states are final. The novelty with respect to a standard LTS (or to an FSA) is that the alphabet
is the carrier of an effective boolean algebra and that transitions are enabled by predicates
on the possibly infinitely many elements of the algebra. This model allows a convenient
representation of large systems, the behavior of which also depends on the data handled, and
not only on the control flow as it is the case with a standard LTS.

For example, consider again the OpenCL kernel of Fig. 1 and the kinds of flawsmentioned
in Sect. 2. Buffer consistency has been addressed using the model of standard LTSs, because
consistency only depends on the actions (enqueue and dequeue) performed. However, when
representing data races we cannot abstract away from the affected memory location, the
action performed (read/write), and the data involved. We model them using to s-LTSs. In
Fig. 6, we show on the left the control-flow graph of our consumer. Since we are interested
in the actions on L we highlight them. In the upper part on the right there is the s-LTS for the
consumer. Accordingly, we show only the portion with read/write actions that are parametric
with respect to the memory address L and its offset. In the bottom part, we display the s-LTS
of the consumer.

In this example, one can encode our producer/consumer in a standard LTS, because the
operations and data are finite. The price to pay is an exponential growth of the number

123



1460 G. Costa et al.

of resulting labels and, consequently, of the transitions. Clearly, such encodings cannot be
done, when data are taken from an infinite domain like the natural numbers or strings from
a given alphabet. In these cases there always exists a standard LTS that accepts a language
that however is isomoprphic to the given s-LTS (see [16]).

We start by recalling some known notions about s-LTSs, adapting them to our case as
needed and illustrating them on our running example. Then, we present our contributions:
a symbolic version of (i) the synchronous product operator; (ii) partial model checking and
natural projection; and (iii) a quotienting algorithm.

5.1 Symbolic Labeled Transition Systems

We start by recalling the definition of an effective boolean algebra and algebraic operators
over them that are the building blocks for symbolic LTSs.

Definition 5.1 [15] An effective boolean algebra (EBA) is a tuple A = 〈D, Ψ , {|·|}〉 where:
– D is a non-empty, recursively enumerable set (called the alphabet or universe of A);
– Ψ is a recursively enumerable set of predicates closed under the connectives ∧, ∨, and
¬ such that ⊥,� ∈ Ψ ; and

– {|·|} : Φ → 2D is the denotation function such that {|⊥|} = ∅, {|�|} = D, {|ϕ ∧ ψ |} =
{|ϕ|} ∩ {|ψ |}, {|ϕ ∨ ψ |} = {|ϕ|} ∪ {|ψ |}, and {|¬ϕ|} = D\{|ϕ|} (for any ϕ,ψ ∈ Ψ ). ��
Given a predicate ϕ of an EBAA, we say that ϕ is satisfiable, in symbols satA(ϕ), when

{|ϕ|} �= ∅.
EBAs can be composed using several operators (see [15,38] for details). We recall

those that are relevant for the definitions given below. Let A1 = 〈D1, Ψ1, {|·|}1〉 and
A2 = 〈D2, Ψ2, {|·|}2〉 be EBAs.
(union) A1 ⊕A2 is the EBA 〈D⊕, Ψ⊕, {|·|}⊕〉 such that
– D⊕ = (D1 × {1}) ∪ (D2 × {2});
– Ψ⊕ = Ψ1 × Ψ2; and
– {|〈ϕ1, ϕ2〉|}⊕ = ({|ϕ1|}1 × {1}) ∪ ({|ϕ2|}2 × {2}).
(product) A1 ⊗A2 is the EBA 〈D⊗, Ψ⊗, {|·|}⊗〉 such that
– D⊗ = D1 ×D2;
– Ψ⊗ = Ψ1 × Ψ2; and
– {|〈ϕ1, ϕ2〉|}⊗ = {|ϕ1|}1 × {|ϕ2|}2.
(restriction) A1 � V (with V ∈ 2D1 ) is the EBA 〈D, Ψ , {|·|}〉 such that
– D = D1 ∩ V ;
– Ψ = Ψ1; and
– {|ϕ|} = {|ϕ|}1 ∩ V .

For brevity, we may write A � ϕ for A � {|ϕ|}.
Example 7 The EBA B encoding the write/read actions of our running example is defined as
follows.

– D = {r , w} × Id × N, where Id stands for the set of variable identifiers of a program.

123



Natural Projection as Partial Model Checking 1461

– Ψ includes equality and inequality (on both {r , w} and Id) and ordering relationships
between natural numbers.

We use the variables α and β to range over {r , w} and X and Y for generic elements of Id,
the bytes of which are identified by their position (variable n). Also, we write α(X , n) : ϕ

to denote the predicates of Ψ and we use straightforward abbreviations such as w(L, 0) for
α(X , n) : α = w ∧ X = L ∧ n = 0. ��

We now state the definition of an s-LTS, we introduce its symbolic traces and we show
the mapping from the symbolic to the concrete traces. The definition of s-LTS is based on
that of s-FA [16].

Definition 5.2 (s-LTS) A symbolic LTS (s-LTS) is a tuple M = (Q,A,Δ, ı), where Q is a
finite set of states (with ı the initial state),A = 〈D, Ψ , {|·|}〉 is an EBA, and Δ ⊆ Q×Ψ ×Q
is the transition relation such that (s, ϕ, s′) ∈ Δ only if satA(ϕ).

An s-LTS is deterministic when for all (q, ϕ, q ′) and (q, ϕ′, q ′′), ϕ ∧ ϕ′ is unsatisfiable.
Given an s-LTS there always exists an equivalent, deterministic one. Thus, in the following
we only consider deterministic s-LTSs.

Analogously to Definition 3.1, the traces of an s-LTS belong to T and have the form
σ = s0d1s1d2 . . . dnsn , where for each i ∈ [1, n] there exists (si−1, ϕ, si ) ∈ Δ such that
di ∈ {|ϕ|}. In contrast, a symbolic trace of the s-LTS M is a sequence η = s0ϕ1s1ϕ2 . . . ϕnsn ,
where for each i ∈ [1, n] there exists (si−1, ϕi , si ) ∈ Δ. We use �M, s� to denote the set
of traces of M such that s0 = s and tr(M, s) to denote the set of symbolic traces such that
s0 = s (also we omit s when s = ı).

Finally, a symbolic trace η = s0ϕ1s1ϕ2 . . . ϕnsn can be instantiated to the set of concrete
traces s2c(η) = {s0d1s1d2 . . . dnsn | ∀ i ∈ [1, n]. di ∈ {|ϕi |}}. ��

We next describe the symbolic model of our running example.

Example 8 Consider again the data race flaw for the OpenCL code discussed in Sect. 2. We
use the EBAB of Example 7 tomodel the kernel accesses to the sharedmemory. The predicate
α(X , n) : ϕ specifies the kernel accesses actions α (read or write) on the nth byte of variable
X . Here ϕ is a constraint on the values that α, X , and n can assume. Figure 6 on the left
shows the CFG of the consumer and an s-LTS modeling it, in the right, upper part. Below, we
also show the s-LTS for the producer. Recall that the variable head points to L[0], while
tail (see Fig. 1) refers to L[1]. ��

5.2 Parallel Composition of s-LTSs

Before proposing a new notion of parallel composition for s-LTSs, it is convenient to
introduce an auxiliary operation on EBAs.

Definition 5.3 Given two EBAs, A1 = 〈D1, Ψ1, {|·|}1〉 and A2 = 〈D2, Ψ2, {|·|}2〉 and two
predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2 (called synchronization predicates), we define the parallel
product of A1 and A2 over ψ1 and ψ2 (in symbols A1 �ψ1,ψ2 A2) as

A1 �ψ1,ψ2 A2 = A1 � (¬ψ1)⊕A2 � (¬ψ2)⊕ (A1 � ψ1 ⊗A2 � ψ2).

A predicate of A1 �ψ1,ψ2 A2 has the form ψ = ((ψA1 , ψA2), (ψ
′
A1

, ψ ′A2
)), for

some ψA1 , ψ
′
A1

∈ Ψ1 and ψA2 , ψ
′
A2

∈ Ψ2. We write ψ|1 , ψ|2 , ψ|3 , ψ|4 to denote
ψA1 , ψA2 , ψ

′
A1

, ψ ′A2
, respectively. Similarly, the elements in the alphabet of A1 �ψ1,ψ2 A2

123



1462 G. Costa et al.

if(receiving > 0)

barrier();
int val = buffer[*head]; // read L[0]
*head++; // write L[0]
if(*head == SIZE) // read L[0]

receiving--;

*head = 0; // write L[0]

false

true

true
false

q0 q1 q2 q3

r0 r1 r2 r3

r(L, 0)

r(L, 0)

w(L, 0)

w(L, 0) r(L, 0)

r(L, 1)

r(L, 1)

w(L, 1)

w(L, 1) r(L, 1)

Fig. 6 From left to right: CFG of the consumer, and s-LTSs for the consumer (top) and for the producer
(bottom)

have the form ((((d1, 1), (d2, 2)), 1), ((d ′1, d ′2), 2)), which we abbreviate to ((d1, 1), (d2, 2),
((d ′1, d ′2), 3)) or even, when clear from the context, to (d1, d2, d ′1, d ′2). ��

The definition of the parallel product of two s-LTSs follows. While this operation on
LTSs requires a common sub-alphabet Γ , its symbolic counterpart synchronizes two s-LTSs
on those actions that satisfy two distinguished, synchronization predicates. Intuitively, these
predicates define the conditions under which a synchronous transition occurs. Note that we
need two predicates as the involved s-LTSs can be defined on two different EBAs.

Definition 5.4 (Parallel composition) Given two s-LTS M1 = (Q1,A1,Δ1, ı1, ) and M2 =
(Q2,A2,Δ2, ı2) and two synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2, the parallel
composition of M1 and M2 over ψ1 and ψ2 (in symbols M1 ‖ψ1,ψ2 M2) is

M1 ‖ψ1,ψ2 M2 = (Q1 × Q2,A1 �ψ1,ψ2 A2,Δ
∗, 〈ı1, ı2〉),

where

Δ∗ =
⋃

(p1,ϕ1,p′1)∈Δ1

(p2,ϕ2,p′2)∈Δ2

⎧
⎨

⎩

{(〈p1, p2〉, 〈⊥1,⊥2, 〈ϕ1 ∧ ψ1, ϕ2 ∧ ψ2〉〉, 〈p′1, p′2〉)}{(〈p1, p2〉, 〈ϕ1 ∧ ¬ψ1,⊥2, 〈⊥1,⊥2〉〉, 〈p′1, p2〉)}{(〈p1, p2〉, 〈⊥1, ϕ2 ∧ ¬ψ2, 〈⊥1,⊥2〉〉, 〈p1, p′2〉)}
and ⊥1 (⊥2) is the false predicate of A1 (A2, respectively). ��

We now apply this definition to our running example.

Example 9 The parallel composition of the two s-LTS of Fig. 6 over the synchronization
predicates ψ1 = α(X , n) : α = w ∧ X = L and ψ2 = α(X , n) : X = L is depicted
in Fig. 7. For readability, we omit the transition labels and we instead discuss them here.
By the definition of product, a transition’s predicate can only belong to three groups: 〈ϕ1 ∧
¬ψ1,⊥,⊥〉, 〈⊥, ϕ2∧¬ψ2,⊥〉, or 〈⊥,⊥, 〈ϕ1∧ψ1, ϕ2∧ψ2〉〉, where ϕ1 and ϕ2 are predicates
of the consumer and producer, respectively. Note that the predicates of the second type are
not satisfiable since ¬ψ2 requires that X �= L while all the ϕ2 constrain X = L . Thus,
the second group of transitions is empty. A similar observation applies to the predicates of
the first group. Indeed, since X = L the only assignment that satisfies ¬ψ1 is for α = r .
Therefore, all these transitions are labeledwith 〈r(L, 0),⊥,⊥〉.We use a thin arrow to denote
them. As in Example 3 we use bold arrows to denote synchronous transitions. However, here
we need to distinguish them according to their predicates. Analogous to the argument for the
first group of transitions, here we have that the first component of a synchronization predicate

123



Natural Projection as Partial Model Checking 1463

q0, r0

q0, r1

q0, r2

q0, r3

q1, r0

q1, r1

q1, r2

q1, r3

q2, r0

q2, r1

q2, r2

q2, r3

q3, r0

q3, r1

q3, r2

q3, r3

Fig. 7 The parallel composition of the producer and the consumer of Fig. 6

must be w(L, 0). Thus, there are only two types of synchronous transitions depending on
the second component of the synchronization predicate (either w(L, 1) or r(L, 1)). We use
dashed lines for the transitions labeled with predicate 〈⊥,⊥, 〈w(L, 0), r(L, 1)〉〉 and solid
lines for 〈⊥,⊥, 〈w(L, 0), w(L, 1)〉〉.

The following small technical example illustrates a policy that ensures memory access
segmentation and, thus, avoids data races.

Example 10 Consider the s-LTSW depicted in Fig. 8 that represents a policy specification to
prevent data races. Briefly,W accepts any asynchronous operation carried out by each thread
individually (left loop). Instead, synchronous operations are only permitted in one case (right
loop), i.e., when different bytes are accessed by the two threads.

As a final remark, note that the product of Example 9 complies to this policy. Intuitively,
the reason is that, for all the transition’s predicates of the product, there exists at least one
satisfiable predicate among the policy’s transitions.

123



1464 G. Costa et al.

w0 , ⊥, α(X, n) : n = 0, β(Y, m) : m = 1, , ⊥

Fig. 8 The s-LTS W specifying the data race policy

5.3 Symbolic Natural Projection and Symbolic Quotienting

We now extend the results of Sect. 4 to the symbolic case. First we lift the natural projection
to the traces of an s-LTS M . Afterwards, we define the quotient of M with respect to a pair
of synchronization predicates, and give an algorithm for computing it. Finally, we state the
relationships between the symbolic versions of natural projection and quotienting. In the
following, we overload some names and symbols.

Definition 5.5 (Natural projection) Given two s-LTS M1 = (Q1,A1,Δ1, ı1) and M2 =
(Q2,A2,Δ2, ı2) and two synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2, the natural
projection on M1 of a trace σ of M1 ‖ψ1,ψ2 M2, in symbols PM1(σ ), is defined as follows:

PM1(〈p1, p2〉) = p1
PM1((〈p1, p2〉, (d1, 1), 〈p′1, p2〉) · σ) = (p1, d1, p′1) · PM1(σ )

PM1((〈p1, p2〉, (d2, 2), 〈p1, p′2〉) · σ) = PM1(σ )

PM1((〈p1, p2〉, ((d1, d2), 3), 〈p′1, p′2〉) · σ)= (p1, d1, p′1) · PM1(σ )

The natural projection on the second component M2 is analogously defined.
Also, we extend the natural projection to sets of traces in the usual way. ��

Definition 5.6 (Symbolic natural projection) Given two s-LTS M1 = (Q1,A1,Δ1, ı1) and
M2 = (Q2,A2,Δ2, ı2) and two synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2, the
symbolic natural projection on M1 of a symbolic trace η of M1 ‖ψ1,ψ2 M2, in symbols
ΠM1(η), is defined as follows:

ΠM1(〈p1, p2〉) = p1
ΠM1((〈p1, p2〉, ψ, 〈p′1, p2〉) · η)= (p1, ϕ1, p′1) ·ΠM1(η) if ψ = 〈ϕ1,⊥2, 〈⊥1,⊥2〉〉
ΠM1((〈p1, p2〉, ψ, 〈p1, p′2〉) · η)=ΠM1(η) if ψ = 〈⊥1, ϕ2, 〈⊥1,⊥2〉〉
ΠM1((〈p1, p2〉, ψ, 〈p′1, p′2〉) · η)= (p1, ϕ1, p′1) ·ΠM1(η) if ψ = 〈⊥1,⊥2, 〈ϕ1, ϕ2〉〉

The symbolic natural projection on the second component M2 is analogously defined and
we extend this definition to sets of traces in the usual way.

The inverse projection of a trace σ over an s-LTS M1 ‖ψ1,ψ2 M2, in symbols Π−1
M1

(σ ), is

defined as Π−1
M1

(σ ) = {σ ′ | ΠM1(σ
′) = σ }, and is lifted to sets as usual. ��

The following lemma shows that the natural projection of concrete traces coincides with
the “concretization” via the function s2c of the symbolic traces obtained via the symbolic
natural projection.

Lemma 5.1 For every s-LTSs M1 = (Q1,A1,Δ1, ı1) and M2 = (Q2,A2,Δ2, ı2) and
synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2 the following holds

PMi (�M1 ‖ψ1,ψ2 M2�) = s2c(ΠMi (tr(M1 ‖ψ1,ψ2 M2))) (with i ∈ {1, 2})
We now lift the definition of quotienting a μ−equations’ system Φ for s-LTSs. The sym-

bolic quotienting operator isΦ//ψ1,ψ2M , whereψ1 andψ2 are the synchronization predicates

123



Natural Projection as Partial Model Checking 1465

for M and for the s-LTS to be synthetized, respectively. The schema is the same of Defini-
tion 3.8 except for the cases that handle modalities. Since we are dealing with a product of
EBAs, the alphabet symbols are as in Definition 5.3. Moreover, the transitions of M are now
labeled by a predicate ψ . Hence, an action d1 in the scope of a modality is a synchronization
only if it satisfies ψ1. Instead, if it satisfies ¬ψ1, it denotes an asynchronous transition. This
results in checking the satisfiability of (ψ ∧ ψ1)(d1) and (ψ ∧ ¬ψ1)(d1), respectively.

Definition 5.7 Given a top assertion Φ ↓ x over the EBA A1 �ψ1,ψ2 A2, we define its
quotienting on a s-LTS M = 〈Q,A1,Δ, ı〉, in symbols Φ ↓ x//ψ1,ψ2M , as follows.

Φ ↓ x//ψ1,ψ2M = (Φ//ψ1,ψ2M) ↓ xı , where

ε//ψ1,ψ2M = ε (x =π ϕ;Φ)//ψ1,ψ2M =

⎧
⎪⎨

⎪⎩

xs1 =π ϕ//ψ1,ψ2 s1
.
.
.

xsn =π ϕ//ψ1,ψ2 sn

; Φ//ψ1,ψ2M (∀ si ∈ Q)

x//ψ1,ψ2 s = xs tt//ψ1,ψ2 s = tt ff //ψ1,ψ2 s = ff

ϕ ∨ ϕ′//ψ1,ψ2 s = ϕ//ψ1,ψ2 s ∨ ϕ′//ψ1,ψ2 s ϕ ∧ ϕ′//ψ1,ψ2 s = ϕ//ψ1,ψ2 s ∧ ϕ′//ψ1,ψ2 s

(〈(d1, 1)〉ϕ)//ψ1,ψ2 s =
∨

(s,ψ,s′)∈Δ
(ψ∧¬ψ1)(d1)

ϕ//ψ1,ψ2 s
′ ([(d1, 1)]ϕ)//ψ1,ψ2 s =

∧

(s,ψ,s′)∈Δ
(ψ∧¬ψ1)(d1)

ϕ//ψ1,ψ2 s
′

(〈(d2, 2)〉ϕ)//ψ1,ψ2 s =
{ 〈d2〉(ϕ//ψ1,ψ2 s) if ¬ψ2(d2)
ff otherwise

([(d2, 2)]ϕ)//ψ1,ψ2 s =
{ [d2](ϕ//ψ1,ψ2 s) if ¬ψ2(d2)
tt otherwise

(〈((d1, d2), 3)〉ϕ)//ψ1,ψ2 s =

⎧
⎪⎨

⎪⎩

∨

(s,ψ,s′)∈Δ
(ψ∧ψ1)(d1)

〈d2〉(ϕ//ψ1,ψ2 s
′) if ψ2(d2)

ff otherwise

([((d1, d2), 3)]ϕ)//ψ1,ψ2 s =

⎧
⎪⎨

⎪⎩

∧

(s,ψ,s′)∈Δ
(ψ∧ψ1)(d1)

[d2](ϕ//ψ1,ψ2 s
′) if ψ2(d2)

tt otherwise

��
We next establish the correspondence between symbolic quotienting and symbolic natural

projection. To this end, we must redefine the μ−calculus state semantics of Definition 3.5
(and therefore the trace semantics of Definition 3.6) which applies to LTSs, rather than s-
LTSs. The new definition is straightforward since, given an s-LTS M = (Q,A,Δ, ı), it only
requires introducing the following notation.

s
a−→M s′ ⇐⇒ ∃(s, ϕ, s′) ∈ Δ s.t. ϕ(a)

Theorem 5.1 For all M1 = (Q1,A1,Δ1, ı1), M2 = (Q2,A2,Δ2, ı2), x, and Φ on the EBA
A1 �ψ1,ψ2 A2, we have that

〈〈Φ ↓ x//ψ1,ψ2M1〉〉 = PM2(〈〈Φ ↓ x〉〉).
As was the case for standard LTS, the synchronous product of two s-LTSs satisfies a

global equation system if and only if its components satisfy their quotients, i.e., their local
assertions. Note that Lemma 5.1 lifts this result also to symbolic natural projection.

123



1466 G. Costa et al.

Theorem 5.2 For all M1 = (Q1,A1,Δ1, ı1), M2 = (Q2,A2,Δ2, ı2), x, and Φ on the EBA
A1 �ψ1,ψ2 A2, we have that

M1 ‖ψ1,ψ2 M2 |�ς Φ ↓ x (ς ∈ {s, σ })
if and only if any of the following equivalent statements holds:

1. M1 |�ς Φ ↓ x//ψ1,ψ2M2 2. M2 |�ς Φ ↓ x//ψ1,ψ2M1

3. M1 |�σ PM1(〈〈Φ ↓ x〉〉) 4. M2 |�σ PM2(〈〈Φ ↓ x〉〉).

5.4 Quotienting Algorithm

Before introducing the symbolic quotienting algorithm, we recall the definition ofMinterms.
Intuitively,Minterms are building blocks for translating an s-LTS into an LTS that accepts an
isomorphic language. Based on the predicates appearing on transitions, Minterms partition
the EBA domain into a finite number of satisfiability regions. It is immediate then to define an
isomorphism between these regions and a finite alphabet. Note however that the transitions
of the resulting LTS are exponentially many with respect to those of the original s-LTS. The
details of our translation are given inside the correctness proof in the “Technical Appendix”.

Definition 5.8 [16] Let M = 〈Q,A, ı,Δ〉 be an s-LTS, and let F denote the set of predicates
labeling the transitions of M . The Minterms of M is the set

Minterms(M) =
⋃

I⊆F
{ϕI =

∧

ϕ∈I
ϕ ∧

∧

ϕ̄∈F\I
¬ϕ̄ | satA(ϕI )}.

��
Sinceour symbolic quotienting algorithmmanipulates an s-LTS P encoding a specification

over a parallel product M ‖ψ1,ψ2 N , the predicates on the transitions of P are four-tuples
(see Definition 5.4). Therefore the same holds for Minterms(P).

The symbolic quotienting algorithm is given in Table 4. It has the same structure of the
algorithm of Table 2, thus we focus here on explaining the relationship between them.

As for the LTS case, our algorithm consists of two main procedures and an auxiliary one.
The first, called quotient (Table 4), builds a non-deterministic s-LTS whose states are
pairs, given a specification P , an agent M , and a pair of synchronization predicates ψ1 and
ψ2. The labels record whether they derive from a transition of M (ψM ∧ψP|1 ∧¬ψ1), of P
(ψP|2 ∧ ¬ψ2), or whether they denote a synchronization with P (ψP|4 ∧ ψ2), provided that
satA(ψM ∧ ψP|3 ∧ ψ1). The second procedure is unify, which differs from the analogous
one in Table 3 because Minterms are used in place of plain action labels. The same holds
for the auxiliary ∧-move, where the states in the intersection must be reachable through
a transition (labeled with ϕ′) that is compatible with the Minterm predicate ϕ, in symbols
satB(ϕ ∧ ϕ′).

Also the symbolic quotienting algorithm is correct with respect to the previous quotienting
operator (see the “Technical Appendix”). As expected, it runs in EXPTIME, because of the
satisfiability requirements and because the number of Minterms grows exponentially with
the transitions of the s-LTS. Of course, one can beforehand transform an s-LTS in an LTS
by using Minterms and apply the quotienting algorithm of Sect. 4. The overall process still
requires EXPTIME. However, the partial specification obtained in this way will be in the
form of an LTS, thus lacking the expressive power of the corresponding s-LTS obtained
through symbolic quotienting.

123



Natural Projection as Partial Model Checking 1467
Ta
bl
e
4

T
he

sy
m
bo

lic
qu

ot
ie
nt
in
g
al
go

ri
th
m

fo
r
s-
LT

S

123



1468 G. Costa et al.

Fig. 9 The s-LTS corresponding to W//ψ1,ψ2M1. Bold edges denote transitions in Δ̄∗

Example 11 We apply the algorithm of Table 4 to compute the quotient W//ψ1,ψ2M1, where
W is the specification of Example 10 depicted in Fig. 8, M1 is the s-LTS of the consumer of
Example 8, ψ1 = α(X , n) : X = L ∧ α = w and ψ2 = β(Y ,m) : Y = L .

First notice that (for some q and q ′) each transition in Δ̄λ has the form (q, ψM ∧ ψP|1 ∧
¬ψ1, q ′}). However,ψM∧¬ψ1 is satisfiable only if the sub-formula α(X , n) : X = L∧X �=
L is satisfiable, which is trivially false. For this reason Δ̄λ = ∅.

Since Δ̄λ = ∅, the set of transitions of the resulting s-LTS is given by Δ̄B ∪ Δ̄∗. Figure 9
shows this, where we use different edge thickness to distinguish between the transitions of
Δ̄B and Δ̄∗.

6 RelatedWork

Natural projection is mostly used by the community working on control theory and discrete-
event systems. In the 1980s, the seminal works by Wonham et al. (e.g., [41,42]) exploited
natural projection-based algorithms for synthesizing both local and global controllers. Other
authors continued this line of research and proposed extensions and refinements of these
methods, see e.g., [18,19,30,39].

Partial model checking has been successfully applied to the synthesis of controllers. Given
an automaton representing a plant and a μ-calculus formula, Basu and Kumar [7] compute
the quotient of the specification with respect to the plant. The satisfiability of the resulting
formula is checked using a tableau that also returns a validmodel yielding the controller. Their
tableau works similarly to our quotienting algorithm, but applies to a more specific setting,
as they are interested in generating controllers. In contrast, Martinelli and Matteucci [32]
use partial model checking to generate a control process for a partially unspecified system in
order to guarantee compliance with respect to aμ-calculus formula. The generated controller
takes the form of an edit automaton [8]. A quotienting-based approach was also proposed
for real-time [29] and hybrid [12] systems. These paradigms aim to accurately model the
behavior of, e.g., cyber-physical systems.

Some researchers have proposed techniques based on the verification of temporal logics
for addressing the controller synthesis problem. Arnold et al. [5] were among the first to
control a deterministic plant with a μ-calculus specification. Also Ziller and Schneider
[43] and Riedweg and Pinchinat [34] reduce the problem of synthesizing a controller to
checking the satisfiability of a formula in (a variant of) the μ-calculus. A similar approach

123



Natural Projection as Partial Model Checking 1469

was presented by Jiang and Kumar [25] and Gromyko et al. [22]. Similarly to [43] and
[34], [25] present an approach that reduces the problem of synthesizing a controller to that
of checking a CTL� formula’s satisfiability. In contrast, [22] proposes a method based on
symbolic model checking to synthesize controllers. Their approach applies to a fragment of
CTL.

7 Conclusion

Our work provides results that build a bridge between supervisory control theory and formal
verification. In particular,we have formally established the relationship between partialmodel
checking and natural projection by reducing natural projection to partial model checking
and proving their equivalence under common assumptions. Besides using plain Labeled
Transition System for expressing system specifications, we also considered symbolic Labeled
Transitions System, whose transitions carry predicates on elements from possibly infinite
boolean algebras, instead of letters. Dealing with this richer model required us to introduce
new notions, including a new symbolic synchronous product and new symbolic versions of
partial model checking and natural projection.

Aside from establishing novel and particularly relevant connections, our work also opens
new directions for investigation. Since (symbolic) natural projection is related to language
theory in general, there could be other application fields where (symbolic) partial model
checking can be used as an alternative. The original formulation of partial model check-
ing applies to the μ-calculus, while our quotienting algorithm works on (symbolic) Labeled
Transitions Systems. To the best of our knowledge, no quotienting algorithms exist for for-
malisms with a different expressive power, such as LTL or CTL, let alone symbolic variants
of them.

We are also developing PESTS, a working prototype to handle both LTSs and s-LTSs. The
source code and the documentation of our tool are available at https://github.com/gabriele-
costa/pests, along with the experiments mentioned below. The performance of PESTS was
experimentally assessed in [13] and the results are on the website under the heading “TACAS
Experiments”. The experiments consisted in solving instances of increasing size of CSP and
SCP for LTSs modeling an Unmanned Aerial Vehicles delivery system. Furthermore, we
applied PESTS to a more realistic case study concerning the verification of the LTSs model-
ing a Flexible manufacturing system,3 available under the heading “Flexible manufacturing
system”.

Acknowledgements Open access funding provided by Scuola IMT Alti Studi Lucca within the CRUI-CARE
Agreement. This workwas partially supported by SNSF funded project IZK0Z2 168370 “Enforceable Security
Policies in Fog Computing”, by EU Horizon 2020 project No. 830892 “SPARTA”, by MIUR project PRIN
2017FTXR7S “IT MATTERS” (Methods and Tools for Trustworthy Smart Systems) and by “PRA 2018 66
DECLware: Declarative methodologies for designing and deploying applications” of the Università di Pisa.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

3 Based on http://www.rt.techfak.fau.de/FGdes/index.html.

123

https://github.com/gabriele-costa/pests
https://github.com/gabriele-costa/pests
http://creativecommons.org/licenses/by/4.0/
http://www.rt.techfak.fau.de/FGdes/index.html


1470 G. Costa et al.

A Technical Appendix

A.1 GPUVerify

Below we show an excerpt of the output generated by GPUVerify [9], when executed on our
example kernel producer-consumer.c in Fig. 1. The first line invokes the tool. The
second line reports the false positive, i.e., that a write-read race is detected on the first byte
of L. The rest of the output compares the instructions of the two components that cause the
data race.

$ gpuverify --local_size =2 --global_size =2
producer -consumer.c

[...]
producer -consumer.c: error: possible write -read
race on L[0] (byte 1):

Read by work item 0 in work group 0, producer -
consumer.c:15:3:

buffer [*tail] = val; // enqueue value
invoked from producer -consumer.c:32:7:

produce(L, buffer , val +1);

Write by work item 1 in work group 0, producer -
consumer.c:8:5:

*head = 0;
invoked from producer -consumer.c:28:13:

val = consume(L, buffer );
[...]

A.2 Technical Proofs

Here we prove the lemmata and theorems of the paper. We also introduce some relevant
definitions on S-LTSs.

To start, we introduce an auxiliary definition that roughly acts as a quotienting of an
environment ρ. Below, we will write

⊕
i∈I ρi for the finite composition of functions ρi over

the elements of an index set I .

Definition A.1 Given a synchronous product A ‖ B, we define ∇B(·) : (X → 2SA×SB ) →
(XSA → 2SB ) as

∇B(ρ) =
⊕

x∈Dom(ρ)

⊕

sA∈SA
[xsA �→ Ux

B(sA)], where Ux
B(sA) = {sB | 〈sA, sB〉 ∈ ρ(x)}.

��
The following lemma intuitively states that quotienting an assertion (and an environment)

preserves the semantics, i.e., a state 〈sA, sB〉 satisfies φ if and only if sB satisfies the quotient
of φ on B. Indeed, the following statement can be rewritten as ‖φ//ΣB sA‖∇B (ρ) = {sB |
〈sA, sB〉 ∈ ‖φ‖ρ}.
Lemma A.1 For all A, B, ρ, and φ on A ‖ B, 〈sA, sB〉 ∈ ‖φ‖ρ ⇐⇒ sB ∈ ‖φ//ΣB sA‖∇B (ρ).

123



Natural Projection as Partial Model Checking 1471

Proof By induction over the structure of φ.

– Cases tt and ff . Trivial.
– Case x . By the definition of ∇B(ρ).
– Cases φ ∧ φ′, φ ∨ φ′. By the induction hypothesis.
– Case 〈a〉φ. By Definition 3.5, 〈sA, sB〉 ∈ ‖〈a〉φ‖ρ if and only if ∃s′A, s′B such that

〈sA, sB〉 a−→A‖B 〈s′A, s′B〉 ∧ 〈s′A, s′B〉 ∈ ‖φ‖ρ . By the induction hypothesis, this is equiva-
lent to

∃s′A, s′B such that 〈sA, sB〉 a−→A‖B 〈s′A, s′B〉 ∧ s′B ∈ ‖φ//ΣB s
′
A‖∇B (ρ). (1)

Then we consider three exhaustive cases.

– a ∈ ΣA\Γ .Here s′B = sB and (1) is satisfied if andonly if sB ∈ ‖∨sA
a−→As′

φ//ΣB s
′‖∇B (ρ).

We conclude by applying Definition 3.8.
– a ∈ ΣB\Γ . In this case s′A = sA and, by Definition 3.5, (1) is equivalent to sB ∈
‖〈a〉(φ//ΣB sA)‖∇B (ρ). Again, we close the case by applying Definition 3.8.

– a ∈ Γ . We combine the reasoning of the two previous cases to conclude that sB ∈
‖∨

sA
a−→As′

〈a〉(φ//Bs′)‖∇ΣB (ρ).

– Case [a]φ. Symmetric to the previous one.

��
We next extend Lemma A.1 to a system of equations, providing an alternative view of

quotienting an assertion on a component of a synchronous product.

Lemma A.2 For all A, B, ρ, and Φ on A ‖ B, ∇B(‖Φ‖ρ) = ‖Φ//ΣB A‖∇B (ρ).

Proof We proceed by induction on the structure of Φ.

– Base case: Φ = ε. Trivial.
– Induction step: Φ = x =π φ;Φ ′. By definition, ‖Φ‖ρ = [x �→ U∗] ◦ ‖Φ ′‖ρ◦[x �→U∗]

where U∗ is the fixed point computed according to Definition 3.5. Thus, we have that
∇B(‖Φ‖ρ) = ∇B([x �→ U∗] ◦ ‖Φ ′‖ρ◦[x �→U∗]) = ∇B([x �→ U∗])◦∇B(‖Φ ′‖ρ◦[x �→U∗]).
By the induction hypothesis, this reduces to

∇B([x �→ U∗]) ◦ ‖Φ ′//B A‖∇B (ρ)◦∇B ([x �→U∗]). (2)

By Definition A.1, ∇B([x �→ U∗]) = ⊕
s∈SA [xs �→ U∗B,s] where U∗B,s = {s′ | 〈s, s′〉 ∈

U∗}. By replacing U∗ with its definition we obtain

U∗B,s = {s′ | 〈s, s′〉 ∈ πU .‖φ‖ρ◦R(U )},
which we rewrite to

U∗B,s = πU .{s′ | 〈s, s′〉 ∈ ‖φ‖ρ◦R(U )}.
By Lemma A.1, this is equivalent to

U∗B,s = πUB,s .‖φ//ΣB s‖∇B (ρ)◦∇B (R(U )),

where ∇B(R(U )) = ∇B([x �→ U ] ◦ ‖Φ ′‖ρ◦[x �→U ]). By induction hypothesis and by
Definition A.1, we have

⊕

s∈SA
[xs �→ UB,s] ◦ ∇B(‖Φ ′‖ρ◦[x �→U ])

123



1472 G. Costa et al.

=
⊕

s∈SA
[xs �→ UB,s] ◦ ‖Φ ′//ΣB A‖∇B (ρ) ◦ ⊕

s∈SA
[xs �→UB,s ]

As a consequence, we rewrite (3) to4

⊕

s∈SA
[xs �→ U∗B,s] ◦ ‖Φ ′//ΣB A‖∇B (ρ) ◦ ⊕

s∈SA
[xs �→U∗B,s ],

which, after repeatedly applying Definition 3.5 to each element s ∈ SA turns out to be
‖Φ//ΣB A‖∇B (ρ).

��
The following corollary is immediate (recall that xsA is the variable corresponding to the

quotient of x on sA).

Corollary A.1 For all A, B, ρ, x, and Φ on A ‖ B,

〈sA, sB〉 ∈ ‖Φ‖ρ(x) ⇐⇒ sB ∈ ‖Φ//ΣB A‖∇B (ρ)(xsA ).

Theorem 3.1 For all A, B, x , and Φ on A ‖ B, 〈〈Φ ↓ x//ΣB A〉〉 = PB(〈〈Φ ↓ x〉〉).
Proof By Definition 3.6, it suffices to establish

〈〈Φ//ΣB A〉〉[ ](xıA ) = PB(〈〈Φ〉〉[ ](x)),
which holds if and only if

〈ı A, ıB〉 ∈ ‖Φ‖[ ](x) ⇐⇒ ıB ∈ ‖Φ//ΣB A‖[ ](xıA ).
We conclude by Corollary A.1. ��
Theorem 3.2 For all A, B, x and Φ on A ‖ B,

A ‖ B |�ς Φ ↓ x (ς ∈ {s, σ })
if and only if any of the following equivalent statements holds:

1. A |�ς Φ ↓ x//ΣA B 2. B |�ς Φ ↓ x//ΣB A
3. A |�σ PA(〈〈Φ ↓ x〉〉) 4. B |�σ PB(〈〈Φ ↓ x〉〉).
Proof The equivalence of items 1 and 2 and A ‖ B |�ς Φ ↓ x is in Andersen95partialmodel
(with the additional use of Theorem 3.1). The other equivalences follow immediately by
Theorem 3.1 (and by the commutativity of ‖). ��
We now lift the needed definition and the results above to the symbolic case.

Lemma 5.1 For every s-LTSs M1 = (Q1,A1,Δ1, ı1) and M2 = (Q2,A2,Δ2, ı2) and
synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2 the following holds

PMi (�M1 ‖ψ1,ψ2 M2�) = s2c(ΠMi (tr(M1 ‖ψ1,ψ2 M2))) (with i ∈ {1, 2})
Proof From now on we assume i = 1 as the case for i = 2 is symmetric. We start by
observing that, by definition, for every s-LTS M holds that s2c(tr(M)) = �M�. Thus we
rewrite the proof statement as

PM1(s2c(tr(M1 ‖ψ1,ψ2 M2))) = s2c(ΠM1(tr(M1 ‖ψ1,ψ2 M2)))

Then we prove by induction that ∀η.s2c(ΠM1(η)) = PM1(s2c(η)).

4 Notice that the order of the xs equations is immaterial as they form a π -block.

123



Natural Projection as Partial Model Checking 1473

1. Case η = 〈p1, p2〉. Trivial.
2. Case η = (〈p1, p2〉, 〈ϕ1,⊥2, 〈⊥1,⊥2〉〉, 〈p′1, p2〉) · η′. In this case s2c(ΠM1(η)) =

s2c((p1, ϕ1, p′1) ·ΠM1(η
′)) = {(p1, d1, p′1) ·σ |d1 ∈ {|ϕ1|} ∧σ ∈ s2c(ΠM1(η

′))}. By the
induction hypothesis this is equal to {(p1, d1, p′1) ·σ |d1 ∈ {|ϕ1|} ∧σ ∈ PM1(s2c(η

′))} =
PM1(s2c(η)).

3. Case η = (〈p1, p2〉, 〈⊥1, ϕ2, 〈⊥1,⊥2〉〉, 〈p1, p′2〉) · η′. In this case it suffices to apply
the induction hypothesis on η′.

4. Case η = (〈p1, p2〉, 〈⊥1,⊥2, 〈ϕ1, ϕ2〉〉, 〈p′1, p′2〉) · η′. This case is analogous to case 2.

��
The following definition extends Definition A.1.

Definition A.2 For all M1 = 〈Q1,A1,Δ1, ı1〉, M2 = 〈Q2,A2,Δ2, ı2〉, x , and Φ on the
EBA A1 �ψ1,ψ2 A2, we define ∇M2(·) : (X → 2Q1×Q2) → (X1 → 2Q2)

∇M2(ρ) =
⊕

x∈Dom(ρ)

⊕

s1∈Q1
[xs1 �→ Ux

M2
(s1)], where Ux

M2
(s1) = {s2 | 〈s1, s2〉 ∈ ρ(x)}.

��
Now we extend to the symbolic case the auxiliary lemmata A.1 and A.2.

Lemma A.3 For all M1 = 〈Q1,A1,Δ1, ı1〉, M2 = 〈Q2,A2,Δ2, ı2〉, ρ, and φ on the EBA
A1 �ψ1,ψ2 A2, we have that

〈s1, s2〉 ∈ ‖φ‖ρ ⇐⇒ s2 ∈ ‖φ//ψ1,ψ2s1‖∇M2 (ρ).

Proof We proceed by induction over φ. The only interesting cases are those for the two
modalities, that is, 〈d〉φ′ and [d]φ′. Each modality only admits three sub-cases depending
on whether d = (d1, 1), d = (d2, 2) or d = (〈d1, d2〉, 3). We show the first case as the other
case is symmetric.

– 〈(d1, 1)〉φ′. In this case 〈s1, s2〉 ∈ ‖〈(d1, 1)〉φ′‖ρ if and only if there exists (s1, ϕ, s′1) ∈
Δ1 such that (ϕ ∧ ¬ψ1)(d1, 1) and 〈s′1, s2〉 ∈ ‖φ′‖ρ . We rewrite it in the following,
equivalent form.

〈s′1, s2〉 ∈
⋃

(s1, ϕ, s′1) ∈ Δ1

(ϕ ∧ ¬ψ1)(d1, 1)

‖φ′‖ρ

Then we apply the induction hypothesis to φ′ and obtain

s2 ∈
⋃

(s1, ϕ, s′1) ∈ Δ1

(ϕ ∧ ¬ψ1)(d1, 1)

‖φ′//ψ1,ψ2s
′
1‖∇M2 (ρ) = ‖

∨

(s1, ϕ, s′1) ∈ Δ1

(ϕ ∧ ¬ψ1)(d1, 1)

φ′//ψ1,ψ2s
′
1‖∇M2 (ρ)

That is, by Definition 5.7, ‖φ//ψ1,ψ2s1‖∇M2 (ρ).

– 〈(d2, 2)〉φ′. By definition 〈s1, s2〉 ∈ ‖〈(d2, 2)〉φ′‖ρ if and only if there exists (s2, ϕ, s′2) ∈
Δ2 such that (ϕ ∧ ¬ψ2, 2)(d2) holds and 〈s1, s′2〉 ∈ ‖φ′‖ρ . By induction hypoth-
esis this is equivalent to ∃(s2, ϕ, s′2) ∈ Δ2 s.t. (ϕ ∧ ¬ψ2)(d2, 2) holds and s′2 ∈
‖φ′//ψ1,ψ2s1‖∇M2 (ρ). Sinceψ2 and d2 are given, this formula admits two alternative reduc-

tions corresponding to Definition 5.7. If ¬ψ2(d2, 2) holds, it is equivalent to the claim
s2 ∈ ‖〈d2〉φ′//ψ1,ψ2s1‖∇M2 (ρ). Otherwise it reduces to s2 ∈ ‖ff ‖∇M2 (ρ) = ∅.

123



1474 G. Costa et al.

– 〈(〈d1, d2〉, 3)〉φ′. By definition 〈s1, s2〉 ∈ ‖〈(〈d1, d2〉, 3)〉φ′‖ρ if and only if there exist
(s1, ϕ1, s′1) ∈ Δ1 and (s2, ϕ2, s′2) ∈ Δ2 such that both (ϕ1∧¬ψ1)(d1) and (ϕ2∧¬ψ2)(d2)
hold and 〈s′1, s′2〉 ∈ ‖φ′‖ρ . When ψ2(d2, 2) does not hold, this reduces to the false
statement (since a synchronization transition labeled with d2 cannot occur). Otherwise,
we apply the induction hypothesis to obtain

s2 ∈
⋃

(s1, ϕ1, s′1) ∈ Δ1

(ϕ1 ∧ ¬ψ1)(d1, 1)

‖〈d2〉φ′//ψ1,ψ2s
′
1‖∇M2 (ρ)

= ‖
∨

(s1, ϕ, s′1) ∈ Δ1

(ϕ ∧ ¬ψ1)(d1, 1)

〈d2〉φ′//ψ1,ψ2s
′
1‖∇M2 (ρ).

��
Lemma A.4 For all M1 = 〈Q1,A1,Δ1, ı1〉, M2 = 〈Q2,A2,Δ2, ı2〉, ρ : X → 2Q1×Q2 ,
and Φ on the EBA A1 �ψ1,ψ2 A2, we have that

∇M2(‖Φ‖ρ) = ‖Φ//ψ1,ψ2M1‖∇M2 (ρ).

Proof We proceed by induction on the structure of Φ.

– Base case: Φ = ε. Trivial.
– Induction step: Φ = x =π φ;Φ ′. By definition, ‖Φ‖ρ = [x �→ U∗] ◦
‖Φ ′‖ρ◦[x �→U∗] where U∗ is the fixed point computed according to Definition 3.5. Thus,
we have that ∇M2(‖Φ‖ρ) = ∇M2([x �→ U∗] ◦ ‖Φ ′‖ρ◦[x �→U∗]) = ∇M2([x �→ U∗]) ◦
∇M2(‖Φ ′‖ρ◦[x �→U∗]). By the induction hypothesis, this reduces to

∇M2([x �→ U∗]) ◦ ‖Φ ′//ψ1,ψ2M1‖∇M2 (ρ)◦∇M2 ([x �→U∗]). (3)

By Definition A.2, ∇M2([x �→ U∗]) = ⊕
s∈Q1

[xs �→ U∗M2,s
] where U∗M2,s

= {s′ |
〈s, s′〉 ∈ U∗}. By replacing U∗ with its definition we obtain

U∗M2,s = {s′ | 〈s, s′〉 ∈ πU .(‖φ‖ρ◦R(U ))},
which we rewrite to

U∗M2,s = πU .{s′ | 〈s, s′〉 ∈ ‖φ‖ρ◦R(U )}.
By Lemma A.3, this is equivalent to

U∗M2,s = πUM2,s .(‖φ//ψ1,ψ2s‖∇M2 (ρ)◦∇M2 (R(U ))),

where ∇M2(R(U )) = ∇M2([x �→ U ] ◦ ‖Φ ′‖ρ◦[x �→U ]). By induction hypothesis and by
Definition A.2, we have

⊕

s∈Q1

[xs �→ UM2,s] ◦ ∇M2(‖Φ ′‖ρ◦[x �→U ]) =
⊕

s∈Q1

[xs �→ UM2,s] ◦ ‖Φ ′//ψ1,ψ2M1‖∇M2 (ρ) ◦ ⊕

s∈Q1

[xs �→UM2,s ].

As a consequence, we rewrite (3) to
⊕

s∈Q1

[xs �→ U∗M2,s] ◦ ‖Φ ′//ψ1,ψ2M1‖∇M2 (ρ) ◦ ⊕

s∈Q1

[xs �→U∗M2,s ],

123



Natural Projection as Partial Model Checking 1475

which, after repeatedly applying Definition 3.5 to each element s ∈ Q1 reduces to
‖Φ//ψ1,ψ2M1‖∇M2 (ρ). ��

As expected, the lemmata above directly imply the following corollary.

Corollary A.2 For all M1 = 〈Q1,A1,Δ1, ı1〉, M2 = 〈Q2,A2,Δ2, ı2〉, ρ : X → 2Q1×Q2 , x
and Φ on the EBA A1 �ψ1,ψ2 A2, we have that

〈s1, s2〉 ∈ ‖Φ‖ρ(x) ⇐⇒ s2 ∈ ‖Φ//ψ1,ψ2M1‖∇M2 (ρ)(x1).

Theorem 5.1 For all M1 = (Q1,A1,Δ1, ı1), M2 = (Q2,A2,Δ2, ı2), x , and Φ on the EBA
A1 �ψ1,ψ2 A2, we have that

〈〈Φ ↓ x//ψ1,ψ2M1〉〉 = PM2(〈〈Φ ↓ x〉〉).
Proof Follows from Corollary A.2. ��
Theorem 5.2 For all M1 = (Q1,A1,Δ1, ı1), M2 = (Q2,A2,Δ2, ı2), x , and Φ on the EBA
A1 �ψ1,ψ2 A2, we have that

M1 ‖ψ1,ψ2 M2 |�ς Φ ↓ x (ς ∈ {s, σ })
if and only if any of the following equivalent statements holds:

1. M1 |�ς Φ ↓ x//ψ1,ψ2M2 2. M2 |�ς Φ ↓ x//ψ1,ψ2M1

3. M1 |�σ PM1(〈〈Φ ↓ x〉〉) 4. M2 |�σ PM2(〈〈Φ ↓ x〉〉).
Proof The equivalence between M1 ‖ψ1,ψ2 M2 |�ς Φ ↓ x and items 1, 2 immediately
follows from Corollary A.2. Then, the equivalence with items 3 and 4 follows by applying
Theorem 5.1 to items 1 and 2. ��

A.3 Correctness

Below we prove the correctness of our quotienting algorithms. For the LTS quotienting
algorithm described in Sect. 4.1, we show that it is equivalent to the standard quotienting
operator applied to a suitable encoding of an LTS as a specification of the equational μ-
calculus. Then, for the s-LTS quotienting algorithm of Sect. 5.4 we show its correctness by
proving that it preserves the isomorphism between an s-LTS and its translation into an LTS.
Correctness for LTS Encoding, Given an LTS A = 〈S,Σ,→, si 〉, we build a system of
equations as follows:

ΦA = {xs1 =μ A(s1); . . . ; xsn =μ A(sn)},
where S = {s1, . . . , sn} and A(s) = ∧

s � b−→[b]ff ∧ ∧

s
a−→s′ [a]xs

′
.

Thus we define the top assertion of the formula derived from A as ΦA ↓ xsi .
QuotientingStarting from the inputs of quotient,we evaluateΦP ↓ xiP //ΣB A. The result-
ing equations system is

Φ ′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xs1r1 =μ A(s1)//ΣB r1
· · ·

xsir j =μ A(si )//ΣB r j
· · ·

xsnrm =μ A(sn)//ΣB rm

123



1476 G. Costa et al.

with all the equations of the following form, where α ∈ ΣA\Γ , β ∈ ΣB\Γ and γ ∈ Γ .

xsir j =μ

(1)
︷ ︸︸ ︷∧

si � a−→
r j

a−→r ′

ff ∧
(2)

︷ ︸︸ ︷∧

si � a−→
r j � a−→

[a]ff ∧
(3)

︷ ︸︸ ︷∧

si
α−→s′

r j
α−→r ′

xs
′

r ′ ∧
(4)

︷ ︸︸ ︷∧

si
β−→s′

[β]xs′r j ∧
(5)

︷ ︸︸ ︷∧

si
γ−→s′

r j
γ−→r ′

[γ ]xs′r ′ .

Trivially, the equation systemdescribed above corresponds to the non-deterministic transition
system obtained by the quotient algorithm. A state (s, r) results in a variable associated to
an assertion that characterizes the outgoing transitions distinguishing among (1) a is required
but not done, (2) a is not allowed, (3) λ moves, (4) ΣB , and (5) Γ actions.
Correctness To conclude, we show that all the steps of the algorithms described above
correspond to valid transformations, i.e., they preserve equivalence. A detailed description
of the first two transformations can be found in [3].

– Constant propagation is applied to remove equations of the form x =μ ff . This step is
carried out by the quotient algorithm when removing the corresponding states from
the transition system.

– Unguardedness removal carries out the following transformation.
⎧
⎪⎨

⎪⎩

x =μ ϕ
...

y =μ ϕ′
becomes

⎧
⎪⎨

⎪⎩

x =μ ϕ{ϕ′/x}
...

y =μ ϕ′

All the occurrences of y in the first equation are replaced with the assertion associated
to y. Note that this transformation only applies if all the occurrences of y are unguarded,
i.e., not under the scope of any modal operator, in the first equation. Also, we extend it
to remove redundant recurrences, namely we transform x =μ ϕ ∧ x in x =μ ϕ. In our
algorithm, this operation corresponds to a λ-closure.

– Variable introduction requires more attention. It is simple to verify that the previous
transformations do not preserve the structure of our equations. Indeed, unguardedness
removal can introduce in the assertions more instances of the same actionmodality, while
we require exactly one. Concretely, the assertions have the form

x =μ [a]va1 ∧ · · · ∧ [a]vak ∧ [b]vb1 . . . ,

where v stands for either a variable or ff . If some of the vai are equal to ff ,
[a](va1 ∧ · · · ∧ vak ) reduces to [a]ff . Otherwise,we rewrite it as x =μ [a](y1 ∧ · · · ∧ yk)∧
[b](. . .). Thus, we replace the conjunctions of variables with [a](y{1,...,k}) and we intro-
duce a new equation y{1,...,k} =μ y1∧· · ·∧ yk . Clearly, the number of these new variables
is bounded by 2|S|. This transformation, plus unguardedness removal, corresponds to the
∧-move operation. It is simple to see that these transformations restore the format of
our encoding, thus denoting an LTS that is the output of our algorithm.

Correctness for s-LTS The proof consists of two steps. We start by defining a translation
procedure from an s-LTS M to an isomorphic LTS AM . Our translation is based on the
standard Minterms construction algorithm (see [16] for a detailed description). Then, we
show that the symbolic quotienting algorithm applied to the s-LTSs P and M returns an
s-LTS N such that its translation AN is isomorphic to the output of the quotienting algorithm
of Sect. 4.1 when applied to the translations AP and AM .

123



Natural Projection as Partial Model Checking 1477

We recall the standard definition ofMinterms. Let M = 〈A, Q, ı,Δ〉 be an s-LTS, and let
F denote the set of predicates labeling the transitions of M . The Minterms of M is the set

Minterms(M) =
⋃

I⊆F

{ϕI =
∧

ϕ∈I
ϕ ∧

∧

ϕ̄∈F\I
¬ϕ̄ | satA(ϕI )}.

Note that since every s-LTS M has a finite number of transitions, the set of Minterms is
finite as well. In particular, for an s-LTSM , the size ofMinterms(M) is, in the worst case, 2|Δ|
where |Δ| is the number of transitions of M . Minterms are used to construct a deterministic
LTS being isomorphic to an s-LTSM . The construction is based on a generic labeling function
f : Minterms(M) → Σ where Σ is a set of action labels (see Definition 3.1).
Our LTS translation is slightly different. In particular, we construct a labeling function that

can be applied to both the s-LTSs of a product so that synchronous transitions are mapped
to the same symbol. To this end we apply the Minterms construction to the policy s-LTS P .
Recalling that the EBA of P is A �ψ1,ψ2 B, the definition ofMinterms(P) is specialized to

⋃

I⊆F

{ϕI =
∧

〈ϕ1,ϕ2,〈ϕ3,ϕ4〉〉∈I
〈ϕ1, ϕ2, 〈ϕ3, ϕ4〉〉 ∧

∧

〈ϕ̄1,ϕ̄2,〈ϕ̄3,ϕ̄4〉〉∈F\I
¬〈ϕ̄1, ϕ̄2, 〈ϕ̄3, ϕ̄4〉〉 | satA�ψ1,ψ2B(ϕI )},

which, by definition of �, reduces to

⋃

I⊆F

{ϕI = 〈
∧

ϕ1∈I|1
ϕ̄1∈(F\I )|1

ϕ1 ∧ ¬ϕ̄1,
∧

ϕ2∈I|2
ϕ̄2∈(F\I )|2

ϕ2 ∧ ¬ϕ̄2, 〈
∧

ϕ3∈I|3
ϕ̄3∈(F\I )|3

ϕ3 ∧ ¬ϕ̄3,
∧

ϕ4∈I|4
ϕ̄4∈(F\I )|4

ϕ4 ∧ ¬ϕ̄4〉〉 | satA�ψ1,ψ2
B(ϕI )},

where I|i is a short hand for {ϕ|i | ϕ ∈ I }.
Note that, by the definition of A �ψ1,ψ2 B, all the predicates ϕ ∈ F belong to three

distinguished groups, i.e., 〈ϕ|1 ,⊥,⊥〉, 〈⊥, ϕ|2 ,⊥〉 or 〈⊥,⊥, 〈ϕ|3 , ϕ|4〉〉. Thus, there cannot
exist any ϕI ∈ Minterms(P) such that I contains two or more predicates belonging to
different groups (since the ⊥ elements would cause such predicate to be unsatisfiable). As a
consequence,Minterms(P) preserves these three groups and, possibly, introduces an element
for ϕ∅.

Starting from Minterms(P), we define two labeling functions f ψ1
A : Minterms(P) →

ΣA ∪ Γ ∪ {ωA} and f ψ2
B : Minterms(P) → ΣB ∪ Γ ∪ {ωB} such that ΣA,ΣB , Γ are

pairwise disjoint, ωA �= ωB and ωA, ωB /∈ ΣA ∪ ΣB ∪ Γ . In addition, we require that
wheneverψ ∈ Minterms(P), f ψ1

A and f ψ2
B are the smallest functions that satisfy the following

conditions:

1. satA(ψ|3 ∧ ψ1) and satB(ψ|4 ∧ ψ2) imply f ψ1
A (ψ) = f ψ2

B (ψ) ∈ Γ

2. if ψ = ψ∅ then (i) satA(ψ|1 ∨ ψ|3) implies f ψ1
A (ψ) = ωA and (ii) satB(ψ|2 ∨ ψ|4)

implies f ψ2
B (ψ) = ωB

3. satA(ψ|1 ∧ ¬ψ1) implies f ψ1
A (ψ) ∈ ΣA and satB(ψ|2 ∧ ¬ψ2) implies f ψ2

B (ψ) ∈ ΣB

Given an s-LTS M = 〈A, Q, ı,Δ〉 the LTS isomorphic to M (w.r.t. f ψ1
A ) is AM =

〈Q,ΣA ∪ Γ ∪ {ωA},→, ı〉 where
→=

{p a−→ q | ∃(p, ϕ, q) ∈ Δ,ψ ∈ Minterms(P) s.t. f ψ1
A (ψ) = a ∈ ΣA and satA(ϕ ∧ ψ|1 ∧ ¬ψ1)} ∪

{p γ−→ q | ∃(p, ϕ, q) ∈ Δ,ψ ∈ Minterms(P) s.t. f ψ1
A (ψ) = γ ∈ Γ and satA(ϕ ∧ ψ|3 ∧ ψ1)} ∪

{p ωA−→ q | ∃(p, ϕ, q) ∈ Δ,ψ ∈ Minterms(P) s.t. f ψ1
A (ψ) = ωA and satA(ϕ ∧ (ψ|1 ∨ ψ|3 ))} .

The LTS isomorphic to P is obtained by applying the labeling function f = f ψ1
A ∪ f ψ2

B .

Note that f is defined. In fact, the domain of f ψ1
A are the formulas of type 〈ϕ|1 ,⊥,⊥〉

123



1478 G. Costa et al.

or 〈⊥,⊥, 〈ϕ|3 , ϕ|4〉〉, whereas the domain of f ψ2
B are the formulas of type 〈⊥, ϕ|2 ,⊥〉 or

〈⊥,⊥, 〈ϕ|3 , ϕ|4〉〉 (see above). Moreover, the two functions map the formulas belonging to
the intersection of their domains to the same values. The only exception is for ϕ∅. Indeed
f ψ1
A (ϕ∅) = ωA �= ωB = f ψ2

B (ϕ∅). Nevertheless, we can simply ignore this case as, by

construction, ∀s.s �ωA−→ and s �ωB−→, that is, none of the transitions of P can occur when ϕ∅ is
true. Thus theLTS isomorphic to P = 〈A�ψ1,ψ2B,Q, ı,Δ is AP = 〈Q,ΣA∪ΣB∪Γ ,→, ı〉
where

→= {p f (ψ)−−−→ q | ∃(p, ϕ, q) ∈ Δ,ψ ∈ Minterms(P) s.t. satA(ϕ ∧ ψ)}
Tofinish,wemust show that, given isomorphic inputs, the two algorithms generate isomor-

phic outputs. To do that we prove that each step of the algorithms preserves the isomorphism.
The first step is to show the mapping between the three transition functions of the symbolic
quotienting algorithm, i.e., Δ̄λ, Δ̄B and Δ̄∗, and the three cases of quotienting algorithm, see
Table 2 line 3.

1. ((qP , qM ), ψM ∧ψP|1 ∧¬ψ1, (q ′P , q ′M )) ∈ Δ̄λ implies ((qP , qM ), λ, (q ′P , q ′M )) ∈→.
Since satA(ψM ∧ ψP|1 ∧ ¬ψ1) there must exist at least one ψ̂ ∈ Minterms(P) such

that (i) both satA(ψ̂|1 ∧ ψP|1 ∧ ¬ψ1) and satA(ψM ∧ ψ̂|1), (ii) f ψ1
A (ψ̂) = a ∈ ΣA.

By definition, qP
a−→ q ′P and qM

a−→ q ′M are transitions of AP and AM , which implies
((qP , qM ), λ, (q ′P , q ′M )) ∈→.

2. ((qP , qM ), ψP|2 ∧ ¬ψ2, (q ′P , qM )) ∈ Δ̄B implies ((qP , qM ), a, (q ′P , qM )) ∈ → (with
a ∈ ΣB ).
We know that satB(ψP|2 ∧ ¬ψ2). Hence, there exists some ψ̂ ∈ Minterms(P) such that

satB(ψ̂|2 ∧ ψP|2 ∧ ¬ψ2). By definition, f ψ2
B (ψ̂) = a ∈ ΣB which implies qP

a−→ q ′P
and, thus, ((qP , qM ), a, (q ′P , qM )) ∈→.

3. ((qP , qM ), ψP|4 ∧ ψ2, (q ′P , q ′M )) ∈ Δ̄∗ implies ((qP , qM ), a, (q ′P , q ′M )) ∈ → (with
a ∈ Γ ).
Since ((qP , qM ), ψP|4 ∧ψ2, (q ′P , q ′M )) ∈ Δ̄∗ we have that there exists (qM , ψM , q ′M ) ∈
ΔM such that satA(ψM ∧ ψP|3 ∧ ψ1) holds (Table 4, line 5). Thus there is a ψ̂ ∈
Minterms(P) such that f ψ1

A (ψ̂) = a ∈ Γ and satA(ψ̂|3 ∧ ψM ∧ ψP|3 ∧ ψ1) and,

consequently, qM
a−→ q ′M . Moreover, since a ∈ Γ we have that f ψ2

B (ψ̂) = a
which implies satB(ψ̂|4 ∧ ψP|4 ∧ ψ2). From satA(ψ̂|3 ∧ ψM ∧ ψP|3 ∧ ψ1) we infer

satA(ψ̂|3 ∧ ψP|3 ∧ ψ1)which, together with satB(ψ̂|4 ∧ ψP|4 ∧ ψ2), implies that qP
a−→

q ′P .

Nowwe show that the proceduresunify preserves the isomorphism between the transitions.
This requires proving the same property for the procedures ∧-move and close. The latter
is a trivial consequence of the isomorphism between the transitions in Δ̄λ and the λ transitions
proved above. A similar argument applies to ∧-move. Indeed we only need to show that

(q, ϕ′, q ′) and satB(ϕ ∧ ϕ′) ∈ Δ̄B ∪ Δ̄∗ if and only if q
a−→B q ′ where f ψ2

B (ϕ) = a. Again,
this follows from the transition isomorphism.

To conclude, we observe that there is a plain correspondence between the steps of the
two unify procedures with the exception of line 6. However, the transition isomorphism
provides us with the required correspondence. This holds because Minterms(P) is tripartite
in a way that the elements of each partition are mapped to Γ , ΣB\Γ , and ΣA\Γ . Thus, the
restriction to their second and fourth components limits this mapping to ΣB (note that ωB

cannot occur on the transitions of B as ϕ∅ is never satisfied when in conjunction with any
other predicate).

123



Natural Projection as Partial Model Checking 1479

A.4 Complexity

Weestimate theworst case complexity of the quotient algorithm of Sect. 4. For simplicity,
we assume that |Γ | = |ΣA\Γ | = |ΣB\Γ | = m and |SA| = |SP | = n. The first part, i.e.,
the generation of the non-deterministic transition system, requires at most | →P | · | →A

| ≤ n4m2 steps (since both P and A have at most n2m transitions). The resulting transition
system has at most n2 states.

Concerning unify, we first observe the following facts. The algorithm works on the λ-
closures of the states of the non deterministic transition system B. Similarly to the ε-closures
of an NFA, they can be computed in advance (see [24]). The cost is cubic with respect to the
number of states, i.e., O(n6) in our case. The total number of closures is bounded by n2.

At each step, ∧-move computes the sets of the reachable states with a transition labeled
by a �= λ, starting from one of the closures (which has size at most n2). Since B is built
from P and A, both deterministic, for each symbol a and pair of states there is at most
one transition labeled with a. Thus, having n2 states and 2m symbols in ΣB , there are no
more than 2n4m ΣB -transitions. Thus, in 2n4m we obtain the set on which we compute the
λ-closure. Recall that we already computed them, so we just need to select the required one.

To conclude, we observe that∧-move is iterated at most n2m times. Indeed, if q, q ′ ∈ λ-
close({q̂}) such that q �= q ′ and q

a−→ q ′ (for some a ∈ ΣB ) then q /∈ λ-close(q ′).
Therefore, the number of λ-closures stored in S, and thus the algorithm iterations cannot
exceed n2 · 2m. Hence, the overall complexity is O(2n4m · n2 · 2m) = O(n6m2).

We already discussed in Sect. 5 the complexity of the symbolic quotienting algorithm.

References

1. Andersen, H.R.: Partial model checking (extended abstract). In: Proceedings of Tenth Annual IEEE
Symposium on Logic in Computer Science, pp. 398–407. IEEE Computer Society Press (1995)

2. Andersen, H.R., Lind-Nielsen, J.: MuDiv: A tool for partial model checking. Demo presentation at
CONCUR (1996)

3. Andersen, H.R., Lind-Nielsen, J.: Partial model checking of modal equations: a survey. Int. J. Softw.
Tools Technol. Transf. 2(3), 242–259 (1999). https://doi.org/10.1007/s100090050032

4. Arnold, A., Nivat,M.: Comportements de processus. In: LesMathématiques de l’Informatique, pp. 35–68.
Colloque AFCET (1982)

5. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with partial observation.
Theor. Comput. Sci. 1(303), 7–34 (2003)

6. Baeten, J.C.M., Luttik, B., Muller, T., Van Tilburg, P.: Expressiveness modulo bisimilarity of regular
expressions with parallel composition. Math. Struct. Comput. Sci. 26, 933–968 (2016)

7. Basu, S., Kumar, R.: Quotient-based approach to control of nondeterministic discrete-event systems with
-calculus specification (2006). http://home.eng.iastate.edu/~rkumar/PUBS/acc06-muctrl.pdf

8. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Foundations of Computer Secu-
rity. Copenhagen, Denmark (2002). http://www.ece.cmu.edu/~lbauer/papers/editauto-fcs02.pdf

9. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: AVerifier for GPUKernels. In:
Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, pp. 113–132. ACM, New York, NY, USA (2012). https://doi.org/10.
1145/2384616.2384625

10. Bradfield, J., Stirling, C.: Handbook of Modal Logic, Chapter Modal Mu-Calculi, vol. 3. Elsevier, Ams-
terdam (2006)

11. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer, Dordrecht (1999)
12. Cassez, F., Laroussinie, F.: Model-checking for hybrid systems by quotienting and constraints solving.

In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Verification, pp. 373–388. Springer, Berlin (2000)
13. Costa, G., Basin, D., Bodei, C., Degano, P., Galletta, L.: From natural projection to partial model checking

and back. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, pp. 344–361. Springer, Cham (2018)

123

https://doi.org/10.1007/s100090050032
http://home.eng.iastate.edu/~rkumar/PUBS/acc06-muctrl.pdf
http://www.ece.cmu.edu/~lbauer/papers/editauto-fcs02.pdf
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625


1480 G. Costa et al.

14. Costa, G., Basin, D., Bodei, C., Degano, P., Galletta, L.: Pests: partial evaluator of simple transition
systems. GitHub: https://github.com/gabriele-costa/pests. https://doi.org/10.6084/m9.figshare.5918707.
v1(2018)

15. D’Antoni, L., Veanes, M.: Monadic second-order logic on finite sequences. In: Proceedings of the 44th
ACMSIGPLANSymposium on Principles of Programming Languages, POPL 2017, pp. 232–245. ACM,
New York, NY, USA (2017). https://doi.org/10.1145/3009837.3009844

16. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In: 29th International Con-
ference on Computer Aided Verification (CAV’17). Springer (2017)

17. Ehlers, R., Lafortune, S., Tripakis, S.,Vardi,M.:Bridging the gap between supervisory control and reactive
synthesis: case of full observation and centralized control. IFAC Proc. Vol. 47(2), 222–227 (2014)

18. Feng, L., Wonham, W.M.: TCT: A computation tool for supervisory control synthesis. In: Proceedings
of 2006 8th International Workshop on Discrete Event Systems, pp. 388–389 (2006). https://doi.org/10.
1109/WODES.2006.382399

19. Feng, L., Wonham, W.M.: On the computation of natural observers in discrete-event systems. Discrete
Event Dyn. Syst. 20(1), 63–102 (2010). https://doi.org/10.1007/s10626-008-0054-3

20. Feuillade, G., Pinchinat, S.: Modal specifications for the control theory of discrete event systems. Discrete
Event Dyn. Syst. 17(2), 211–232 (2007). https://doi.org/10.1007/s10626-006-0008-6

21. Giacobazzi, R., Ranzato, F.: States vs. traces in model checking by abstract interpretation. In: Proceedings
of The 9th International Static Analysis Symposium, SAS’02, Lecture Notes in Computer Science, vol.
2477, pp. 461–476. Springer (2002)

22. Gromyko, A., Pistore, M., Traverso, P.: A tool for controller synthesis via symbolic model checking.
In: 8th International Workshop on Discrete Event Systems, pp. 475–476 (2006). https://doi.org/10.1109/
WODES.2006.382523

23. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press, Cambridge
(2014)

24. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion, 3rd edn. Addison-Wesley Longman Publishing Co., Inc, Boston (2006)

25. Jiang, S., Kumar, R.: Supervisory control of discrete event systemswith ctl∗ temporal logic specifications.
SIAM J. Control Optim. 44(6), 2079–2103 (2006)

26. Jirásková,G.,Masopust, T.:On a structural property in the state complexity of projected regular languages.
Theoret. Comput. Sci. 449, 93–105 (2012). https://doi.org/10.1016/j.tcs.2012.04.009

27. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354 (1983)
28. Lang, F., Mateescu, R.: Partial Model Checking Using Networks of Labelled Transition Systems and

Boolean Equation Systems. Lecture Notes in Computer Science, vol. 7214, pp. 141–156. Springer, New
York (2012)

29. Laroussinie, F., Larsen, K.G.: CMC: A Tool for Compositional Model-Checking of Real-Time Systems,
pp. 439–456. Springer, Boston (1998). https://doi.org/10.1007/978-0-387-35394-4_27

30. Lin, F.,Wonham,W.:Decentralized supervisory control of discrete-event systems. Inf. Sci. 44(3), 199–224
(1988). https://doi.org/10.1016/0020-0255(88)90002-3

31. Martinelli, F.,Matteucci, I.: Synthesis of local controller programs for enforcing global security properties.
In: 3rd International Conference on Availability, Reliability and Security (ARES), pp. 1120–1127 (2008).
https://doi.org/10.1109/ARES.2008.196

32. Martinelli, F., Matteucci, I.: A framework for automatic generation of security controller. Softw. Test.
Verif. Reliab. 22(8), 563–582 (2012). https://doi.org/10.1002/stvr.441

33. Moor, T., Schmidt, K., Perk, S.: libFAUDES—an open source C++ library for discrete event systems.
In: 9th International Workshop on Discrete Event Systems, pp. 125–130 (2008). https://doi.org/10.1109/
WODES.2008.4605933

34. Riedweg, S., Pinchinat, S.: Quantified mu-calculus for control synthesis. In: Mathematical Foundations
of Computer Science 2003, 28th International Symposium, MFCS 2003 Proceedings, Lecture Notes in
Computer Science, vol. 2747, pp. 642–651. Springer (2003)

35. Rudie, K., Grigorov, L.: Integrated Discrete-Event Systems (IDES). https://qshare.queensu.ca/
Users01/rudie/www/software.html (2017). Department of Electrical and Computer Engineering,
Queen’sUniversity in Kingston, ON, Canada

36. Sharma, R., Bauer, M., Aiken, A.: Verification of producer-consumer synchronization in GPU programs.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, Portland, OR, USA, June 15–17, 2015, pp. 88–98. ACM (2015). https://doi.org/10.1145/
2737924.2737962

37. Su, R., Wonham, W.M.: Global and local consistencies in distributed fault diagnosis for discrete-event
systems. IEEE Trans. Autom. Control 50(12), 1923–1935 (2005). https://doi.org/10.1109/TAC.2005.
860291

123

https://github.com/gabriele-costa/pests
https://doi.org/10.6084/m9.figshare.5918707.v1
https://doi.org/10.6084/m9.figshare.5918707.v1
https://doi.org/10.1145/3009837.3009844
https://doi.org/10.1109/WODES.2006.382399
https://doi.org/10.1109/WODES.2006.382399
https://doi.org/10.1007/s10626-008-0054-3
https://doi.org/10.1007/s10626-006-0008-6
https://doi.org/10.1109/WODES.2006.382523
https://doi.org/10.1109/WODES.2006.382523
https://doi.org/10.1016/j.tcs.2012.04.009
https://doi.org/10.1007/978-0-387-35394-4_27
https://doi.org/10.1016/0020-0255(88)90002-3
https://doi.org/10.1109/ARES.2008.196
https://doi.org/10.1002/stvr.441
https://doi.org/10.1109/WODES.2008.4605933
https://doi.org/10.1109/WODES.2008.4605933
https://qshare.queensu.ca/Users01/rudie/www/software.html
https://qshare.queensu.ca/Users01/rudie/www/software.html
https://doi.org/10.1145/2737924.2737962
https://doi.org/10.1145/2737924.2737962
https://doi.org/10.1109/TAC.2005.860291
https://doi.org/10.1109/TAC.2005.860291


Natural Projection as Partial Model Checking 1481

38. Veanes, M.: Applications of Symbolic Finite Automata. In: CIAA’13, LNCS, vol. 7982, pp. 16–
23. Springer (2013). https://www.microsoft.com/en-us/research/publication/applications-of-symbolic-
finite-automata/

39. Wong, K.C.: On the complexity of projections of discrete-event systems. In: Proceedings of IEEE Work-
shop on Discrete Event Systems, pp. 201–208 (1998)

40. Wonham, W.M.: Supervisory control of discrete-event systems. http://www.control.toronto.edu/DES
(2017). Department of Electrical and Computer Engineering, University of Toronto, ON, Canada

41. Wonham, W.M., Ramadge, P.J.: On the supremal controllable sublanguage of a given language. In:
Proceedings of the 23rd IEEE Conference on Decision and Control, pp. 1073–1080 (1984). https://doi.
org/10.1109/CDC.1984.272178

42. Wonham, W.M., Ramadge, P.J.: Modular supervisory control of discrete-event systems. Math. Control
Signals Syst. 1(1), 13–30 (1988). https://doi.org/10.1007/BF02551233

43. Ziller, R., Schneider, K.: Combining supervisor synthesis and model checking. ACM Trans. Embed.
Comput. Syst. 4(2), 331–362 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.microsoft.com/en-us/research/publication/applications-of-symbolic-finite-automata/
https://www.microsoft.com/en-us/research/publication/applications-of-symbolic-finite-automata/
http://www.control.toronto.edu/DES
https://doi.org/10.1109/CDC.1984.272178
https://doi.org/10.1109/CDC.1984.272178
https://doi.org/10.1007/BF02551233

	Natural Projection as Partial Model Checking
	Abstract
	1 Introduction
	2 A Running Example: A GPU Kernel
	3 A General Framework
	3.1 Language Semantics Versus State Semantics
	3.2 Operational Model and Natural Projection
	3.3 Equational µ-Calculus and Partial Model Checking
	3.4 Unifying the Logical and the Operational Approaches

	4 Quotienting Finite-State Systems
	4.1 Quotienting Algorithm
	4.2 Application to Our Running Example

	5 Quotienting Symbolic Finite-State Systems
	5.1 Symbolic Labeled Transition Systems
	5.2 Parallel Composition of s-LTSs
	5.3 Symbolic Natural Projection and Symbolic Quotienting
	5.4 Quotienting Algorithm

	6 Related Work
	7 Conclusion
	Acknowledgements
	A Technical Appendix
	A.1 GPUVerify
	A.2 Technical Proofs
	A.3 Correctness
	A.4 Complexity

	References




