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Abstract. Online monitoring is the task of identifying complex temporal patterns
while incrementally processing streams of events. Existing state-of-the-art moni-
tors can process streams of modest velocity in real-time: a few thousands events per
second. We scale up monitoring to higher velocities by slicing the stream, based
on the events’ data values, into substreams that can be independently monitored.
Because monitoring is not data parallel in general, slicing can lead to data dupli-
cation. To reduce this overhead, we adapt hash-based partitioning techniques from
databases to the monitoring setting. We implement the resulting automatic data
slicer in Apache Flink and use the MonPoly tool to monitor the substreams. We em-
pirically evaluate this setup, demonstrating a substantial scalability improvement.

1 Introduction

Large-scale software systems produce millions of log events per second. Identifying
interesting patterns in these high-volume, high-velocity data streams is a central challenge
in the area of runtime verification and monitoring.

An online monitor takes a pattern, consumes a stream of data event-wise, and detects
and outputs matches with the pattern. The specification language for patterns significantly
influences the monitor’s time and space complexity. For propositional languages, such as
metric temporal logic or metric dynamic logic, current monitors are capable of handling
hundreds of thousands of events per second in real time on commodity hardware [8, 13].
Propositional languages, however, are severely limited in their expressiveness. Since they
regard events as atomic, they cannot formulate dependencies between data values stored
in the events. First-order specification languages, such as metric first-order temporal logic
(MFOTL) [11], do not have this limitation. Various online monitors [5,7,11,14,26,32,34]
can handle first-order specification languages for event streams with modest velocities.

We improve the scalability of online first-order monitors using parallelization. There
are two basic approaches regarding what to parallelize. Task parallelism adapts the
monitoring algorithm to evaluate different subpatterns in parallel. The amount of par-
allelization offered is limited by the number of subpatterns for a given pattern. The
alternative is data parallelism: multiple copies of the monitoring algorithm are run
unchanged as a black box, in parallel, on different portions of the input data stream.

In this paper we focus on data parallelism, which is attractive for several reasons. By
being a black-box approach, data parallelism allows us to reuse existing monitors, which
implement heavily optimized sequential algorithms. It also offers a virtually unbounded
amount of parallelization, especially on high-volume and high-velocity data streams. Fi-
nally, it caters for the use of general-purpose libraries for data parallel stream-processing.
These libraries deal with common challenges in high-performance computing, such as de-
ployment on computing clusters, fault-tolerance, and back-pressure (i.e., velocity spikes).



Data parallelism has previously been utilized to scale up offline monitoring [9] (Sec-
tion 2). Yet neither offline nor online monitoring is a data-parallel task in general. This
means that, in some cases, parallel monitors must synchronize during their execution.
Alternatively, careful data duplication across the parallel monitors allows for a non-
blocking parallel architecture. An important contribution of this prior work on scalable
offline monitoring is the development of a (data) slicing framework [9]. The framework
takes as inputs an MFOTL formula (Section 3) and a splitting strategy that determines
which parallel monitors the data should be sent to. It outputs an event dispatcher that
forwards events to appropriate monitors and ensures that the overall parallel architecture
collectively produces exactly the same results that a single-threaded monitor would do.

The previous slicing framework has three severe limitations. First, data can be
sliced on only one free variable at a time. Although the single-variable slices can be
composed into multi-variable slices, the composition does not offer the flexibility of
simultaneously slicing on multiple variables. As a result, composition is ineffective for
some formulas and adds unnecessary data duplication for others. Second, the user of the
slicing framework must supply a slicing strategy, even when it is obvious what the best
strategy is for the given formula. Third, the framework’s implementation uses Google’s
MapReduce library for parallel processing, which restricts it to the offline setting.

This paper addresses all of the above limitations with the following contributions:
– We generalize the offline slicing framework [9] to support simultaneous slicing on

multiple variables and adapt the framework to the online setting (Section 4).
– We instantiate the slicing framework with an automatic splitting strategy (Section 5)

inspired by the hypercube algorithm [2,27] used previously to parallelize via hashing
implementations of relational join operators in databases.

– We implement our new slicing framework using the Apache Flink [3] stream pro-
cessing engine (Section 6). We use MonPoly [11, 12] as a black-box monitor for the
slices. A particular challenge in our publicly available implementation [35] was to
efficiently checkpoint MonPoly’s state within Flink to achieve fault-tolerance.

– We evaluate the slicing framework and automatic strategy selection on both synthetic
data and real-world data based on Nokia’s data collection campaign [10] (Section 7).
We show that the overall parallel architecture has substantially improved throughput.
While the optimality of the hypercube approach in terms of a balanced data distribu-
tion is out of reach for general MFOTL formulas, we demonstrate that our automatic
splitting results in balanced slices on the formulas used in the Nokia case study.

2 Related work

Our work builds on the slicing framework introduced by Basin et al. [9]. This framework
ensures the sound and complete slicing of the event stream with respect to MFOTL
formulas. It prescribes the use of composable operators, called slicers, that slice data
associated with a single free variable, or slice based on time. We have generalized their
data slicers to operate simultaneously on all free variables in a formula. Moreover, the
usage of MapReduce in the implementation of the original framework limited it to the of-
fline setting. In contrast, our implementation in Apache Flink supports online monitoring.
Finally, our implementation extends the framework with an automatic strategy selection
that exhibits a balanced load distribution on the slices in our empirical evaluation.
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Barre et al. [4], Bianculli et al. [18], and Bersani et al. [17] use task parallelism
on different subformulas to parallelize propositional offline monitors. The degree of
parallelization in these approaches is limited by the specification’s syntactic complexity.

Parametric trace slicing [34] lifts propositional monitoring to parametric specifi-
cations. This algorithm takes a trace with parametric events and creates propositional
slices with events grouped by their parameter instances, which can be independently
monitored. Parametric trace slicing considers only non-metric policies with top-level
universal quantification. Barringer et al. [5] generalize this approach to more complex
properties expressed using quantified event automata (QEA). Reger and Rydeheard [32],
delimit the sliceable fragment of first-order linear temporal logic (FO-LTL) that admits
a sound application of parametric trace slicing. The fragment prohibits deeply nested
quantification and using the “next” operator. These restrictions originate from the time
model used, in which time-points consist of exactly one event. Hence, when an event
is removed from a slice, information about that time-point is lost. Our time model,
based on sequences of time-stamped sets of events, avoids such pitfalls. Parametric trace
slicing produces an exponential number of slices (in the domain’s size) with grounded
predicates, whereas we use as many slices as there are parallel monitors available.

Kuhtz and Finkbeiner [28] show that the LTL monitoring problem belongs to
AC1(logDCFL) and as such can be efficiently parallelized. However, the Boolean circuits
used to establish the lower bound must be built for each trace in advance, which limits
these results to the offline monitoring setting. A similar limitation applies to the work by
Bundala and Ouaknine [19] and Feng et al. [22] who study variants of MTL and TPTL.

Complex event processing (CEP) systems analyze streams by recognizing composite
events as (temporal) patterns of simple events. Their publish-subscribe architecture
allows for ample parallelism. The languages used by CEP systems are often based on
SQL extensions without a clear semantics. An exception is BeepBeep [24]: a multi-
threaded [25] stream processor that supports LTL-FO+, another first-order variant of LTL.
The parallel computation in BeepBeep must, however, be scheduled manually by the user.

Event stream processing systems have been extensively studied in the database com-
munity. We focus on the most closely related works. The hypercube partitioning scheme
(also known as the shares algorithm) was first proposed by Afrati and Ullman [2] in the
context of MapReduce. The idea underlying the algorithm can be traced back to the paral-
lel evaluation of datalog queries [23]. The hypercube algorithm was shown to be optimal
for conjunctive queries with one communication round on skew-free databases [16].

The hypercube and other hash-based partitioning schemes are sensitive to skew.
Rivetti et al. [33] suggest a greedy balancing strategy after separating the heavy hitters,
i.e., frequently occurring input values. This approach is restricted to multi-way joins
in which all relations share a common join key. Nasir et al. [29, 30] balance skew
for associative stream operators without identifying heavy hitters explicitly. Vitorovic
et al. [37] combines the hash-based hypercube, prone to heavy hitters, with random
partitioning [31], resilient to heavy hitters. The combination only applies to multi-way
joins and limits the impact of skew without improving the worst-case performance. All
these approaches are unsuitable for handling general MFOTL formulas. Instead we
follow a hypercube variant, which is optimal for the considered setting with skew [27].
The heavy hitters must be known in advance in this approach.
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v, i |= r(t1, . . . , tn) if r(v(t1), . . . v(tn)) ∈ Di v, i |= ∃x. ϕ if v[x 7→ z], i |= ϕ for some z ∈ D
v, i |= t1 ≈ t2 if v(t1) = v(t2) v, i |= I ϕ if i > 0, τi− τi−1 ∈ I, and v, i−1 |= ϕ

v, i |= ¬ϕ if v, i 6|= ϕ v, i |=#I ϕ if τi+1− τi ∈ I and v, i+1 |= ϕ

v, i |= ϕ ∨ψ if v, i |= ϕ or v, i |= ψ

v, i |= ϕ SI ψ if v, j |= ψ for some j ≤ i, τi− τ j ∈ I, and v, k |= ϕ for all k with j < k ≤ i
v, i |= ϕ UI ψ if v, j |= ψ for some j ≥ i, τ j− τi ∈ I, and v, k |= ϕ for all k with i≤ k < j

Fig. 1: Semantics of MFOTL

3 Preliminaries

We briefly recall the syntax and semantics of our specification language of choice, metric
first-order temporal logic (MFOTL) [11], and describe the monitoring setting considered.

We fix a set of names E and for simplicity assume a single infinite domain D of values.
The names r ∈ E have associated arities ι(r) ∈N. An event r(d1, . . . ,dι(r)) is an element
of E×D∗. We call 1, . . . , ι(r) the attributes of the name r. We further fix an infinite set V
of variables, such that V, D, and E are pairwise disjoint. Let I be the set of nonempty in-
tervals [a,b) := {x∈N | a≤ x< b}, where a∈N, b∈N∪{∞} and a< b. Formulas ϕ are
constructed inductively, where ti, r, x, and I range over V∪D, E, V, and I, respectively:

ϕ ::= r(t1, . . . , tι(r)) | t1 ≈ t2 | ¬ϕ | ϕ ∨ϕ | ∃x.ϕ | I ϕ |#I ϕ | ϕ SI ϕ | ϕ UI ϕ.

Along with the Boolean operators, MFOTL includes the metric past and future temporal
operators (previous), S (since),# (next), and U (until), which may be nested freely. We
define other standard Boolean and temporal operators in terms of this minimal syntax:
truth > := ∃x. x≈ x, falsehood ⊥ := ¬>, inequality t1 6≈ t2 := ¬(t1 ≈ t2), conjunction
ϕ ∧ψ := ¬(¬ϕ ∨¬ψ), universal quantification ∀x. ϕ := ¬(∃x. ¬ϕ), eventually ♦I ϕ :=
>UI ϕ , always �I ϕ :=¬♦I¬ϕ , once �I ϕ :=>SI ϕ , and historically (always in the past)
�I ϕ :=¬�I¬ϕ . Abusing notation, Vϕ denotes the set of free variables of the formula ϕ .

MFOTL formulas are interpreted over streams of time-stamped events. We group
finite sets of events that happen concurrently (from the event source’s point of view) into
databases. An (event) stream ρ is thus an infinite sequence 〈τi,Di〉i∈N of databases Di
with associated time-stamps τi. We assume discrete time-stamps, modeled as natural
numbers τ ∈ N. We allow the event source to use a finer notion of time than the one
used as time-stamps. In particular, databases at different indices i 6= j may have the
same time-stamp τi = τ j. The sequence of time-stamps must be non-strictly increasing
(∀i. τi ≤ τi+1) and always eventually strictly increasing (∀τ. ∃i. τ < τi).

The relation v, i |=ρ ϕ (Figure 1) defines the satisfaction of the formula ϕ for a
valuation v at an index i with respect to the stream ρ = 〈τi,Di〉i∈N. Whenever ρ is fixed
and clear from the context, we omit the subscript on |=. The valuation v is a mapping
V→ D, assigning domain elements to the free variables of ϕ . Overloading notation, v is
also the extension of v to the domain V∪D, setting v(t) = t whenever t ∈ D. We write
v[x 7→ y] for the function equal to v, except that the argument x is mapped to y.

Let S be the set of streams. Although satisfaction is defined over infinite streams, a
monitor will always receive only a finite stream prefix. We write P for the set of finite
stream prefixes and � for the usual prefix order on streams and stream prefixes. For the
prefix π and i ∈ {1, . . . , |π|}, π[i] denotes π’s i-th element.
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Abstractly, a monitor function maps stream prefixes to verdict outputs from a set O.
A monitor is an algorithm that implements a monitor function. An online monitor
receives incremental updates of a stream prefix and computes the corresponding verdicts.
We consider time-stamped databases to be the atomic units of the input. The monitor
may produce the verdicts incrementally, too. To represent this behavior on the level of
monitor functions, we assume that verdicts are equipped with a partial orderv indicating
refinement and that a monitor function is a monotone map 〈P,�〉 → 〈O,v〉. This
captures the intuition that as the monitor function receives more input, it produces more
output, and (depending on the refinement ordering), does not retract previous verdicts.

Concretely, the MonPoly monitor [12] implements a monitor function Mϕ for ϕ

from a practically relevant fragment of MFOTL [11]. Whenever ϕ is violated for a
particular index, MonPoly outputs the valuations of the free variables that cause ϕ to
become false. Because some violations may be found only after a time delay, we ignore
the order of MonPoly’s output and model it as a set, with v being the subset relation:

Mϕ(π) = {(v, i) | i≤ |π| and for all ρ ∈ S with π � ρ , (v, i) 6|=ρ ϕ}.

4 Slicing Framework

We introduce a general framework for parallel online monitoring based on slicing. Basin
et al. [9] provide operators that split finite logs offline into independently monitorable
slices, based on the events’ data values and time-stamps. Each slice contains only a
subset of the events from the original trace, which reduces the computational effort to
monitor the slice. We adapt this idea to online monitoring. Since slicing with respect to
time is not particularly useful in the online setting, we focus on the data in the events.

4.1 Abstract Slicing

Parallelizing a monitor should not affect its input-output behavior. We formulate this
correctness requirement abstractly using the notion of a slicer for a monitor function. The
slicer indicates how to split the stream prefix into independently monitorable substreams
and how to combine the verdict outputs of the parallel submonitors into a single verdict.

Definition 1. A slicer for a monitor function M is a tuple (K,M,S,J), where K is a set
of slice identifiers, the submonitor family M ∈ K→ (P→O) is a K-indexed family of
monitor functions, the splitter S ∈ P→ (K→ P) splits prefixes into K-indexed slices,
and the joiner J ∈ (K→O)→O indicates how to combine K-indexed verdicts into one,
satisfying the following properties:

Monotonicity For all π1, π2 ∈ P, π1 � π2 implies S(π1)k � S(π2)k, for all k ∈ K.
Soundness For all π ∈ P, J

(
λk. Mk(S(π)k)

)
vM (π).

Completeness For all π ∈ P, M (π)v J
(
λk. Mk(S(π)k)

)
.

For an input prefix π , S(π) denotes the collection of its slices. Each slice is identified by
an element of K, which we write as a subscript. We require the splitter S to be monotone
so that the submonitors Mk, which may differ from the monitor function M , can process
the sliced prefixes incrementally. Composing the splitter, the corresponding submonitor
for each slice, and the joiner yields the parallelized monitor function J

(
λk. Mk(S(π)k)

)
.

It is sound and complete if and only if it computes the same verdicts as M .
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For example, parametric trace slicing [32, 34] can be seen as a particular slicer for
monitor functions that arise from sliceable FO-LTL formulas [32, Section 4]. Thereby,
K is the cross-product of finite domains for the formulas’ variables. Thus elements of
K are valuations and the splitter is defined as the restriction of the trace to the values
occurring in the valuation. The submonitor Mk is a propositional LTL monitor and the
joiner simply takes the union of the results (which may be marked with the valuation).

The splitter S as defined above is overly general. In practice, we would like a
highly efficient implementation of S since it is a centralized operation in front of the
parallel inner monitors M, which must inspect every input event. Parametric trace slicing
determines the target slice for an event by inspecting events individually (and not as part
of the whole prefix). We call splitter with this property event-separable. Event-separable
splitters are desirable because they cater to a parallel implementation of the splitter S.

Definition 2. A splitter S is called event-separable if there is a function Ŝ ∈ (E×D∗)→
P(K) such that S(π)k[i] = 〈τi, {e ∈ Di | k ∈ Ŝ(e)}〉 for all π ∈ P, k ∈ K, i≤ |π|.
Lemma 1. If S is event-separable, then π1 � π2 implies S(π1)k � S(π2)k for all k ∈ K.

We also call slicers with event-separable splitters event-separable. We identify event-
separable slicers (K,M,S,J) with (K,M, Ŝ,J).

4.2 Joint Data Slicer

We describe an event-separable slicer for the monitor function Mϕ that arises from the
MFOTL formula ϕ . Our joint data slicer distributes events according to the valuations
they induce in the formula. Recall that the output of Mϕ consists of all valuations that do
not satisfy the formula at some timepoint. We would like to evaluate ϕ for each valuation
to determine whether the valuation is a violation. However, there are infinitely many
valuations in the presence of infinite domains. The joint data slicer uses finitely many
(possibly overlapping) slices, which taken together cover all possible valuations. For a
given valuation, only a subset of the events is relevant to evaluate the formula.

We assume that the bound variables in ϕ are disjoint from the free variables. Given
an event e = r(d1, . . . ,dn), the set matches(ϕ,e) contains all valuations v ∈ Vϕ → D for
which there is a subformula r(t1, . . . , tn) in ϕ where v(ti) = di for all i ∈ {1, . . . ,n}. We
implicitly extend v to V∪D, such that it is the identity on (V\Vϕ)∪D.

Definition 3. Let ϕ be an MFOTL formula and f ∈ (Vϕ → D)→P(K) be a mapping
from valuations to nonempty sets of slice identifiers. The joint data slicer for ϕ with
splitting strategy f is the tuple (K, λk. Mϕ , Ŝ f , J f ), where

Ŝ f (e) =
⋃

v∈matches(ϕ,e)
f (v), J f (s) =

⋃
k∈K

(sk ∩ ({v | k ∈ f (v)}×N)).

The intersection with {v | k ∈ f (v)}×N in the definition of J f is needed only for some
formulas, notably those that involve equality. Consider, e.g., the formula x≈ a→ Q(x),
where a is a constant. Even if a prefix contains Q(a), so that no violation occurs,the
event will be omitted from all slices that do not have an associated valuation with x = a.
If we do not filter the erroneous verdict from those slices, the result will be unsound.

Proposition 1. The joint data slicer (K, λk. Mϕ , Ŝ f , J f ) is a slicer for Mϕ .
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Proof. Monotonicity follows from Lemma 1. For soundness and completeness, we must
show that (v, i) ∈ J f (Mϕ ◦S f (π)) if and only if (v, i) ∈Mϕ(π) for an arbitrary v and i.
By the definitions of J f and Mϕ , this is equivalent to

(∀k ∈ f (v).∀ρ. ρ � S f (π)k =⇒ v, i |=ρ ¬ϕ) ⇐⇒ (∀σ . σ � π =⇒ v, i |=σ ¬ϕ).

For an arbitrary k∈ f (v), it suffices to consider streams ρ and σ such that ρ[i] = S f (π)k[i]
and σ [i] = π[i] for all i≤ |S f (π)k|= |π|, and ρ[i] = σ [i] otherwise. Then v, i |=ρ ϕ ⇐⇒
v, i |=σ ϕ follows by induction on the structure of ϕ generalizing over v and i. ut
Example 1. Consider the formula P(x,y)→ ♦[0,5](P(y,x)∧Q(x)). We apply the joint
data slicer for two slices (K = {1,2}). Its splitting strategy f maps all valuations to the
first slice, except for 〈x = 5,y = 7〉. (Note that the intersection with {v | k ∈ f (v)}×N is
redundant in the definition of J f for this formula. For any violating valuation, there must
be a matching P event in the slice, which determines the values of all free variables.)

Let π be the prefix 〈11,{P(5,1),Q(2)}〉,〈12,{P(5,7),Q(3),Q(5)}〉,〈21,{P(7,5)}〉.
We obtain the slices

S f (π)1 = 〈11,{P(5,1),Q(2)}〉, 〈12,{P(5,7),Q(3)}〉, 〈21,{P(7,5)}〉
S f (π)2 = 〈11,{}〉, 〈12,{P(5,7),Q(5)}〉, 〈21,{P(7,5)}〉.

The events P(5,7) and P(7,5) are duplicated across the slices because both 〈x= 5,y= 7〉
and 〈x = 7,y = 5〉 are matching valuations for either event.

The data slicer used in the offline slicing framework [9] is defined for a single free
variable x and a collection (Sk)k∈K of slicing sets. Each slicing set is a subset of the
domain, and

⋃
k∈K Sk = D. This single variable slicer is a special case of our joint data

slicer. To see this, define f (v) to be the set of all k satisfying v(x) ∈ Sk. At least one such
k must exist because the Sk cover the domain. In contrast, some instances of the joint
data slicer cannot be simulated by a composition of single variable slicers. Consider
a formula with the atoms P(x,y), P(y,z), and P(z,x). Any single variable slicer will
send all P events to all slices because each atom misses one free variable. We show in
Section 5 that our joint data slicer is more precise for such formulas.

5 Automatic Slicing

The joint data slicer (Section 4.2) is parameterized by a splitting strategy. Ideally, the cho-
sen strategy optimally utilizes the available computing resources. In particular, computa-
tion and communication costs should be evenly distributed, while keeping the overhead
low. As an approximation of the overall computational cost, we consider the event rate,
i.e., the number of events in a period of time, of each slice. We chose this as minimizing
the event rate should reduce the submonitors’ execution time and memory consumption.
We do not optimize the amount of communication in this paper. However, the number
of slices is a parameter that affects the communication cost due to data duplication.

We base our splitting strategy on the hypercube algorithm [2,16,23,27,36]. Below, we
describe this algorithm within our framework and address challenges that arise in the on-
line setting. We decided on the hypercube algorithm as our starting point because its skew-
aware variant by Koutris et al. [27] has been shown to yield strategies that are optimal
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with respect to the worst-case load for conjunctive queries. Query evaluation and mon-
itoring are closely related: reporting violations of some formula ϕ with free variables is
equivalent to evaluating the query¬ϕ . Therefore, conjunctive queries constitute a specific
subset of all monitoring tasks. While this does not imply optimality for arbitrary formulas,
we are still able to effectively slice formulas containing operators other than conjunctions.

Let [n] = {1, . . . ,n} for n ∈ N. We assume a linear ordering x1, . . . ,xk on the free
variables of the formula ϕ . The basic idea of the hypercube algorithm is to organize
N submonitors into a hypercube (or more precisely, an orthotope) K = [n1]× . . .× [nk]
such that ∏i∈[k] ni = N. The parameters n1, . . . ,nk are called shares. At the beginning of
the monitoring, hash functions hi ∈D→ [ni] are chosen randomly and independently. To
decide which submonitors should receive an event, the hypercube algorithm applies the
hash function hi to the values of the free variable xi, for all xi ∈Vϕ . This is done for each
valuation that is inferred from the event by the data slicer. Each tuple of hash values repre-
sents a coordinate in K, which is the target slice for that valuation. Therefore, the splitting
strategy f maps valuations v to (sets of) slice identifiers {〈h1(v(x1)), . . . ,hk(v(xk))〉}.

The shares are chosen to optimize the maximum event rate over all submonitors. For
now, we assume that all values have low degree. The degree of a data value denotes the
number of events that contain this value in a specific attribute. Then, the maximum event
rate of the monitors given the shares n is estimated by the following cost function [2,15]:

cost(n,ϕ,Z) = ∑r(d1,...,dn)∈ϕ

Z(r)
∏xi∈{d1,...,dn}∩Vϕ

ni
.

The term r(d1, . . . ,dn) ranges over all atoms in the formula ϕ . The function Z is a
parameter of the optimization, where Z(r) is the rate of events with name r. We use a
simplified version of the algorithm by Chu et al. [21] to optimize the cost function. The
algorithm enumerates all possible integer shares with product N. This is feasible because
the number of share combinations is small for realistic N, even when N has many small
prime divisors. In fact, we assume that N is a power of two in our implementation.

It is not obvious how the statistics Z can be meaningfully obtained in the context of
online monitoring. We cannot collect them from the entire stream for two reasons. First,
it is impossible to observe future events at the time when the splitting strategy must be
fixed. Second, if the rates increase due to a temporary change in the stream characteristics,
some monitor instance might become overwhelmed, events must be buffered, and latency
increases. The optimization cannot account for such local changes if we use statistics col-
lected over a long period of time, as one would do in offline processing. However, some
buffering to handle transient rate spikes is acceptable. Therefore, we estimate the statis-
tics using a recorded prefix of the stream and aggregate them over short time windows.

Example 2. Consider the formula ϕ = P(x,y)∧Q(y,z)→¬R(z,x) and a stream consist-
ing of 3m events in a given period of time. We assume that the events with names P, Q,
and R occur equally often, such that Z(P) = Z(Q) = Z(R) = m. The optimal shares for
the hypercube composed of N monitors are nx = ny = nz = N1/3. Each slice contains ap-
proximately cost(n,ϕ,Z) = 3m/N2/3 events. We obtain the same results for the formula
ϕ ′ = P(x,y)∧P(y,z)→¬P(z,x) and Z(P) = m because each event is replicated three
times. Yet, the event rate per slice is lower than the rate of the input stream if N ≥ 8.
This is an improvement over the single variable slicer (Section 4.2).
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Next, we show how the joint data slicer with the optimal hypercube strategy for
ϕ distributes some events. We assume N = 64 and simplify the hash functions to
h(x) = x mod 4. The slices are thus identified by strings of three numbers between 0 and
3, with one number for each variable x, y, and z.

event containing slices
P(0,1) 010, 011, 012, 013
P(1,1) 110, 111, 112, 113

event containing slices
Q(1,7) 013, 113, 213, 313
R(7,0) 003, 013, 023, 033

The events P(0,1), Q(1,7), and R(7,0) are sent to slice 013, which ensures completeness.

Data distributions without skew, in which all values have low degree, are too limited
in practice. Hash-based partitioning schemes such as the hypercube fail to distribute
events evenly if the input is skewed. A standard solution it to use a different splitting strat-
egy for the highly skewed portions of the data [27]. Following the terminology of [27], a
heavy hitter is a value with degree at least Z(r)/N in events with name r. We collect heavy
hitter information along with the Z statistics. A value is considered a heavy hitter if it is
a heavy hitter in at least one of the time windows over which we collect the Z statistics.

To compute the slice for a valuation, our skew-aware strategy first determines the
set H of variables that are heavy hitters. A value d is a heavy hitter for a variable x if
there is an atom r(. . . , t j−1,x, t j+1, . . .) in the formula such that d is a heavy hitter in the
j-th attribute of r. For each set H, a separate collection of shares nH

x and independent
hash functions hH

x is used, where x ∈ Vϕ . Note that there are 2k different sets H, where
k = |Vϕ |. For x ∈ H, we fix nH

x = 1 in the share optimization. The remaining shares are
computed as before, as is f (v), but using the hash functions hH

x .

Example 3. Consider the same formula ϕ and stream as before, but suppose now that the
stream has some heavy hitters. We analyze the optimal shares for the heavy-hitter sets
A = {x}, B = {x,y}, and C = {x,y,z}. The remaining cases have symmetrical solutions.
In the case A, the shares are nA

x = 1 and nA
y = nA

z = N1/2. Each slice then contains at most
1/N1/2 of the events for which only x is assigned a heavy hitter. In the case B, the optimal
shares are nB

x = nB
y = 1 and nB

z = N, so there are at most 1/N of the corresponding events
in each slice. Finally in the case C, one must broadcast the events. Note that there can be
at most N different heavy hitters per attribute. Therefore, there are at most 3wN2 events
to which the set C applies, where w is the number of databases in the time period that
we consider. If w is bounded by a constant, the overall fraction of events in each slice is
asymptotically equal to the maximum of the three cases, which is O(1/N1/2).

Now assume that 0 is a heavy hitter in the first attribute of P, and N = 64. Therefore,
we need to consider the heavy-hitter sets {} and {x}. Let the hash functions be the
modulus as in the previous example (e.g., h{x}y (y) = y mod 8). We overlay the slices
for the different heavy-hitter sets and assign identifiers from [N] according to their
lexicographic ordering: both valuations 〈x= 1, y= 1, z= 3〉 and 〈y= 2, z= 7〉map to 23.

event containing slices
P(0,1) 8,9,10,11,12,13,14,15
P(1,1) 20,21,22,23

event containing slices
Q(1,7) 7,23,39,55;15
R(7,0) 7,15,23,31,39,47,55,63

Both {} and {x} are possible for Q(1,7) because Q(y,z) does not induce a valuation for x.
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Fig. 2: Stream operators in the online monitor

In general, the possible rate reduction depends on the pattern of free variables in the
formula’s atoms. A detailed discussion is provided by Koutris et al. [27]. The ideal case
is a formula in which all atoms with a significant event count share a variable, together
with a stream that never assigns a heavy hitter to that variable. Then the load per slice
is proportional to 1/N. Atoms with missing variables, and equivalently variables with
heavy hitters, increase the fraction to 1/Nq for some q > 1. Our approach affects only
the event rate, but not the index rate, which is the number of databases per unit of time.
The index rate impacts the performance of monitors such as MonPoly because each
database triggers an update step in the monitoring algorithm. For a syntactic fragment of
MFOTL, MonPoly reduces the number of update steps skipping empty databases [9].

6 Implementation

We implemented a parallel online monitor based on the joint data slicer in Scala on top of
the Apache Flink stream processing framework. Given a formula, the slicer reads events
from a TCP socket or a text file, monitors them in parallel, and writes the collected ver-
dicts to a second socket or file. The monitoring of the slices is delegated to MonPoly [12].

The Flink API provides the means to construct a logical dataflow graph. The graph
consists of operators that retrieve data streams from external sources, apply processing
functions to stream elements, and output the elements to sinks. Operators and the flows
between them can execute in parallel; elements are partitioned according to user-specified
keys. At runtime, Flink maps the graph to a distributed cluster of computing nodes. We
chose Flink for its low latency stream processing and its support for fault tolerant compu-
tation. Fault tolerance is ensured using a distributed checkpointing mechanism [20]: The
system recovers from failures by restarting from regularly created checkpoints. Operators
must expose their state to the framework to participate in the checkpoints.

Figure 2 shows the dataflow graph of our slicer. Its main parameters are the number
N of parallel monitors and the inputs for the shares optimization, which is performed
during initialization. Events are read line by line as strings. We support both MonPoly’s
input format and the CSV format used in the first RV competition [6]. The parser converts
the input lines into an internal datatype that stores the event name and the list of data
values. We flatten the parser’s results into a stream of single events because a single line
in MonPoly’s format may describe several events, i.e., an entire database, at once.

After parsing, the splitter computes the set of target slices for each event. To do so, it
first determines the matching valuations as described in Section 4.2. As this set may be in-
finite, the splitter encodes it as a partial mappings from variables to data values. For each
target slice, a copy of the event is sent to the next operator along with the slice identifier.

10



At this point, we would like to distribute the events to N parallel submonitors.
However, the keyBy operation in the Flink API applies its own hash function to shuffle
the events. This hash function might needlessly collapse slice identifiers. We work around
this limitation by mapping the identifiers to preimages under the hash function, which we
precompute by enumeration. In each parallel flow, a custom operator prints the internal
datatype in MonPoly format, sends it to an external monitor process, and applies the
intersection from the definition of J f (Definition 3) to its output. Finally, all remaining
verdicts are combined into a single stream, which is written to an output socket or file.

The custom operator is responsible for starting and interacting with the MonPoly
process. The operator writes one database at a time to standard input and simultane-
ously reads violations from standard output of the process. Reading and writing is
asynchronous to the Flink pipeline in order to prevent blocking other operators. Flink’s
AsyncWaitOperator supports asynchronous requests to external processes without
managing their state. We must, however, include the submonitors’ states in the check-
pointing because they summarize the events seen so far. Thus, our custom operator tracks
MonPoly’s state. To this end, we extend MonPoly with control commands for saving and
loading its state. Whenever Flink instructs the custom operator to create a checkpoint, it
first waits until all prior events have been processed. Then, the command for saving state
is issued and MonPoly writes its state to a temporary file. Violations reported after the
checkpoint instruction’s arrival at the custom operator are included in the checkpoint.
This ensures that no violation is lost because other operators might create their own
checkpoint concurrently. We evaluate the overhead of checkpointing in Section 7.

The part of the dataflow before the submonitors is not parallel. This is a bottleneck
that limits scalability: all events in the input must be processed sequentially by the
splitter. Despite this limitation of our implementation, the splitter and the surrounding
operators could be parallelized too: As its splitter operates on individual events, the
joint data slicer is event-separable (Section 4.1). A parallel splitter would be particularly
effective if the event source itself is distributed. However, we would have to ensure that
events arrive at the submonitors in chronological order after reshuffling. This order is no
longer guaranteed if the splitter is partitioned into concurrent tasks. A possible solution
is to buffer and reorder events. We leave the analysis of such an extension to future work.

7 Evaluation

With our evaluation, we aim to answer the following research questions:
RQ1: How does our monitor scale with respect to the index and event rate?
RQ2: How does our monitor scale with respect to different variable occurrence patterns?
RQ3: How much overhead is incurred by supporting fault tolerance (FT)?
RQ4: Can knowledge about the frequency of event names improve performance?
RQ5: Can knowledge about heavy hitter values improve performance?
RQ6: Can our monitor handle data in a real-world online setting?
RQ7: How does it compare to MonPoly running on a single core?

To answer the research questions, we organize our evaluation into two families of ex-
periments, each monitoring a different type of input stream (synthetic or real-world). The
synthetic streams are used to analyze the effects of individual parameters, e.g., event rate,
while real-world streams attest to our tool’s ability to scalably solve realistic problems.
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star = �∀a.∀b.∀c.∀d. (�[0,10s) P(a,b))→ Q(a,c)→�[0,10s)¬R(a,d)

linear = �∀a.∀b.∀c.∀d. (�[0,10s) P(a,b))→ Q(b,c)→�[0,10s)¬R(c,d)

triangle = �∀a.∀b.∀c. (�[0,10s) P(a,b))→ Q(b,c)→�[0,10s)¬R(c,a)

script = �∀db.∀dt.select(script1,db,dt)∨ insert(script1,db,dt)∨
delete(script1,db,dt)∨update(script1,db,dt)→(

(¬�[0,1s)♦[0,1s) end(script1))S (�[0,1s)♦[0,1s) start(script1))
)
∨�[0,1s)♦[0,1s) end(script1)

insert = �∀u.∀dt. insert(u,db1,dt)∧dt 6≈ unknown→
�[0,1s)♦[0,30h]∃u′. insert(u′,db2,dt)∨delete(u′,db1,dt)

delete = �∀u.∀dt.delete(u,db1,dt)∧dt 6≈ unknown→(
�[0,1s)♦[0,30h)∃u′.delete(u′,db2,dt)

)
∨(

(♦[0,1s)�[0,30h)∃u′. insert(u′,db1,dt))∧ (�[0,30h)�[0,30h)¬∃u′. insert(u′,db2,dt))
)

Fig. 3: MFOTL formulas used in the evaluation

We implemented a generator that takes a random seed and synthesizes streams with
specific characteristics. It produces streams containing binary events labeled with P,Q,
or R with configurable event rate, index rate, and rate of violations for the three fixed
formulas star, linear, and triangle (Figure 3). This setup allows us to test RQ1. Further-
more, to test RQ4 and RQ5, the generator synthesizes event labels with configurable
rates (Z(P), Z(Q), and Z(R)) and forces some event attribute values to be heavy hitters.

We use logs collected during the Nokia’s Data Collection Campaign [10] as real-
world streams. The campaign collected data from mobile phones of 180 participants
and propagated it through three databases db1, db2, and db3. The phones uploaded their
data directly to db1, while a synchronization script script1 periodically copied the data
from db1 to db2. Then, database triggers on db2 anonymized and copied the data to
db3. The participants could query and delete their own data in db1 and such deletions
were propagated to all databases. To obtain streams suitable for online monitoring, we
have developed a tool that replays log events and simulates the event rate at the log
creation time, which is captured by the events’ time-stamps. The tool can also replay
the log proportionally faster than its event rate which is useful to evaluate the monitor’s
performance while retaining log’s other characteristics. Since the log from the campaign
spans a year, to evaluate our tool in a reasonable amount of time, we pick a one day
fragment from the log with the highest average event rate and we use our replayer tool to
speed it up between up to 5,000 times. The fragment contains roughly 9.5 million events
and has an average event rate of 110 events per second. Combined with the speedup, we
have subjected our tool to streams of over half a million events per second. The used
logs [1] and the scripts that synthesize and replay streams [35] are publicly available.

Figure 3 shows the formulas we monitored in our evaluation. The formulas star,
linear, and triangle are tailored for the synthetic streams. Different occurrence patterns
of free variables in the formulas allows us to test RQ2. We aimed to cover common data
patterns in database queries [16] and extend them with temporal aspects. The formulas
script, insert, and delete stem from the Nokia’s Data Collection Campaign and have
been shown there to be challenging to monitor [10]. Since we monitor only a one day
fragment of the log from Nokia, we must initialize our monitor with the appropriate state
in order for it to produce the correct output. Therefore, we monitor each formula once
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on the part of the log preceding the chosen fragment, store the monitor’s state, and start
the monitor with the stored state as its initial state in the experiments.

We ran all our experiments on a server with two sockets, each containing twelve Intel
Xeon 2.20GHz CPU cores with hyperthreading that effectively gives us 48 independent
computation threads. We use the UNIX time command to measure total execution time,
i.e., the time between the moment when the replayer tool starts emitting events to the
monitor until the moment the monitor processes the last emitted event. We also measure
the maximal memory usage of each submonitor. To measure latency during execution, the
replayer tool injects a special event (called a latency marker) into the stream tagged with
the current time. The marker is propagated by the monitor and the latency is measured at
the output by comparing the current time with the time in the marker’s tag. Besides the
current latency measurement, we also calculate the rolling average and maximum latency
up to the current point in the experiment. Flink supports latency markers and provides us
with separate latency measurements for each operator in our monitor’s implementation.
Our replayer tool generates latency markers every second. When the latency is higher
than one second, the latency marker gets delayed, too, and a timely value cannot be
produced. Flink reports zeros for the current latency in this case, while we consider
the latest non-zero value. This significantly reduces the noise in our measurements.
Flink also measures the number of events each submonitor receives. Since we focus on
performance measurements, we discard the tool’s output during the experiments. Each
run of a monitor with a specific configuration is repeated three times and the collected
metrics are averaged to minimize the noise in the measurements.

Figure 4 shows the results for synthetic streams. Figure 4a (top) shows the maximum
latency when monitoring the formula star with different numbers of cores. With the
event rate of 2,200 events per second, the single core variant of our tool already exhibits
5 second latency. Similar latency is exhibited with 4 cores when monitoring events rates
above 8,000. In contrast, using 16 cores achieves sub-second latency for all event rates in
our experiments. We also show the maximal memory consumption across all submonitors
in Figure 4a (bottom). With an increasing number of submonitors, each submonitor
receives fewer events and hence uses less memory. This experiment answers RQ1: our
tool handles significantly higher event rates by using more parallel submonitors.

Figure 4b shows maximum latency (top) and memory consumption (bottom) of our
tool when monitoring star, triangle, and linear formulas using 4 cores. The plots show
six graphs, where a graph shows results of monitoring one of the three formulas over a
stream with an index rate of 1 or 1,000. Since the index rate affects the performance of
MonPoly [11], our tool is also affected. The event rate gain enabled by more submonitors
depends on the variable occurrence patterns in the monitored formula (RQ2). Figure 4b
also demonstrates that the star pattern is the one that exhibits the best scalability.

In the above experiments, we did not supply our monitor with the information on the
rates of event labels in the stream. Figure 4c positively answers RQ4 by showing that
both our tool’s latency (top) and memory consumption (bottom) decrease independently
of the number of cores when such statistics about the stream are known in advance.

Figure 5 summarizes the results of monitoring the real-world log from the Nokia
case study. The event and index rates are defined by the log, while we only control the
replay speed. The experiments answer RQ7 and show that we achieve better performance
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Fig. 4: Monitoring synthetic streams with fault tolerance
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Fig. 6: Impact of the skew and skew information on parallel monitoring

then MonPoly on its own, on all three formulas. We improve latency even when using a
single core, due the optimized implementation of the slicer that filters the unnecessary
events more efficiently than MonPoly. In this experiment, our tool’s performance does
not improve beyond 4 cores, since for event rates higher than 500,000 the centralized
parsing and slicing becomes a bottleneck. The top left and middle plots contrast the
performance overhead of fault tolerance (RQ3). The maximal latency is not affected;
however the bottom three plots show that the current and average latency are. These plots
correspond to three individual runs and depict how the current latency changes over time.
The leftmost plot shows the monitoring of the delete formula with respect to the stream
sped up 1,000 times, not accounting for fault tolerance. The middle and rightmost plots
show runs with enabled fault tolerance support for the speedups of 1,000 and 1,500. The
regular spikes in the current latency stem from Flink’s state snapshot algorithm.

Figure 6a shows the number of events sent per submonitor when no skew is present
in the stream. In the presence of skew, the event distribution is much less uniform
(Figure 6b). However, when our monitor is aware of the variables in the formula whose
instantiations in the stream are skewed, it can balance the events evenly (Figure 6c),
effectively reducing the maximum load of the submontors.

8 Conclusion and Future Work

We generalized the offline slicing framework [9] to support online monitoring and the
simultaneous slicing with respect to all free variables in the formula. We adapted hash-
based partitioning techniques from databases to obtain an automatic slicing strategy. We
implemented the automatic slicing combining MonPoly with Flink and experimentally
demonstrated a significant performance improvement: while retaining sub-second latency,
16-way parallelization allows us to increase the event rate by one order of magnitude.

We plan to extend our framework to include slicing on bound variables and to
optimize slicing of rigid predicates. Checkpointing MonPoly’s state coupled with the
online collection of the stream’s varying statistics can be used to dynamically reconfigure
the automatic slicing strategy. We intend to implement this natural extension and analyze
the tradeoff between the reconfiguration costs and the cost of using imperfect statistics.
We also plan to refine our automatic splitting strategy to take communication costs
explicitly into account and evaluate our approach on a distributed computing cluster.
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