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Abstract Real-time logics are popular specification languages for reasoning about
systems intended to meet timing constraints. Numerous formalisms have been
proposed with different underlying time models that can be characterized along two
dimensions: dense versus discrete time and point-based versus interval-based. We
present monitoring algorithms for the past-only fragment of metric temporal logics
that differ along these two dimensions, analyze their complexity, and compare
them on a class of formulas for which the point-based and the interval-based
settings coincide. Our comparison reveals similarities and differences between
the monitoring algorithms and highlights key concepts underlying our and prior
monitoring algorithms. For example, point-based algorithms are conceptually
simpler and more efficient than interval-based ones as they are invoked only at
time points occurring in the monitored trace and their reasoning is limited to just
those time points.

Keywords Temporal Logic · Runtime Verification · Online Algorithms

1 Introduction

Real-time logics [2, 18] allow us to specify system properties involving timing
constraints. Such specifications are useful when designing, developing, and verifying
systems with hard real-time requirements, for example requirements on response
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time or the frequency of event occurrences, such as every request must be followed
within 10 seconds by a grant. These logics also have applications in runtime
verification, where monitors generated from specifications are used to check the
correctness of system behaviors at runtime [15]. A monitor could, for example,
raise an alarm when it detects incorrect system behavior.

Various monitoring algorithms for real-time logics have been developed [3, 5,
8, 12,17,19,25,26,33] based on different time models. These time models can be
characterized by two independent aspects. First, whether the time model is point-
based or interval-based. In point-based time models, system traces are sequences
of system states, where each state is timestamped. In interval-based time models,
system traces consist of continuous (Boolean) signals of state variables. A second
distinction is whether the time model is either dense or discrete, which depends on
the underlying ordering on time points (i.e. elements of the time domain), that is,
whether there are infinitely many or finitely many time points between any two
distinct time points.

Real-time logics based on a dense, interval-based time model are more natural
and general than their counterparts based on a discrete or point-based model. In
fact, both discrete and point-based time models can be seen as abstractions of
their dense, interval-based counterparts [2, 29]. However, the satisfiability and the
model-checking problems for many real-time logics with the more natural time
model are computationally harder than the corresponding decision problems when
the time model is discrete or point-based. See the survey [27] for further discussion
and examples.

In this article, we analyze the impact of different time models on monitoring.
We do this by presenting, analyzing, and comparing monitoring algorithms for real-
time logics based on different time models. More concretely, we present monitoring
algorithms for the past-only fragment of propositional metric temporal logics with
a point-based and an interval-based semantics, also considering both dense and
discrete time domains. We compare our algorithms on a class of formulas for which
the point-based and the interval-based settings coincide. To define this class, we
distinguish between event propositions and state propositions. The truth value of
a state proposition always has a duration, whereas an event proposition cannot be
continuously true between two distinct time points.

Our analysis explains the impact of different time models on monitoring. First,
the impact of a dense versus a discrete time domain is minor. The algorithms
are essentially the same and have similar computational complexities. Second,
monitoring in a point-based setting is conceptually simpler than in an interval-
based setting. In the point-based setting, reasoning is limited to just those time
points occurring in the monitored trace. In contrast, the interval-based setting is
more complex as it must also account for time points that do not occur in the
monitored trace. Moreover, we show that our point-based monitoring algorithms
perform better than our interval-based algorithms on the given class of formulas
on which the two settings coincide. Our findings are, e.g., helpful when choosing or
justifying the underlying time model for monitoring a system.

Overall, we see the contributions as follows. First, our monitoring algorithms
simplify and clarify key concepts of previously presented algorithms [5,22,25,26]. In
particular, we present the algorithms in full detail and we analyze their complexity,
giving upper bounds on their time and space usage. Second, our monitoring
algorithm for the dense, point-based time model has better complexity bounds
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than existing algorithms for the same time model [33]. Third, our comparison of
the monitoring algorithms illustrates the similarities, differences, and trade-offs
between the time models with respect to monitoring. Moreover, formulas in our
fragment benefit from both settings: although they describe properties based on
a more natural time model, they can be monitored with respect to a point-based
time model, which is more efficient.

The remainder of this article is structured as follows. In Section 2 we fix notation
and terminology. In Section 3 we compare the point-based and the interval-based
time model and define a class of formulas on which the two time coincide. In
Sections 4 and 5 we present and analyze our monitoring algorithms for the point-
based setting and the interval-based setting, respectively, and we compare them
in Section 6. In Section 7 we discuss related work and we draw conclusions in
Section 8.

2 Preliminaries

2.1 Time Domain and Intervals

We denote the time domain by T and assume that it is ordered by ≤. If not stated
differently, we assume a dense time domain, where T is Q≥0.1 For the discrete time
domain, we assume T = N.

A (time) interval is a non-empty set I ⊆ T such that if τ < κ < τ ′ then κ ∈ I,
for all τ, τ ′ ∈ I and κ ∈ T. We denote the set of all time intervals by I. An interval
is either left-open or left-closed and similarly either right-open or right-closed. We
denote the left margin and the right margin of an interval I ∈ I by `(I) and r(I),
respectively. For instance, the interval I = {τ ∈ T | 3 ≤ τ}, which we also write as
[3,∞), is left-closed and right-open with margins `(I) = 3 and r(I) =∞.

For an interval I ∈ I, we define the extension I≥ := I ∪ (`(I),∞) to the right and
its strict counterpart I> := I≥ \ I, which excludes I. We define ≤I := [0, r(I)) ∪ I
and <I := (≤I) \ I similarly. Note that <I = T \ (I≥) and I> = T \ ≤I. An interval
I ∈ I is singular if |I| = 1, bounded if r(I) < ∞, and unbounded if r(I) = ∞. The
intervals I, J ∈ I are adjacent if I ∩ J = ∅ and I ∪ J ∈ I. For I, J ∈ I, I ⊕ J is the
set {τ + τ ′ | τ ∈ I and τ ′ ∈ J}.

An interval partition of T is a sequence 〈Ii〉i∈N of time intervals with N = N or
N = {0, . . . , n} for some n ∈ N that fulfills the properties:

(i) Ii−1 and Ii are adjacent and `(Ii−1) ≤ `(Ii), for all i ∈ N \ {0}, and
(ii) for each τ ∈ T, there is an i ∈ N such that τ ∈ Ii.

The interval partition 〈Jj〉j∈M refines the interval partition 〈Ii〉i∈N if for every
j ∈ M , there is some i ∈ N such that Jj ⊆ Ii. We often write Ī for a sequence of
intervals instead of 〈Ii〉i∈N . Moreover, we abuse notation by writing I ∈ 〈Ii〉i∈N if
I = Ii, for some i ∈ N .

A time sequence 〈τi〉i∈N is a sequence of elements τi ∈ T that is strictly increasing
(i.e., τi < τj , for all i, j ∈ N with i < j) and progressing (i.e., for all τ ∈ T, there is
i ∈ N with τi > τ). Similar to interval sequences, τ̄ abbreviates 〈τi〉i∈N.

1 We do not use R≥0 as dense time domain because of representation issues. Namely, each
element in Q≥0 can be finitely represented, which is not the case for R≥0. Choosing Q≥0 instead
of R≥0 is without loss of generality for the satisfiability of properties specified in real-time
logics like metric interval temporal logic [1].
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Fig. 2.1 Example of a signal.

2.2 Boolean Signals

A (Boolean) signal γ is a subset of T that fulfills the following finite-variability

condition: for every bounded interval I ∈ I, there are intervals I0, . . . , In−1 ∈ I such
that γ ∩ I = I0 ∪ · · · ∪ In−1, for some n ∈ N. The least such n ∈ N is the size of the
signal γ on I. We denote it by ||γ ∩ I||.

We use the term “signal” for such a set γ because its characteristic function
χγ : T → {0, 1} represents, for example, the values over time of an input or an
output of a sequential circuit. Intuitively, τ ∈ γ iff the circuit’s signal is high at
the time τ ∈ T. The finite-variability condition imposed on γ prevents switching
infinitely often from high to low in finite time. Note that ||γ ∩ I|| formalizes how
often the signal γ is high on the bounded interval I, in particular, ||γ ∩ I|| = 0 iff
γ ∩ I = ∅.

A signal γ is stable on an interval I ∈ I if I ⊆ γ or I ∩ γ = ∅. A signal γ is stable
on an interval partition if it is stable on each interval of the partition. The induced

interval partition ııp(γ) of a signal γ is the interval partition Ī such that γ is stable
on each of the intervals in Ī and, for any other interval partition J̄ over which γ is
stable, J̄ refines Ī. We write ııp1(γ) for the sequence of intervals I in ııp(γ) such
that I ∩ γ 6= ∅. Similarly, we write ııp0(γ) for the sequence of intervals I in ııp(γ)
such that I ∩ γ = ∅. We assume that the intervals in these sequences are ordered by
their margins. Intuitively, ııp1(γ) and ııp0(γ) are the sequences of maximal intervals
on which the signal γ is high and low, respectively. Note that ||γ ∩ I|| = |ııp1(γ ∩ I)|,
for any bounded interval I.

Example 2.1 Figure 2.1 depicts the signal γ = [0.5, 2.5)∪{3.0}∪(3.5, 4.0)∪(4.5, 5.0]∪
{5.5}. The interval margins are marked with dots and circles. A dot signifies that the
element belongs to the interval and a circle excludes the element from the interval.
Note that an isolated dot denotes an interval consisting of a single element. The
size of the signal on I = [0, 5.5] is ||γ ∩ I|| = 5, and on I ′ = [0, 5.5), ||γ ∩ I ′|| = 4. The
sequence ııp1(γ) consists of the five intervals [0.5, 2.5), {3.0}, (3.5, 4.0), (4.5, 5.0], and
{5.5} and ııp0(γ) consists of the six intervals [0, 0.5), [2.5, 3.0), (3.0, 3.5], [4.0, 4.5],
(5.0, 5.5), and (5.5,∞).

2.3 Metric Temporal Logics

We restrict our attention to a syntacticaly defined safety fragment of metric
temporal logic (MTL) in a point-based and an interval-based setting, namely,
the past-only fragment. See [18] and [2] for the syntax and semantics of metric
temporal logics that also include temporal future operators. Furthermore, note
that temporal future operators like �I , where the interval I is bounded, can be
handled during monitoring by using queues that postpone the evaluation until



Algorithms for Monitoring Real-time Properties 5

enough time has elapsed. See [5, 6], for such a monitoring algorithm that handles
the arbitrary nesting of temporal past and bounded future operators.

Let P be a non-empty set of propositions. The syntax of the past-only fragment
of metric temporal logic is given by the grammar

φ ::= p | ¬φ | φ ∧ φ | φ SI φ ,

where p ∈ P and I ∈ I. Note that S is the temporal past operator “since” of linear
temporal logic (LTL) [21] extended with an interval for the metric setting.

We use standard syntactic sugar. For instance, φ ∨ ψ stands for the formula
¬(¬φ ∧ ¬ψ), φ→ ψ stands for ¬φ ∨ ψ, �I ψ (“once”) stands for (p ∨ ¬p) SI ψ, for
some p ∈ P , and φTI ψ (“trigger”) stands for ¬(¬φSI ¬ψ). Moreover, we often omit
the interval I = [0,∞) attached to a temporal operator. To reduce the number of
parentheses, we employ standard conventions about operators’ binding strength.
For instance, ¬ binds stronger than ∧ and the Boolean operators bind stronger
than temporal ones.

We define next two satisfaction relations, the interval-based satisfaction relation
|= and the point-based satisfaction relation

•|=, where γ̂ = (γp)p∈P is a family of
signals, τ̄ a time sequence, τ ∈ T, and i ∈ N.

γ̂, τ |= p iff τ ∈ γp
γ̂, τ |= ¬φ iff γ̂, τ 6|= φ

γ̂, τ |= φ ∧ ψ iff γ̂, τ |= φ and γ̂, τ |= ψ

γ̂, τ |= φ SI ψ iff there is τ ′ ∈ [0, τ ] with τ − τ ′ ∈ I such that
γ̂, τ ′ |= ψ and γ̂, κ |= φ, for all κ ∈ (τ ′, τ ]

and

γ̂, τ̄ , i
•|= p iff τi ∈ γp

γ̂, τ̄ , i
•|= ¬φ iff γ̂, τ̄ , i 6 •|= φ

γ̂, τ̄ , i
•|= φ ∧ ψ iff γ̂, τ̄ , i

•|= φ and γ̂, τ̄ , i
•|= ψ

γ̂, τ̄ , i
•|= φ SI ψ iff there is i′ ∈ [0, i] ∩N with τi − τi′ ∈ I such that

γ̂, τ̄ , i′
•|= ψ and γ̂, τ̄ , k

•|= φ, for all k ∈ (i′, i] ∩N

Note that |= defines the truth value of a formula for every τ ∈ T. In contrast, a
formula’s truth value with respect to

•|= is defined at the “sample points” i ∈ N
to which the “timestamps” τi ∈ T from the time sequence τ̄ are attached. For
instance, under the interval-based semantics, the formula φ SI ψ holds at time τ
for a family of signals γ̂ if and only if there is a previous time τ ′ with τ − τ ′ ∈ I
such that ψ holds at τ ′ and φ holds throughout the interval (τ ′, τ ]. In contrast,
under the point-based semantics, φ SI ψ holds at the sample point i for a family
of signals γ̂ and a sequence of sample points with timestamps given by the time
sequence τ̄ if and only if there is a previous sample point i′ with τi − τi′ ∈ I such
that ψ holds at i′ and φ holds at each sample point k, where i′ < k ≤ i.

We denote the set of subformulas of a formula φ by sf(φ). We say that a
formula is a temporal formula if it is of the form α SI β. Note that p ∧ � q is not
considered a temporal formula. Furthermore, we define tsf(φ) as the set of the
temporal subformulas of φ and dsf(φ) as the set of the direct subformulas of φ, i.e.,

tsf(φ) := {ψ ∈ sf(φ) | ψ is of the form ψ1 SI ψ2}
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Fig. 3.1 Event and state signals.

and

dsf(φ) :=


∅ if φ ∈ P ,

{φ′} if φ is of the form ¬φ′,
{φ1, φ2} if φ is of the form φ1 ∧ φ2 or φ1 SI φ2.

Finally, the size of the formula φ, denoted by |φ|, is the number of nodes in φ’s
parse tree.

3 Point-based versus Interval-based Time Models

We first point out several shortcomings of a point-based time model in Section 3.1.
In Section 3.2, we then present a class of formulas for which the point-based and
the interval-based time models coincide.

3.1 State Variables and System Events

Atomic proposition p ∈ P can model both state variables and system events. These
are different kinds of entities, and both may be involved when formalizing properties
of system behaviors. One distinguishing feature is that events happen at single
points in time whereas the value of a state variable remains constant for some
amount of time. In the following, we distinguish between these two entities.

Let P be the disjoint union of the proposition sets S and E. We call propositions
in S state propositions and propositions in E event propositions. Semantically, a signal
γ ⊆ T is an event signal if γ ∩ I is finite, for every bounded interval I, and a signal
γ ⊆ T is a state signal if for every bounded left-open and right-open interval I,
the sets γ ∩ I and (T \ γ) ∩ I are finite unions of non-singular intervals. A family
of signals γ̂ = (γp)p∈S∪E is consistent with S and E if γp is a state signal, for all
p ∈ S, and γp is an event signal, for all p ∈ E. Figure 3.1 depicts consistent signals
for the event and state propositions e and s, respectively. Note that the signal in
Figure 2.1 is neither an event signal nor a state signal.

The point-based semantics is often motivated by the study of real-time systems
whose behavior is determined by system events. Intuitively, a time sequence τ̄

records the points in time when events occur and the signal γp for a proposition
p ∈ E consists of the points in time when the event p occurs. The following examples,
however, demonstrate that the point-based semantics can be less intuitive than the
interval-based semantics.

Example 3.1 A state proposition p ∈ S can often be mimicked by the formula ¬f S s

with corresponding event propositions s, f ∈ E representing “start” and “finish.”
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For the state signal γp, let γs and γf be the event signals where γs and γf consist
of the points in time of γp when the Boolean state variable starts and respectively
stops holding. Then (γs, γf ), τ |= ¬f S s iff γp, τ |= p, for any τ ∈ T, under the
assumption that I ∩ γp is the finite union of left-closed and right-open intervals, for
every bounded left-closed and right-open interval I.

However, replacing p by ¬f S s does not always capture the essence of a Boolean
state variable when using the point-based semantics. Consider the formula �[0,1] p

containing the state proposition p and let γp = [0, 5) be a state signal. Moreover,
let (γs, γf ) be the family of corresponding event signals for the event propositions
s and f , i.e., γs = {0} and γf = {5}. For a time sequence τ̄ with τ0 = 0 and τ1 = 5,
we have that (γs, γf ), τ̄ , 1 6 •|= �[0,1](¬f S s) but γp, τ1 |= �[0,1] p. Note that τ̄ only
contains timestamps when an event occurs. An additional sample point between τ0
and τ1 with, e.g., the timestamp 4 would result in identical truth values at time 5.

Even when restricted to events, the point-based semantics can be unintuitive.

Example 3.2 Consider the (event) signals γp = {τ ∈ T | τ = 2n, for some n ∈ N}
and γq = ∅ for the (event) propositions p and q. One might expect that these
signals satisfy the formula p→ �[0,1] ¬q at every point in time. However, for a time
sequence τ̄ with τ0 = 0 and τ1 = 2, γ̂, τ̄ , 1 6 •|= p → �[0,1] ¬q. The reason is that in
the point-based semantics, the temporal operator �I requires the existence of a
previous point in time that also occurs in the time sequence τ̄ .

As another example consider the formula �[0,1] �[0,1] p. One might expect that
it is logically equivalent to �[0,2] p. However, this is not the case in the point-based
semantics. To see this, consider a time sequence τ̄ with τ0 = 0 and τ1 = 2. Then
γ̂, τ̄ , 1 6 •|= �[0,1] �[0,1] p and γ̂, τ̄ , 1

•|= �[0,2] p if τ0 ∈ γp.

Remark 3.1 These examples suggest that adding additional sample points restores
a formula’s intended meaning, which usually stems from having the interval-based
semantics in mind. However, a drawback of this approach for monitoring is that
each additional sample point increases the workload of a point-based monitoring
algorithm, since it is invoked for each sample point. Moreover, in the dense time
domain, adding sample points does not always make the two semantics coincide. For
instance, for γp = [0, 1) and τ ≥ 1, we have that γp, τ 6|= ¬p S p and γp, τ̄ , i

•|= ¬p S p,
for every time sequence τ̄ with τ0 < 1 and every i ∈ N.

3.2 Event-relativized Formulas

In the following, we identify a class of formulas for which the point-based and
the interval-based semantics coincide. For formulas in this class, a point-based
monitoring algorithm can be used to soundly monitor properties given by formulas
interpreted using the interval-based semantics. We assume that the propositions
are typed, i.e., P = S ∪E, where S contains the state propositions and E the event
propositions, and a family of signals γ̂ = (γp)p∈S∪E is consistent with S and E.
Moreover, we assume without loss of generality that there is always at least one
event signal γ in γ̂ that is the infinite union of singular intervals, e.g., γ is the
signal of a clock event that regularly occurs over time.

We inductively define the sets rel∀ and rel∃ for formulas in negation normal
form. Recall that a formula is in negation normal form if negation only occurs
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directly in front of propositions. A logically-equivalent negation normal form of a
formula can always be obtained by eliminating double negations and by pushing
negations inwards, where we consider the Boolean connective ∨ and the temporal
operator TI as primitives.

¬p ∈ rel∀ if p ∈ E
φ1 ∧ φ2 ∈ rel∀ if φ1 ∈ rel∀ and φ2 ∈ rel∀

φ1 ∨ φ2 ∈ rel∀ if φ1 ∈ rel∀ or φ2 ∈ rel∀

p ∈ rel∃ if p ∈ E
φ1 ∧ φ2 ∈ rel∃ if φ1 ∈ rel∃ or φ2 ∈ rel∃

φ1 ∨ φ2 ∈ rel∃ if φ1 ∈ rel∃ and φ2 ∈ rel∃

Definition 3.1 A formula φ is event-relativized if α ∈ rel∀ and β ∈ rel∃, for every
subformula of φ of the form α SI β or β TI α. Furthermore, formula φ strongly

event-relativized if φ is event-relativized and φ ∈ rel∀ ∪ rel∃.

Intuitively, a formula φ is event-relativized if the direct subformulas of the
temporal formulas of φ are relativized (or guarded) by event propositions. The
event-relativized fragment is analogous to the guarded fragment of first-order logic,
where quantified variables must be guarded by atomic formulas. Indeed, a formula
of the form φ SI ψ hides an existential quantification behind ψ and a universal
quantification behind φ, which explains the notation behind the rel∀ and rel∃ sets.
Also note that a formula of the form (p→ φ) SI (q ∧ ψ), where p and q are event
propositions, is event-relativized. In contrast, the formulas in Examples 3.1 and 3.2
are not event-relativized.

The following theorem relates the interval-based semantics and the point-based
semantics for event-relativized formulas.

Theorem 3.1 Let γ̂ = (γp)p∈S∪E be a family of consistent signals and τ̄ the time

sequence listing the occurrences of events in γ̂, i.e., τ̄ is the time sequence obtained by

linearly ordering the set
⋃
p∈E γp. For an event-relativized formula φ and every i ∈ N,

it holds that

γ̂, τi |= φ iff γ̂, τ̄ , i
•|= φ .

Furthermore, if φ is strongly event-relativized, then it also holds that (a) γ̂, τ 6|= φ if

φ ∈ rel∃ and (b) γ̂, τ |= φ if φ ∈ rel∀, for all τ ∈ T \ {τi | i ∈ N}.

Proof The proof is by induction on the structure of the formula φ in negation
normal form. Let T be the set T \ {τi | i ∈ N}.
Base case: φ = p with p ∈ P . If p is a state proposition then there is nothing to
prove. Assume that p is an event proposition. By definition, p is strongly event-
relativized, in particular, p ∈ rel∃. In the interval-based semantics for τ ∈ T, it
holds that γ̂, τ |= p iff τ ∈ γp. Since p is an event proposition, τ = τi, for some i ∈ N.
It follows that γ̂, τi |= p iff γp, τ̄ , i

•|= p. Note that γ̂, τ 6|= p when τ ∈ T .

Base case: φ = ¬p with p ∈ P . If p is a state proposition then there is nothing to
prove. Assume that p is an event proposition. By definition, ¬p is strongly event-
relativized, in particular, ¬p ∈ rel∀. In the interval-based semantics for τ ∈ T, it
holds that γ̂, τ |= ¬p iff τ 6∈ γp. Since p is an event proposition, if τ = τi then τi 6∈ γp,
for all i ∈ N. It follows that γ̂, τi |= ¬p iff γp, τ̄ , i

•|= ¬p. Note that γ̂, τ 6|= ¬p when
τ ∈ T .
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Step case: φ = φ1 ∧ φ2. We have the following equivalences: γ̂, τi |= φ1 ∧ φ2 iff
(by the interval-based semantics) γ̂, τi |= φ1 and γ̂, τi |= φ2 iff (by the induction
hypothesis) γ̂, τ̄ , i

•|= φ1 and γ̂, τ̄ , i
•|= φ2 iff (by the point-based semantics) γ̂, τ̄ , i

•|=
φ1 ∧ φ2.

If φ ∈ rel∃ then by definition, φ1 ∈ rel∃ or φ2 ∈ rel∃. Without loss of generality,
assume φ1 ∈ rel∃. By the induction hypothesis, γ̂, τ 6|= φ1, for all τ ∈ T . It follows
that γ̂, τ 6|= φ, for all τ ∈ T .

If φ ∈ rel∀ then by definition, φ1 ∈ rel∀ and φ2 ∈ rel∀. By the induction
hypothesis, γ̂, τ |= φ1, for all τ ∈ T and γ̂, τ |= φ2, for all τ ∈ T . It follows that
γ̂, τ |= φ, for all τ ∈ T .

Step case: φ = φ1 ∨ φ2. This case is dual to the previous case. We therefore omit it.

Step case: φ = φ1 SI φ2. Since φ is not strongly event-relativized, we need only
show that γ̂, τi |= φ iff γ̂, τ̄ , i

•|= φ. We have the equivalence

γ̂, τi |= φ1 SI φ2 iff there is some τ ∈ [0, τi) with τi − τ ∈ I,
γ̂, τ |= φ2, and γ̂, κ |= φ1, for all κ ∈ (τ, τi].

Since φ2 ∈ rel∃, there is some j ∈ N with τj = τ . From the induction hypothesis
and the fact that φ1 ∈ rel∀, we conclude that

γ̂, τi |= φ1 SI φ2 iff there is some j ≤ i with τi − τj ∈ I,
γ̂, τ̄ , j

•|= φ2, and γ̂, τ̄ , k
•|= φ1, for all k ∈ {j + 1, . . . , i}.

In the point-based semantics, the right-hand side is by definition equivalent to
γ̂, τ̄ , i

•|= φ1 SI φ2.

Step case: φ = φ1 TI φ2. This case is dual to the previous case. We therefore omit it.
ut

The definition of event-relativized formulas and Theorem 3.1 straightforwardly
extend to richer real-time logics that also contain temporal future operators and are
first-order. We point out that most formulas that we encountered when formalizing
security policies in such a richer temporal logic are strongly event-relativized [4, 6].
We also remark that the fragment of event-relativized formulas is not the maximal
one for which the two semantics coincide. For instance, the two semantics of the
formula p ∨ ¬p coincide, however the formula is not event-relativized.

From Theorem 3.1, it follows that the interval-based semantics can simulate
the point-based one by using a fresh event proposition sp with its signal γsp =
{τi | i ∈ N}, for a time sequence τ̄ . We then event-relativize a formula φ with
the proposition sp, i.e., subformulas of the form ψ1 SI ψ2 are replaced by (sp →
ψ1) SI (sp ∧ ψ2) and ψ1 TI ψ2 by (sp ∧ ψ1) TI (sp → ψ2).

4 Point-based Monitoring

In this section, we present and analyze our monitoring algorithm for the point-based
setting. It iteratively computes the truth values of a formula φ at the sample points
i ∈ N for a given time sequence τ̄ and a family of signals γ̂ = (γp)p∈P . We assume
that τ̄ and γ̂ are given incrementally, i.e., in the (i+ 1)st iteration, the monitor
obtains the timestamp τi and the signal values at τi. Concretely, the monitor
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step•(φ, Γ, τ)
case φ = p

return p ∈ Γ
case φ = ¬φ′

return not step•(φ′, Γ, τ)
case φ = φ1 ∧ φ2

return step•(φ1, Γ, τ) and step•(φ2, Γ, τ)
case φ = φ1 SI φ2

update•(φ, Γ, τ)
if Lφ = 〈〉 then

return false
else

return τ − head(Lφ) ∈ I

init•(φ)
for each ψ ∈ sf(φ) with ψ = ψ1 SI ψ2 do
Lψ := 〈〉

update•(φ, Γ, τ)
let φ1 SI φ2 = φ

b1 = step•(φ1, Γ, τ)
b2 = step•(φ2, Γ, τ)
L = if b1 then drop•(Lφ, I, τ) else 〈〉

in
if b2 then
Lφ := L++ 〈τ〉

else
Lφ := L

Fig. 4.1 Monitoring in a point-based setting.

receives the snapshots Γi := {p ∈ P | τi ∈ γp}, for i ∈ N, i.e., Γi is the set of
propositions that hold at time τi. Note that in the point-based setting we need not
consider the value of signals at times between two successive sample points.

We present our monitoring algorithm in pseudo code, written in a functional-
programming style using pattern matching. We write 〈〉 to denote the empty
sequence, ++ for sequence concatenation, and x :: L for the sequence with head x

and tail L. To simplify matters, we assume throughout this section, without loss
of generality, that the temporal subformulas of a formula φ occur only once in φ.
Moreover, we let P be the set of propositions that occur in φ.

Each iteration of the monitor is performed by executing the procedure step•.
At sample point i ∈ N, step• takes as arguments the formula φ, the snapshot Γi,
and i’s timestamp τi. It computes the truth value of φ at i recursively over φ’s
structure. For efficiency, step• maintains for each subformula ψ of the form ψ1 SI ψ2

a sequence Lψ of timestamps. These sequences are initialized by the procedure
init• and updated by the procedure update•. These three procedures are given in
Figure 4.1 and are described next.

The base case of step•, where φ is a proposition, and the cases for the Boolean
connectives ¬ and ∧ are straightforward. The only involved case is where φ is of
the form φ1 SI φ2. Here, step• first updates the sequence Lφ and then computes
φ’s truth value at the sample point i ∈ N.

Before we describe how we update the sequence Lφ, we describe the elements
that are stored in Lφ and how we obtain from them φ’s truth value. After the

update of Lφ by update•, the sequence Lφ stores the timestamps τj with τi−τj ∈ ≤I
(i.e., the timestamps that satisfy the time constraint now, at sample point i, or that
may satisfy it in the future, at some sample point i′ > i) at which φ2 holds and
from which φ1 continuously holds up to the current sample point i (i.e., φ2 holds
at j ≤ i and φ1 holds at each k ∈ {j + 1, . . . , i}). Moreover, if there are timestamps
τj and τj′ with j < j′ in Lφ with τi − τj ∈ I and τi − τj′ ∈ I then we only keep
in Lφ the timestamp of the later sample point, i.e., τj′ . Finally, the timestamps
in Lφ are stored in ascending order. Having Lφ at hand, it is easy to determine φ’s
truth value. If Lφ is the empty sequence, then obviously φ does not hold at sample
point i. If Lφ is non-empty, then φ holds at i iff the first timestamp κ in Lφ fulfills
the timing constraints given by the interval I, i.e., τi − κ ∈ I. Recall that φ holds
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drop•(L, I, τ)
case L = 〈〉

return 〈〉
case L = κ :: L′

if τ − κ 6∈ ≤I then

return drop•(L′, I, τ)
else

return drop′•(κ, L′, I, τ)

drop′•(κ, L′, I, τ)

case L′ = 〈〉
return 〈κ〉

case L′ = κ′ :: L′′

if τ − κ′ ∈ I then

return drop′•(κ′, L′′, I, τ)
else

return κ :: L′

Fig. 4.2 Auxiliary procedures.

at i iff there is a sample point j ≤ i with τi − τj ∈ I at which φ2 holds and since
then φ1 continuously holds.

Initially, Lφ is the empty sequence. If φ2 holds at sample point i, then update•

adds the timestamp τi to Lφ. However, prior to this, it removes the timestamps of
the sample points from which φ1 does not continuously hold. Clearly, if φ1 does not
hold at i then we can empty the sequence Lφ. Otherwise, if φ1 holds at i, we first
drop the timestamps for which the distance to the current timestamp τi becomes
too large with respect to the right margin of I. Afterwards, we drop timestamps
until we find the last timestamp τj with τi − τj ∈ I. This is done by the procedures
drop• and drop′

•
shown in Figure 4.2.

The following theorem states the algorithm’s correctness.

Theorem 4.1 Let φ be a formula, γ̂ = (γp)p∈P be a family of signals, τ̄ be a time

sequence, and n > 0. The procedure step•(φ, Γn−1, τn−1) terminates and returns true

iff γ̂, τ̄ , n − 1
•|= φ, whenever init•(φ), step•(φ, Γ0, τ0), . . . , step•(φ, Γn−2, τn−2) were

called previously in this order, where Γi = {p ∈ P | τi ∈ γp}, for i < n.

Proof The recursive procedures step•, drop•, and drop′
•

terminate as they are called
on formulas and respectively sequences of sizes that are strictly smaller with each
call.

The second statement of the theorem follows by induction on the well-ordered
set of tuples (i, ψ) with 0 ≤ i < n and ψ a subformula of φ, ordered lexicographically
and using the formula size when comparing the formula components. The proved
statement is the theorem’s statement strengthened with the invariant on the
sequences Lψ stated in the explanation of the step• procedure. The bases cases are
trivial, while the step case distinguishes cases based on the form of ψ. The cases
where ψ’s main connective is non-temporal are straightforward, while the proof for
the case when ψ is of the form ψ1 SI ψ2 follows the same reasoning steps as in the
explanation previously given. ut

Example 4.1 We illustrate the algorithm on the formula ψ = p SI q, with I = [1, 4],
and on the snapshots of the signals γp and γq at the timestamps τi, for 0 ≤ i < 8,
where both the signals and the snapshots are given in Figure 4.3. The dashed
vertical lines highlight the sample points. The figure also depicts the signal γψ. For
its computation, we refer the reader to Section 5 and, in particular, to Example 5.1.

Table 4.1 gives the contents of the sequence Lψ at the end of the execution
of the step• procedure together with the return value of this procedure at the
(i+ 1)st iteration, for 0 ≤ i < 8. After the return value, we also give in parentheses
the reason for this decision, namely whether Lψ = 〈〉 or alternatively whether
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0 2 4 6 8 10 12 14 16 18 time

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7

p 1
0

q 1
0

p SI q
1
0

Fig. 4.3 The signal γpSIq given the signals γp and γq .

i τi Lψ step•(ψ, Γi, τi)

0 0 〈〉 false (Lψ = 〈〉)
1 2 〈2〉 false (2− 2 /∈ [1, 4])
2 4 〈2〉 true (4− 2 ∈ [1, 4])
3 6 〈6〉 false (6− 6 /∈ [1, 4])
4 10 〈6, 10〉 true (10− 6 ∈ [1, 4])
5 14 〈10〉 true (14− 10 ∈ [1, 4])
6 16 〈〉 false (Lψ = 〈〉)
7 18 〈〉 false (Lψ = 〈〉)

Table 4.1 The sequence Lψ and the return value of the step• procedure at the first 8 iterations.

τi − head(Lψ) ∈ I. Note that at sample point 6 with timestamp τ6 = 16, the
point-based and interval-based semantics do not coincide. Indeed, the point-based
algorithm returns false at this sample point because there is no sample point in the
interval [16− 4, 16− 1] where q were satisfied, while the signal γψ is high at the
corresponding timestamp, because γq is high at time 12 and γp is always high in
the interval (12, 16].

We conclude this subsection by analyzing the monitor’s computational com-
plexity. Observe that we cannot bound the space that is needed to represent the
timestamps in the time sequence τ̄ . They become arbitrarily large as time pro-
gresses. Moreover, since the time domain is dense, they can be arbitrarily close to
each other. As a consequence, operations like the subtraction of elements from T
cannot be done in constant time. We return to this point in Section 6.2.

In the following, we assume that each τ ∈ T is represented by two bit strings,
for the numerator and the denominator. The representation of an interval I consists
of the representations of `(I) and r(I) and whether the left margin and right
margin is closed or open. We denote the maximum length of these bit strings
by ||τ || and ||I||, respectively. The operations on elements in T that the monitoring
algorithm performs are subtractions and membership tests. Subtraction τ − τ ′ can
be carried out in time O(m2), where m = max{||τ ||, ||τ ′||}.2 A membership test τ ∈ I
can also be carried out in time O(m2), where m = max{||τ ||, ||I||}.

2 Note that p
q
− p′

q′ = p·q′−p′·q
q·q′ and that O(m2) is an upper bound on the multiplication

of two m bit integers. There are more sophisticated algorithms for multiplication that run
in O(m logm log logm) time [32] and O(m logm2log

∗m) time [13], where log∗m denotes the
iterated logarithm of m. For simplicity, we use the quadratic upper bound.
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The following theorem establishes an upper bound on the time complexity of
our monitoring algorithm.

Theorem 4.2 Let φ, γ̂, τ̄ , n, and Γ0, . . . , Γn−1 be as in Theorem 4.1. Executing the

sequence init•(φ), step•(φ, Γ0, τ0), . . . , step•(φ, Γn−1, τn−1) requires O
(
m2 · n · |φ|

)
time, where m = max

(
{||I|| | α SI β ∈ sf(φ)} ∪ {||τ0||, . . . , ||τn−1||}

)
.

Proof We first analyze the running time of a single iteration. We claim that the
running time of step•(φ, Γn−1, τn−1) is in O

(
|φ|+m2 ·

∑
ψ∈tsf(φ) T

n
ψ

)
, where T 1

ψ := 1
and

TnαSIβ := 1 +
∣∣{τj | τn−2 − `(I) ≤ τj ≤ τn−1 − `(I), for some j < n}

∣∣ ,
for n > 1.

Since we traverse φ’s syntax tree recursively, the running time of one iteration
is the sum of all tψ, for all occurrences of subformulas ψ of φ, where tψ denotes
the running time for ψ without the running times for its proper subformulas.

We have that tψ ∈ O(1) for the cases where ψ is of the form p, ¬ψ′, or ψ1 ∧ ψ2.
Note that we can assume, without loss of generality, that the membership test
p ∈ Γ for the base case in the procedure step• can be done in constant time. The
reason is that, in the nth iteration, from the set Γn (which is given for instance
as a list) we can first build a hash table that allows us to check in constant time
whether the proposition p is an element of Γn. Building (and discarding) such a
hash table takes O(|P |) time. Since |P | ≤ |φ|, this time factor is subsumed by the
claimed complexity O(|φ|+m2∑

ψ∈tsf(φ) T
n
ψ ).

We next analyze the running time for the case where ψ is of the form ψ1 SI ψ2.
We first make the following observations about the sequence Lψ and the elements
it contains in the nth iteration.

(1) For each element τ in Lψ, ||τ || ≤ m, since τ is a timestamp that occurs in the
prefix of length n of the time sequence τ̄ .

(2) Removing the head and appending an element to Lψ can be done in O(m); we
assume that Lψ is implemented as a doubly linked list with pointers to the
first and to the last element.

(3) The disequality test last(L) 6= τ and the membership tests whether the distance
τ − κ is in I or ≤I can be performed in time O(m2), since the timestamps τ
and κ occur in the prefix of the time sequence τ̄ , and thus, by assumption,
||I|| ≤ m, ||τ || ≤ m, and ||κ|| ≤ m.

It follows from these observations that tψ ∈ O(m2 · T ), where T is number
of elements from the sequence Lψ that are visited by the procedures drop• and

drop′
•
. Note that Lψ is empty in the first iteration. Suppose that n > 1. The

procedure drop• first traverses the sequence Lψ up to the first element τk such
that τn−1 − τk 6∈ I. Hence all elements τj in Lψ up to and excluding τk satisfy
τj ≤ τn−1 − `(I). Moreover, with the possible exception of the first element of Lψ,
all elements τj in Lψ satisfy τj ≥ τn−2 − `(I). Hence T ≤ 1 + Tnψ since at most two
elements (the first one and the last one visited in Lψ) may be outside the interval
[τn−2 − `(I), τn−1 − `(I)].

We conclude that step•(φ, Γn−1, τn−1) has the claimed running time O
(
|φ| +

m2 ·
∑
ψ∈tsf(φ) T

n
ψ

)
.
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Finally we prove the upper bound on the running time of all n iterations,
i.e., for the sequence init•(φ), step•(φ, Γ0, τ0), . . . , step•(φ, Γn−1, τn−1). Note that
the sets {τj | τi−1 − `(I) ≤ τj ≤ τi − `(I), for some j ≤ i} and {τj | τi − `(I) ≤
τj ≤ τi+1 − `(I), for some j ≤ i+ 1} have at most one element in common. Thus,∑

1<i≤n T
i
ψ ≤ n+ (n+ |{τj | j < n}|). Since |{τj | j < n}| ≤ n, this sum of the T iψs

is in O(n). Then, by summing up the running times of all iterations, we obtain
that the total running time is in O

(
n · |φ|+m2 · n · |tsf(ψ)|

)
, from which the stated

upper bound follows. ut

We now focus on our algorithm’s space complexity. As previously observed, we
cannot bound the space needed to represent the timestamps in the time sequence τ̄ .
Moreover, we cannot in general bound the size of the lists Lψ. Indeed, consider the
time sequence τ̄ with τn = 1 + 1

2 + · · ·+ 1
n+1 , for n ≥ 0. This sequence diverges.

Consider also the formula φ = �[0,1] p and the signal γp with γp(τn) = 1 for any
n ≥ 0. Then the number of elements in Lφ increases at each iteration and is not
bounded.

However, in practice, it is reasonable to assume a bound on the number of
sample points per unit of time. Formally, given a k ∈ N with k ≥ 1, we say that
a time sequence τ̄ is k-bounded if |{i ∈ N | τi ∈ [τ, τ + 1)}| ≤ k, for any τ ∈ T. The
following theorem establishes the space complexity of our monitoring algorithm
under the assumption that the input time sequence is k-bounded. We note in
particular that the space usage is independent from the number n of snapshots.

Theorem 4.3 Let φ, γ̂, τ̄ , n, and Γ0, . . . , Γn−1 be as in Theorem 4.1, and such

that τ̄ is k-bounded, for some k ∈ N with k ≥ 1. Executing the sequence init•(φ),

step•(φ, Γ0, τ0), . . . , step•(φ, Γn−1, τn−1) requires O
(
m · k · `φ · |φ|

)
space, where `φ =

max{`(I) | α SI β ∈ sf(φ)} and m = max
(
{||I|| | α SI β ∈ sf(φ)} ∪ {||τ0||, . . . , ||τn−1||}

)
.

Proof We first note that the space used by the algorithm is dominated by the space
required to store the sequences Lψ, with ψ ∈ tsf(φ). That is, when ignoring this
storage space, the algorithm uses O(m · |φ|) space. The space used to store these
sequences is O(m ·

∑
ψ∈tsf(φ) |Lψ|). (Recall that the elements of these sequences are

among the timestamps τ0, . . . , τn−1.) Next, we note that the length of a sequence Lψ
after iteration j ≥ 0 is upper bounded by 1 + |{τj′ | τj − `(I) ≤ τj′ ≤ τj , j′ ≥ 0}|. As
τ̄ is k-bounded, it follows that the length is upper bounded by 1+k · `(I). Summing
up these upper bounds for each ψ ∈ tsf(φ), we obtain the stated complexity. ut

5 Interval-based Monitoring

In this section, we present and analyze our monitoring algorithm for the interval-
based setting. Let P be the set of propositions that occur in the given formula φ.
The algorithm determines for a given family of signals γ̂ = (γp)p∈P , the truth value
of φ, for any τ ∈ T. In other words, it determines the set γφ,γ̂ := {τ ∈ T | γ̂, τ |= φ}.
We simply write γφ instead of γφ,γ̂ when the family of signals γ̂ is clear from the
context. Similar to the point-based setting, the monitor incrementally receives the
input γ̂ and incrementally outputs γφ. That is, the input and output signals are
split into “chunks” by an infinite interval partition J̄ . Concretely, the input of the
(i+ 1)st iteration consists of the formula φ that is monitored, the interval Ji of J̄ ,
and the family ∆̂i = (∆i,p)p∈P of sequences of intervals ∆i,p = ııp1(γp ∩ Ji), for
propositions p ∈ P . The output of the (i+1)st iteration is the sequence ııp1(γφ∩Ji).
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step(φ, ∆̂, J)
case φ = p

return ∆p
case φ = ¬φ′

let ∆′ = step(φ′, ∆̂, J)
in

return invert(∆′, J)
case φ = φ1 ∧ φ2

let ∆1 = step(φ1, ∆̂, J)

∆2 = step(φ2, ∆̂, J)
in

return intersect(∆1, ∆2)
case φ = φ1 SI φ2

let (∆′1, ∆
′
2) = update(φ, ∆̂, J)

in

return merge(combine(∆′1, ∆
′
2, I, J))

init(φ)
for each ψ ∈ sf(φ) with ψ = ψ1 SI ψ2 do
Kψ := ∅
∆ψ := 〈〉

update(φ, ∆̂, J)
let φ1 SI φ2 = φ

∆1 = step(φ1, ∆̂, J)

∆2 = step(φ2, ∆̂, J)

∆′1 = prepend(Kφ, ∆1)

∆′2 = concat(∆φ, ∆2)
in

Kφ := if ∆′1 = 〈〉 then ∅ else last(∆′1)

∆φ := drop(∆′2, I, J)

return (∆′1, ∆
′
2)

Fig. 5.1 Monitoring in an interval-based setting

5.1 Algorithm Description

As in Section 4, we assume without loss of generality that the temporal subformulas
of a formula φ occur only once in φ. Observe that the sequence ııp1(γp ∩ Ji) only
consists of a finite number of intervals since the signal γp of the proposition p ∈ P
satisfies the finite-variability condition and Ji is bounded. Moreover, since γp is
stable on every interval in ııp(γp) and an interval has a finite representation, the
sequence ııp1(γp∩Ji) finitely represents the signal chunk γp∩Ji. Similar observations
are valid for the signal chunk γφ ∩ Ji.

Each iteration is performed by the procedure step. To handle the since operator
efficiently, step maintains for each subformula ψ of the form ψ1 SI ψ2, a (possibly
empty) interval Kψ and a finite sequence of intervals ∆ψ. These global variables
are initialized by the procedure init and updated by the procedure update. These
three procedures are given in Figure 5.1 and are described next.

The procedure step computes the signal chunk γφ∩Ji recursively over the formula
structure. It utilizes the right-hand sides of the equalities from the following lemma.

Lemma 5.1 Let p ∈ P and φ′, φ1, and φ2 be formulas. Furthermore, let γp, γ¬φ′ ,
γφ1∧φ2

, and γφ1SIφ2
be signals of the corresponding formulas. The following equalities

hold.

γp ∩ Ji =
⋃
K∈ııp1(γp∩Ji)K (5.1)

γ¬φ′ ∩ Ji = Ji \
(⋃

K∈ııp1(γφ′∩Ji)
K
)

(5.2)

γφ1∧φ2
∩ Ji =

⋃
K1∈ııp1(γφ1

∩Ji)
K2∈ııp1(γφ2

∩Ji)

(K1 ∩K2) (5.3)

γφ1SIφ2
∩ Ji =

⋃
K1∈ııp1(γφ1

∩≤Ji) with K1∩Ji 6=∅
K2∈ııp1(γφ2

∩≤Ji) with (K2⊕I)∩(J≥i ) 6=∅

((
(K2 ∩ +K1)⊕ I

)
∩K1 ∩ Ji

)
(5.4)

where +K := {`(K)} ∪K, for K ∈ I, i.e., making the interval K left-closed.

Proof The equalities (5.1), (5.2), and (5.3) are obvious. The equality (5.4) for
φ1 SI φ2 is less obvious. To prove its inclusion ⊆, assume τ ∈ γφ1SIφ2

∩ Ji. By the



16 D. Basin, F. Klaedtke, E. Zălinescu

cons(K,∆)
if K = ∅ then

return ∆
else

return K :: ∆

invert(∆, J)
case ∆ = 〈〉

return 〈J〉
case ∆ = K :: ∆′

return cons(J ∩ <K, invert(∆′, J ∩ (K>)))

intersect(∆1, ∆2)
if ∆1 = 〈〉 or ∆2 = 〈〉 then

return 〈〉
else

let K1 :: ∆′1 = ∆1

K2 :: ∆′2 = ∆2

in

if K1 ∩ (K>
2 ) = ∅ then

return cons(K1 ∩K2, intersect(∆′1, ∆2))
else

return cons(K1 ∩K2, intersect(∆1, ∆
′
2))

Fig. 5.2 The auxiliary procedures for the Boolean connectives.

semantics of the since operator, there is a τ2 ∈ γφ2
with τ − τ2 ∈ I and τ1 ∈ γφ1

,
for all τ1 ∈ (τ2, τ ].

– Obviously, τ2 ∈ K2, for some K2 ∈ ııp1(γφ2
∩ ≤Ji). By taking the time con-

straint τ − τ2 ∈ I into account, we get (K2 ⊕ I) ∩ (J≥i ) 6= ∅. Note that even the
more restrictive constraint (K2 ⊕ I) ∩ Ji 6= ∅ holds. However, we employ the
weaker constraint in our implementation as it is useful for later iterations.

– Since ııp(γφ1
) is the coarsest interval partition of γφ1

, there is an interval
K1 ∈ ııp1(γφ1

) with (τ2, τ ] ⊆ K1. As τ ∈ Ji, the constraint K1 ∩ Ji 6= ∅ holds.

It follows that τ ∈ K1 and τ2 ∈ +K1, and thus τ2 ∈ K2 ∩ +K1. From τ − τ2 ∈ I,
we obtain that τ ∈ (K2 ∩ +K1) ⊕ I. Finally, since τ ∈ K1 ∩ Ji, we have that
τ ∈ ((K2 ∩ +K1)⊕ I) ∩K1 ∩ Ji. The other inclusion ⊇ can be shown similarly. ut

The right-hand sides of the equalities (5.1), (5.2), and (5.3) are directly reflected
in our pseudo code. The case where φ is a proposition is straightforward. For the
case φ = ¬φ′, we use the procedure invert, shown in Figure 5.2, to compute
ııp1(γφ ∩ Ji) from ∆′ = ııp1(γφ′ ∩ Ji). This is done by “complementing” ∆′ with
respect to the interval Ji. For instance, the output of invert

(
〈[1, 2] (3, 4)〉, [0, 10)

)
is 〈[0, 1) (2, 3] [4, 10)〉. For the case φ = φ1 ∧ φ2, we use the procedure intersect,
also shown in Figure 5.2, to compute ııp1(γφ ∩ Ji) from ∆1 = ııp1(γφ1

∩ Ji) and
∆2 = ııp1(γφ2

∩ Ji). This procedure returns the sequence of intervals that have a
non-empty intersection of two intervals in the input sequences. The elements in
the returned sequence are stored in ascending order.

The use of the right-hand side of the equality (5.4) for φ = φ1 SI φ2 for an
implementation is less straightforward since the intervals K1 and K2 are not
restricted to occur in the current chunk Ji. Instead, they are intervals in ııp1(γφ1

∩
≤Ji) and ııp1(γφ2

∩ ≤Ji), respectively, satisfying certain constraints.
For computing the signal chunk γφ1SIφ2

∩Ji, the procedure step first determines

the subsequences ∆′1 and ∆′2 of ııp1(γφ1
∩ (≤Ji)) and ııp1(γφ2

∩ (≤Ji)) consisting of
those intervals K1 and K2 appearing in the equality (5.4), respectively.3 This is
done by the procedure update. Afterwards, step computes the sequence ııp1(γφ ∩ Ji)
from ∆′1 and ∆′2 using the procedures combine and merge, given in Figure 5.3. We
now explain how merge(combine(∆′1,∆

′
2, I, J)) returns the sequence ııp1(γφ1SIφ2

∩
Ji). First, combine(∆′1,∆

′
2, I, J) computes a sequence of intervals whose union is

3 In case r(I) =∞, we actually store fewer intervals K2 in ∆′2 then those appearing in the
equality (5.4). Details are provided when explaining the contents of ∆φ.
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prepend(K,∆)
if K = ∅ then

return ∆
else

case ∆ = 〈〉
return 〈K〉

case ∆ = K′ :: ∆′

if adjacent(K,K′) or K ∩K′ 6= ∅ then

return K ∪K′ :: ∆′
else

return K :: ∆

combine(∆′1, ∆
′
2, I, J)

if ∆′1 = 〈〉 or ∆′2 = 〈〉 then
return 〈〉

else

let K2 :: ∆′′2 = ∆′2
in

if (K2 ⊕ I) ∩ J = ∅ then
return 〈〉

else

let K1 :: ∆′′1 = ∆′1
∆ = if K>

2 ∩
+K1 = ∅ then

combine(∆′′1 , ∆
′
2, I, J)

else

combine(∆′1, ∆
′′
2 , I, J)

in

return (K2 ∩ +K1)⊕ I) ∩K1 ∩ J :: ∆

concat(∆1, ∆2)
case ∆1 = 〈〉

return ∆2

case ∆1 = ∆′1 ++ 〈K1〉
return ∆′1 ++ prepend(K1, ∆2)

merge(∆)
case ∆ = 〈〉

return ∆

case ∆ = K :: ∆′

return prepend(K,merge(∆′))

drop(∆′2, I, J)

case ∆′2 = 〈〉
return 〈〉

case ∆′2 = K2 :: ∆′′2
let K = (K2 ⊕ I) ∩ (J>)
in

if K = ∅ then

return drop(∆′′2 , I, J)
else

return drop′(K,∆′2, I, J)

drop′(K,∆′2, I, J)

case ∆′2 = 〈〉
return 〈K〉

case ∆′2 = K2 :: ∆′′2
let K′ = (K2 ⊕ I) ∩ (J>)
in

if K ⊆ K′ then
return drop′(K′, ∆′′2 , I, J)

else

return ∆′2

Fig. 5.3 The auxiliary procedures for the since operator.

γφ1SIφ2
∩ Ji. It traverses the ordered sequences ∆′1 and ∆′2 and adds the interval

((K2 ∩ +K1) ⊕ I) ∩ K1 ∩ Ji to the resulting ordered sequence, for K1 in ∆′1 and
K2 in ∆′2. The test K>

2 ∩
+K1 = ∅ determines in which sequence (∆′1 or ∆′2) we

advance next: if the test succeeds then K′2 ∩ +K1 = ∅ where K′2 is the successor
of K2 in ∆′2, and hence we advance in ∆′1. This is because, if K>

2 ∩
+K1 = ∅ then

for all K′2 following K2 in ∆′2 we have K′2 ∩ +K1 = ∅; in contrast, if K>
2 ∩

+K1 6= ∅
then for all K′1 following K1 in ∆′1 we have K2 ∩ +K′1 = ∅. The sequence ∆′2 is not
necessarily traversed in its entirety: when (K2 ⊕ I) ∩ Ji = ∅, one need not inspect
other elements K′2 of the sequence ∆′2, as then ((K′2 ∩ +K1) ⊕ I) ∩ K1 ∩ Ji = ∅.
The elements in the sequence returned by the combine procedure might be empty,
adjacent, or overlapping. The merge procedure removes empty elements and merges
adjacent or overlapping intervals, i.e., it returns the sequence ııp1(γφ1SIφ2

∩ Ji).
Finally, we explain the contents of the variables Kφ and ∆φ and how they are

updated. We start with Kφ. At the (i+ 1)st iteration, for some i ≥ 0, the following
invariant is satisfied by Kφ: before the update, the interval Kφ is the last interval

of ııp1(γφ1
∩ ≤Ji−1) if i > 0 and this sequence is not empty, and Kφ is the empty

set otherwise. The interval Kφ is prepended to the sequence ııp1(γφ1
∩ Ji) using

the prepend procedure from Figure 5.3, which merges Kφ with the first interval
of ∆1 = ııp1(γφ1

∩ Ji) if these two intervals are adjacent. The obtained sequence
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∆′1 is the maximal subsequence of ııp1(γφ1
∩ ≤Ji) such that K1 ∩ Ji 6= ∅, for each

interval K1 in ∆′1. Thus, after the update, Kφ is the last interval of ııp1(γφ1
∩ ≤Ji) if

this sequence is not empty, and Kφ is the empty set otherwise. Hence the invariant
on Kφ is preserved at the next iteration.

The following invariant is satisfied by ∆φ at the (i+ 1)st iteration: before the
update, the sequence ∆φ is empty if i = 0, and otherwise, if i > 0, it stores the

intervals K2 in ııp1(γφ2
∩ ≤Ji−1) with (K2⊕ I)∩ (J>i−1) 6= ∅ and (K2⊕ I)∩ (J>i−1) 6⊆

(K′2⊕I)∩(J>i−1), where K′2 is the successor of K2 in ııp1(γφ2
∩≤Ji−1). The procedure

concat concatenates the sequence ∆φ with the sequence ∆2 = ııp1(γφ2
∩ Ji). Since

the last interval of ∆φ and the first interval of ∆2 can be adjacent, concat may have

to merge them. Thus, the obtained sequence ∆′2 is a subsequence of ııp1(γφ2
∩ ≤Ji)

such that (K2 ⊕ I) ∩ (J≥i ) 6= ∅, for each element K2. Note that J>i−1 = J≥i . The
updated sequence ∆φ is obtained from ∆′2 by removing the intervals K2 with
(K2 ⊕ I) ∩ (J>i ) = ∅, i.e., the intervals that are irrelevant for later iterations. The
procedure drop from Figure 5.3 removes these intervals. Moreover, if there are
intervals K2 and K′2 in ∆φ with (K2 ⊕ I) ∩ (J>i ) ⊆ (K′2 ⊕ I) ∩ (J>i ), then only
the interval that occurs later is kept in ∆φ. Note that this inclusion only holds
when r(I) =∞. Dropping such intervals K2 allows us to avoid storing in ∆φ all

intervals in ııp1(γφ2
∩ ≤Ji). This optimization is performed by the procedure drop′.

Thus, after the update, the sequence ∆φ stores the intervals K2 in ııp1(γφ2
∩ ≤Ji)

with (K2 ⊕ I) ∩ (J>i ) 6= ∅ and (K2 ⊕ I) ∩ (J>i ) 6⊆ (K′2 ⊕ I) ∩ (J>i ), where K′2 is the
successor of K2 in ııp1(γφ2

∩ ≤Ji). Hence the invariant on ∆φ is preserved at the
next iteration. Finally, we note that it is safe to drop elements K2 from ∆φ when
(K2 ⊕ I) ∩ (J>i ) ⊆ (K′2 ⊕ I) ∩ (J>i ), where K′2 is the successor of K2 in ∆φ. Indeed,
assume that K2 and K′2 satisfy the stated dropping conditions. We show that at
iteration i+1, we have ((K2∩+K1)⊕I)∩K1∩Ji+1 ⊆ ((K′2∩+K1)⊕I)∩K1∩Ji+1, for
any interval K1 ∈ ııp1(γφ2

∩≤Ji+1). Let τ be an element of the set on the left-hand
side. In particular, τ ∈ (K2 ⊕ I) ∩ Ji+1. As (K2 ⊕ I) ∩ (J>i ) ⊆ (K′2 ⊕ I) ∩ (J>i ), it
follows that τ ∈ (K′2 ⊕ I) ∩ Ji+1. It is then easy to see that τ is in the right-hand
side set as well.

The following theorem states the algorithm’s correctness.

Theorem 5.1 Let φ be a formula, γ̂ = (γp)p∈P a family of signals, J̄ an infinite inter-

val partition, and n > 0. The procedure step(φ, ∆̂n−1, Jn−1) terminates and returns the

sequence ııp1(γφ ∩ Jn−1), whenever init(φ), step(φ, ∆̂0, J0), . . . , step(φ, ∆̂n−2, Jn−2)

were called previously in this order, where ∆̂i = (∆i,p)p∈P with ∆i,p = ııp1(γp ∩ Ji),

for i < n.

As in the case of Theorem 4.1, the proof is an induction over tuples (i, ψ), with
0 ≤ i < n and ψ subformula of φ. The property proved by induction is the theorem’s
statement strengthened with the invariants on the intervals Kψ and sequences ∆ψ
stated in the the explanation just given. The proof follows the same structure and
reasoning as in the explanation and is thus omitted.

Example 5.1 We illustrate an execution of the interval-based monitoring algorithm
using the same formula ψ = p SI q, with I = [1, 4] and the same signals as in
Example 4.1. For convenience, we depict them again in Figure 5.4. Suppose that
the first 3 chunks received by the algorithm are given by the intervals J0, J1, and
J2 as depicted in the figure. Table 5.1 gives the values of variables ∆1, ∆2, ∆′1, ∆′2,
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0 2 4 6 8 10 12 14 16 18 time

J0 J1 J2

p 1
0

q 1
0

p SI q
1
0

Fig. 5.4 The first three chunks of the signals γp, γq , and γpSIq , with I = [1, 4].

i Ji−1 ∆1 ∆2 ∆′1 ∆′2 Kψ ∆ψ

0 ∅ 〈〉
1 [0, 4) 〈(2, 4)〉 〈[2, 2]〉 〈(2, 4)〉 〈[2, 2]〉 (2, 4) 〈[2, 2]〉
2 [4, 13) 〈[4, 5], [7, 13)〉 〈[6, 8], [9, 12]〉 〈[1, 5], [7, 13)〉 [2, 2] :: ∆2 〈[7, 13)〉 〈[9, 12]〉
3 [13, 18) 〈[13, 16]〉 〈〉 〈[7, 18]〉 〈[9, 12]〉 [7, 18] 〈〉

Table 5.1 Values of various variables at the end of the execution of the update procedure.

i Ji−1 K1 K2 (K2 ⊕ I) ∩ Ji−1 K>
2 ∩ +K1 ei

1 [0, 4) (2, 4) [2, 2] [3, 4) (2, 4] [3, 4)

2 [4, 13)

(2, 5] [2, 2] [4, 6] (2, 5] [4, 5]
(2, 5] [6, 8] [7, 12] ∅ ∅
[7, 13) [6, 8] [7, 12] (8, 13) [8, 12]
[7, 13) [9, 12] [10, 13) (12, 13) [10, 13)

3 [13, 18) [7, 18) [9, 12] [10, 16] (12, 18) [13, 16]

Table 5.2 Values of various expressions during the execution of the combine procedure, where
ei denotes the expression ((K2 ∩ +K1)⊕ I) ∩K1 ∩ Ji−1.

Kψ, and ∆ψ at the end of the execution of the update procedure. Table 5.2 gives the
values of the expressions (K2⊕I)∩Ji−1, K>

2 ∩
+K1, and ((K2∩+K1)⊕I)∩K1∩Ji−1

during the execution of the combine procedure, allowing us to track how the signal
γψ is computed. We note that the signal γψ over the first 3 chunks is the union of
the intervals in the ei column.

5.2 Monitoring Complexity

We analyze the monitor’s computational complexity. As in the point-based setting,
we take the representation size of elements of the time domain T into account.
The basic operations here in which elements of T are involved are operations on
intervals like checking emptiness (i.e. I = ∅), extension (e.g. I>), and shifting
(i.e. I⊕J). The representation size of the resulting interval of the shifting operation
I ⊕ J is in O(||I||+ ||J ||). The time required to carry out the shift operation is in
O(max{||I||, ||J ||}2). All the other basic operations that return an interval do not
increase the representation size of the resulting interval with respect to the given
intervals. However, the time complexity is quadratic in the representation size of
the given intervals whenever the operation needs to compare interval margins.
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5.2.1 Time Complexity

The following theorem establishes an upper bound on the time complexity of our
monitoring algorithm.

Theorem 5.2 Let φ, γ̂, J̄ , n, and ∆̂i be given as in Theorem 5.1. Executing the

sequence init(φ), step(φ, ∆̂0, J0), . . . , step(φ, ∆̂n−1, Jn−1) requires O
(
m2 · (n+ δ · |φ|) ·

|φ|3
)

time, where m = max
(
{||I|| | α SI β ∈ sf(φ)} ∪ {||J0||, . . . , ||Jn−1||} ∪

⋃
p∈P

{
||K|| |

K ∈ ııp1(γp ∩ (<Jn))
})

and δ =
∑
p∈P ||γp ∩ (<Jn)||.

We remark that the factor m2 · |φ|2 is due to the operations on the margins of
intervals. Under the assumption that the representation of elements of the time
domain is constant, we obtain the upper bound O

(
(n+ δ · |φ|) · |φ|

)
.

In the following, we prove Theorem 5.2. Let ψ be a subformula of φ. We
denote by tn(ψ) the running time of the sequence init(ψ), step(ψ, ∆̂0, J0), . . . ,
step(ψ, ∆̂n−1, Jn−1). We also define

mψ := max {||I|| | α SI β ∈ sf(ψ)} ∪ {||J0||, . . . , ||Jn−1||} ∪⋃
ψ′∈sf(ψ){||K|| | K ∈ ııp1(γψ′ ∩ <Jn)} .

That is, mψ is the maximal representation size of some interval that occurs in the
first n iterations of the monitoring algorithm when determining the signal for ψ.
By inspecting the operations performed on intervals in one iteration, we obtain

mψ ≤


mψ′ if ψ is of the form ¬ψ′,
max{mψ1

,mψ2
} if ψ is of the form ψ1 ∧ ψ2,

max{mψ1
,mψ2

}+ ||I|| if ψ is of the form ψ1 SI ψ2,

m otherwise.

The inequality mψ ≤ m · |ψ| follows by induction on the formula structure.
The following lemma, which follows from the equalities (5.2)–(5.4), establishes

an upper bound on the number of intervals that are necessary for representing the
signal determined by the formula ψ up to some point in time.

Lemma 5.2 Let J be a bounded interval with 0 ∈ J . If ψ is not a proposition then

||γψ ∩ J || ∈ O
(∑

ψ′∈dsf(ψ)||γψ′ ∩ J ||
)
.

The following lemma is the key ingredient for proving Theorem 5.2. It establishes
an upper bound of the running time for the formula ψ excluding the running times
for its proper subformulas.

Lemma 5.3 If ψ is a proposition then tn(ψ) ∈ O(n). If ψ is not a proposition then

tn(ψ)−
∑
ψ′∈dsf(ψ)tn(ψ′) ∈ O

(
m2
ψ ·
∑
ψ′∈dsf(ψ)

∑
i<n

(
1 + ||γψ′ ∩ Ji||

))
.

Proof The upper bound when ψ is a proposition is obviously true, since in each
iteration we just return ∆p. In the following, we prove by case distinction the upper
bound for the cases when ψ is not a proposition. Here, |∆| denotes the length of a
sequence ∆.
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Case ψ = ¬ψ′. For i < n, the running time of step(ψ, ∆̂i, Ji), excluding the running
time of step(ψ′, ∆̂i, Ji), is the running time of invert(∆′, Ji). The procedure invert

visits sequentially the elements in the sequence ∆′. Each visit requires O(m2
ψ) time,

since the procedure cons checks whether an interval K is empty before appending it
to the inverted sequence. From Theorem 5.1 we know that at the (i+ 1)st iteration,
the sequence ∆′ equals ııp1(γψ′ ∩ Ji). So, the length of ∆′ is |∆′| = ||γψ′ ∩ Ji||. From
this, the upper bound for ¬ψ′ follows.

Case ψ = ψ1 ∧ ψ2. Similar arguments as in the case where ψ equals ¬ψ′ establish
the upper bound for ψ = ψ1 ∧ ψ2. Note that intersect(∆1,∆2) runs in time O

(
m2
ψ ·

(1 + ||γψ1
∩ Ji||+ ||γψ2

∩ Ji||)
)
.

Case ψ = ψ1 SI ψ2. We first inspect the running time of the (i + 1)st iteration
with i < n. The running time of step(ψ, ∆̂i, Ji) without the running times for
step(ψ1, ∆̂i, Ji) and step(ψ2, ∆̂i, Ji) is the sum of the running times of prepend(Kψ,∆1),
concat(∆ψ,∆2), last(∆′1), drop(∆′2, I, Ji), which are called by the procedure update,
and of merge(combine(∆′1,∆

′
2, I, Ji)).

The procedures prepend, concat, and last run in time at most O(m2
ψ). So, their

total running time for all n iterations is in O(m2
ψ · n). The procedures merge,

combine, and drop, including the call to drop′, sequentially visit elements of an input
sequence. Each such visit requires O(m2

ψ) time. Whereas the procedure merge visits

all elements, the procedures combine, drop, and drop′ might stop before reaching
the input sequence’s end.

Before analyzing the procedures drop, combine, and merge, we make the following
remarks. Consider the procedure update. We have |∆′1| ≤ 1+ |∆1| and |∆′2| ≤ |∆ψ|+
|∆2|, where |∆ψ| refers to the number of elements in ∆ψ before calling the procedure

drop. Moreover, from Theorem 5.1, |∆′1| ∈ O
(
||γψ1

∩ Ji||
)

and ∆′2 ⊆ ııp1(γψ2
∩ ≤Ji).

We first consider the call to drop(∆′2, I, Ji). The drop procedure only visits a
prefix of the sequence ∆′2, and returns the last visited element appended to the
unvisited suffix of ∆′2. Thus the running time of drop is in O(m2

ψ ·(1+|∆diff |)), where

∆′ψ is the value of ∆ψ after the call to drop and ∆diff is such that ∆′2 = ∆diff ++∆′φ.

In the next iteration, the input of drop will be a subsequence of ııp1(γψ2
∩ ≤Ji+1)

having ∆′ψ as a prefix. It follows that at most one element in ııp1(γψ2
∩ <Jn) is

visited by any two consecutive calls to the drop procedure. Thus the total running
time of the drop procedure during the first n iterations is in O

(
m2
ψ ·(n+||γψ2

∩<Jn||)
)
.

Note that <Jn = ≤Jn−1.

We now consider the running time of combine(∆′1,∆
′
2, I, Ji). The combine proce-

dure traverses the sequences ∆′1 and ∆′2, and, similarly to the procedure intersect,
it runs in O(m2

ψ · (1 + |∆′1| + |∆′2|)). This upper bound does not suffice to ob-
tain the desired upper bound on the total running time, as we do not have that
|∆′2| ∈ O

(
||γψ2

∩ Ji||
)
. Nevertheless, we prove below that, while the sequences ∆′2

in two consecutive iterations may have more than one interval in common, at
most one such interval is visited by both iterations. This shows that in the first n
iterations at most n+ ||γψ2

∩ <Jn|| intervals from the sequences ∆′2 are visited.

To show that at most one interval is visited by the combine procedure during
each of the (i+ 1)st and (i+ 2)nd iterations, we recall that in the (i+ 1)st iteration,
we have ∆′2 = ∆diff ++∆′ψ, while in the (i+ 2)nd iteration the sequence ∆′ψ is a

prefix of ∆′2. Hence it is sufficient to show that at most one interval among the ones
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that combine visits in the (i+ 1)st iteration belongs to ∆′ψ. Let used(∆′2) := {K2 ∈
∆′2 | (K2 ⊕ I) ∩ Ji 6= ∅}. Note that there is at most one visited element in ∆′2
that is not in used(∆′2), as in the (i+ 1)st iteration, the combine procedure stops
whenever (K2 ⊕ I) ∩ Ji = ∅ and thus no elements following K2 in ∆′2 are visited.
We show that there is at most one interval in both ∆′ψ and used(∆′2). Suppose
by absurdity that there are two such intervals. Then there are two consecutive
such intervals, K2 and K′2. By the invariant on ∆′ψ enforced by the procedure

drop′, we have (K2 ⊕ I) ∩ (J>i ) 6⊆ (K′2 ⊕ I) ∩ (J>i ). Then K′2 ⊕ I ⊆ J>i , and thus
(K′2 ⊕ I) ∩ Ji = ∅, which is a contradiction with K′2 ∈ used(∆′2).

Finally, the running time of the procedure merge is linear in the length of its
argument, that is, the length of the result of combine, which in turn is at most
|∆′1|+ |∆′2|. From the above discussion, it follows that the total running time of
merge for the n iterations is in O

(
m2
ψ · (n+ ||γψ2

∩<Jn||+
∑
i<n(1 + ||γψ1

∩Ji||))
)
. As

||γψ2
∩<Jn|| ≤

∑
i<n ||γψ2

∩ Ji||, this concludes the proof of the upper bound, where
ψ is of the form ψ1 SI ψ2. ut

We now put these ingredients together to establish the upper bound of Theo-
rem 5.2. By Lemma 5.3,

tn(ψ)−
∑
ψ′∈dsf(ψ)tn(ψ′) ∈ O

(
m2
ψ ·
∑
ψ′∈dsf(ψ)

∑
i<n

(
1 + ||γψ′ ∩ Ji||

))
.

We obtain

tn(ψ)−
∑
ψ′∈dsf(ψ)tn(ψ′) ∈ O

(
m2
ψ ·
∑
ψ′∈dsf(ψ)

(
n+ ||γψ′ ∩ <Jn||

))
,

since
∑
i<n

(
1 + ||γ ∩ Ji||

)
∈ O

(
n+ ||γ ∩ <Jn||

)
, for any signal γ ⊆ T. Since ψ has at

most two direct subformulas, we obtain

tn(ψ)−
∑
ψ′∈dsf(ψ)tn(ψ′) ∈ O

(
m2
ψ ·
(
n+

∑
ψ′∈dsf(ψ)||γψ′ ∩

<Jn||
))
.

By Lemma 5.2,

tn(ψ)−
∑
ψ′∈dsf(ψ)tn(ψ′) ∈ O

(
m2
ψ ·
(
n+ |ψ| ·

∑
p∈P ||γp ∩

<Jn||
))
,

that is, tn(ψ) −
∑
ψ′∈dsf(ψ)tn(ψ′) ∈ O

(
m2
ψ · (n + |ψ| · δ)

)
. Using the inequalities

mψ ≤ m · |ψ| and |ψ| ≤ |φ|, we obtain

tn(ψ)−
∑
ψ′∈dsf(ψ)tn(ψ′) ∈ O

(
m2 · |φ|2 · (n+ |φ| · δ)

)
.

Summing up these equations for each subformula ψ of φ, we have

tn(φ) ∈ O
(
n · |φ|+m2 · |φ|2 · (n+ |φ| · δ) · |φ|

)
,

which simplifies to tn(φ) ∈ O
(
m2 · (n+ |φ| · δ) · |φ|3

)
.
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5.2.2 Space Complexity

We now consider the algorithm’s space complexity. Similarly to the point-based
setting, the space needed by the algorithm is in general unbounded for two reasons:
(1) the size of the representation of intervals grows over time, and (2) the length
of the sequences ∆ψ can be arbitrarily large in general. To illustrate (2), consider
the formula φ = �[0,1] p, the interval partition J̄ with Ji = [i, i+ 1) for any i ∈ N,

the time sequence τ̄ with τn = 1 + 1
2 + · · ·+ 1

n+1 for n ≥ 0, and the input signal
γp(τn) = 1, for each n ∈ N, and γp(τ) = 0 for each τ that is not an element of the
time sequence τ̄ . It is easy to see that the number of elements in ∆φ increases at
each iteration and is not bounded. However, in practice, signals have a bounded
variability, that is, there is a bound on the number of signal changes in any fixed
period of time. Formally, we say that a signal γ is bound in variability by k, in short
k-bounded, if ||γ ∩ [τ, τ + 1)|| ≤ k, for any τ ∈ T.

The following theorem establishes the space complexity of our monitoring
algorithm under the assumption that the input signals are k-bounded. In particular,
under this assumption the length of the sequences ∆ψ is bounded. We note that
the space usage is independent of the number n of chunks and from the size of the
input signals, namely δ =

∑
p∈P ||γp ∩ (<Jn)||.

Theorem 5.3 Let φ, γ̂, J̄ , n, and ∆̂i be given as in Theorem 5.1, and such that each

signal in γ̂ is k-bounded, for some k ∈ N with k ≥ 1. Executing the sequence init(φ),

step(φ, ∆̂0, J0), . . . , step(φ, ∆̂n−1, Jn−1) requires O
(
m · (s + `φ · |φ|) · k · |φ|2

)
space,

where s = max{r(Ji)− `(Ji)) | 0 ≤ i < n}, `φ = max{`(I) | α SI β ∈ sf(φ)}, and m =
max

(
{||I|| | αSI β ∈ sf(φ)}∪{||J0||, . . . , ||Jn−1||}∪

⋃
p∈P

{
||K|| | K ∈ ııp1(γp∩ (<Jn))

})
.

We remark that the factor m · |φ| is due to the space required to represent
intervals. Under the assumption that the representation of elements of the time
domain is constant, we obtain the upper bound O

(
(s+ `φ · |φ|) · k · |φ|

)
.

The remainder of this section is dedicated to proving Theorem 5.3. We start
with the following key lemma.

Lemma 5.4 Let φ be a formula, k ∈ N, with k ≥ 1, and γ̂ a family of k-bounded

signals. The signal γφ is (k · |φ|)-bounded.

Proof We reason by structural induction on φ. The base case where φ is an atomic
proposition is trivial. For the case φ = ¬ψ, we have ||γφ ∩ [τ, τ + 1)|| ≤ 1 + ||γψ ∩
[τ, τ + 1)|| ≤ 1 + k · |ψ| ≤ k · (1 + |ψ|) = k · |φ|, for any τ ∈ T. The first inequality is
straightforward, as |ııpu(γ ∩ J)| ≤ 1 + |ııpv(γ ∩ J), for any signal γ, any bounded
interval J , and any u, v ∈ {0, 1} with u+ v = 1. The second inequality follows from
the induction hypothesis. The case φ = φ1 ∧φ2 follows similarly from the inequality
|ııp1(γφ ∩ J)| ≤ |ııp1(γφ1

∩ J)|+ |ııp1(γφ2
∩ J)|.

The remaining case is where φ = φ1 SI φ2. From the induction hypothesis, γφ1

is (k · |φ1|)-bounded and γφ2
is (k · |φ2|)-bounded. Informally, γφ is (k · |φ|)-bounded

because any change from low to high in the signal γφ∩ [τ, τ +1) corresponds to such
a change in the signal γφ1

∩ [τ, τ + 1) or in the signal γφ2
∩ [τ − `(I), τ + 1− `(I)).

We formalize this observation and use it to establish the upper bound in this case.
Note first that the equality (5.4) also holds when Ji is replaced by [τ, τ + 1), as Ji is
an arbitrary bounded interval. Thus, for any interval K in ııp1(γφ1SIφ2

∩ [τ, τ + 1)),
there are intervals K1 ∈ ııp1(γφ1

∩ [0, τ + 1)) and K2 ∈ ııp1(γφ2
∩ [0, τ + 1)) such that
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`(K) = `(((K2 ∩ +K1) ⊕ I) ∩K1 ∩ [τ, τ + 1)). From this it follows that `(K) = τ ,
`(K) = `(K2) + `(I), or `(K) = `(K1) + `(I). Moreover, the interval K1 or K2 for
which one of the previous two equalities holds is unique. Therefore, there is at most
one interval K such that `(K) = τ . Also, if `(K) = `(K1)+`(I), then K1∩[τ, τ+1) 6=
∅ as otherwise K = ∅, and if `(K) = `(K2)+`(I) then K2∩ [τ−`(I), τ+1−`(I)) 6= ∅.
We have shown the stated observation. It follows that the number of intervals K in
ııp1(γφ1SIφ2

∩ [τ, τ + 1)) is upper-bounded by one plus the number of intervals K1

in ııp1(γφ1
∩ [τ, τ + 1)) and intervals K2 in ııp1(γφ2

∩ [τ − `(I), τ + 1 − `(I))). We
have that |ııp1(γφ1SIφ2

∩ [τ, τ + 1))| ≤ 1 + k · |φ1|+ k · |φ2| ≤ k · |φ|. ut

We now turn to the algorithm’s space complexity. The space used by the
algorithm is dominated by the space required to store the sequences ııp1(γψ ∩ Ji),
for 0 ≤ i < n and ψ ∈ sf(φ), and the sequences ∆ψ, for ψ ∈ tsf(φ). We bound the
storage space for the two types of sequences.

We first show that the space needed to store the sequences ııp1(γψ ∩ Ji) at the
(i + 1)st iteration is in O(m · |φ| · (r(Ji) − `(Ji)) · k · |φ|). This follows easily by
induction on the formula structure from the bounded-variability assumption, and
in particular from Lemma 5.4, and from the proof of Theorem 5.2. The factor
m · |φ| represents the upper bound on representation size of the intervals in the
sequences ııp1(γψ ∩ Ji), while the remaining factor represents an upper bound on
the length of these sequences. Note too that the sequences ııp1(γψ ∩ Ji) are not
stored between iterations, but only during iterations. It is thus sufficient that, for
each ψ ∈ sf(φ), we take the maximum, and not the sum, over their storage space.
We thus obtain that the space usage is in O(m · |φ| ·max0≤i<n(r(Ji)− `(Ji)) ·k · |φ|),
that is, in O(m · |φ| · s · k · |φ|), over all n iterations.

In contrast to the case of the sequences ııp1(γψ ∩ Ji), the sequences ∆ψ are
stored between iterations, and thus we must consider the sum of their storage
space. We bound next the length of these sequences. Recall that, for ψ = ψ1 SI ψ2

and the (i+ 1)st iteration with i > 0, the sequence ∆ψ stores (before its update)

intervals K2 in ııp1(γφ2
∩ ≤Ji−1) with (K2⊕ I)∩ (J>i−1) 6= ∅ and (K2⊕ I)∩ (J>i−1) 6⊆

(K′2 ⊕ I) ∩ (J>i−1), where K′2 is the successor of K2 in ııp1(γφ2
∩ ≤Ji−1). We show

that the second condition implies that r(K′2) ≥ `(Ji−1) − `(I), where K′2 is the
second interval in ∆ψ. Assume, by absurdity, that r(K′2) < `(Ji−1) − `(I). Then
`(K2) < `(K′2) < `(Ji−1) − `(I), that is, `(K2 ⊕ I) < `(K′2 ⊕ I) < `(Ji−1). And as
`(Ji−1) ≤ r(K2⊕ I) ≤ r(K′2⊕ I), we have that (K2⊕ I)∩ (J>i−1) ⊆ (K′2⊕ I)∩ (J>i−1),
which is a contradiction. Thus, for each interval K2 in ∆ψ except the first one,
r(K2) ≥ `(Ji−1) − `(I). (Note that from the first condition it only follows that
r(K2) ≥ `(Ji−1)− r(I), which is always true when r(I) =∞.) Hence, the number of
intervals K2 stored in ∆ψ is upper bounded by 1+|ııp1(γψ2

∩[`(Ji−1)−`(I), `(Ji−1)])|,
and is thus, by Lemma 5.4, upper bounded by 1 + `(I) · k · |ψ2|. Therefore the space
needed to store the sequences ∆ψ is in O(m · |φ| · `φ · k · |φ|2).

We have shown that the algorithm uses O(m · |φ| · s · k · |φ|) space to store the
sequences ııp1(γψ ∩ Ji) at iteration (i + 1)st, for ψ ∈ sf(φ) and 0 ≤ i < n, and
O(m · |φ| · `φ · k · |φ|2) space to store the ∆ψ sequences, for ψ ∈ tsf(φ). Summing up
these upper bounds gives the stated upper bound.
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6 Comparison and Discussion

6.1 Time Complexity

In the following, we compare the time complexity of our two algorithms when
monitoring a strongly event-relativized formula φ. By Theorem 3.1, the point-based
setting and the interval-based setting coincide on this formula class.

First note that the input for the (i+1)st iteration of the point-based monitoring
algorithm can be easily obtained online from the given signals γ̂ = (γ)p∈S∪E .
Whenever an event occurs, we record the time τi ∈ T, determine the current
truth values of the propositions, i.e., Γi = {p ∈ P | τi ∈ γp}, and invoke the
monitor by executing step•(φ, Γi, τi). The worst-case time complexity of the point-
based monitoring algorithm for the first

•
n iterations is O(

•
m2 · •n · |φ|

)
, where

•
m

is according to Theorem 4.2. Note that we use the dot superscript to distinguish
parameters associated with the point-based monitoring algorithm from those for
the interval-based monitoring algorithm discussed next.

When using the interval-based monitoring algorithm, we are more flexible
in that we need not invoke the monitoring algorithm whenever an event occurs.
Instead, we can freely split the signals into chunks. Let J̄ be a splitting in which the
nth interval Jn−1 is right-closed and r(Jn−1) = τ •n−1

. We have the worst-case time

complexity of O
(
m2 · (n+δ · |φ|) · |φ|3

)
, where m and δ are according to Theorem 5.2.

We can reduce this upper bound to O
(
m2 · (n+ δ · |φ|) · |φ|

)
, since the formula φ is

strongly event-relativized. Instead of the factor m2 · |φ|2 for processing the interval
margins in the n iterations, we only have the factor m2. The reason is that the
margins of the intervals in the signal chunks of subformulas of the form ψ1 SI ψ2

already appear as interval margins in the input. Note that m ≥ •
m and that δ is

independent of n.
The upper bound of the interval-based monitoring algorithm depends on the

number n of how often the procedure step is invoked. The case where n = 1
corresponds to the scenario where we use the monitoring algorithm offline (up to
time τ •n−1

). Note that for the point-based algorithm, it is irrelevant whether we
use it offline or online. To mimic the point-based monitoring algorithm with the
interval-based monitoring algorithm, we invoke the procedure step whenever an
event occurs. In this case n =

•
n. An alternative is to invoke the procedure step

every d time units, e.g., every five seconds. In the latter case, n = dτ •n−1
/de.

Even when using the interval-based monitoring algorithm offline and assuming
a fixed-size representation of the elements in T, the upper bounds differ by the
factors

•
n and δ · |φ|. Since δ ≥ •

n, the upper bound of the point-based monitoring
algorithm is lower. In fact, the following examples show that the gap between
the running times matches our upper bounds and that δ · |φ| can be significantly
larger than

•
n. We assume that timestamps and interval margins have a fixed size

representation, that is, they are represented in constant space.
Our first example shows that δ can be significantly larger than

•
n. It also

illustrates that the point-based algorithm ignores large portions of the state signals,
while the interval-based algorithm processes the entire state signals.

Example 6.1 Let φ be the formula e ∧ s, where e is an event proposition and s is
a state proposition. Note that φ is a strongly event-relativized. Let γe be the
event signal N and γs be the state signal

⋃
i∈N

[
2i · n2k , (2i + 1) · n2k

)
, for some
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n, k ∈ N with n, k > 0. The running time of the first n iterations of the point-based
algorithm is clearly in Θ(n). The running time of the first iteration of the interval-
based algorithm on the chunk γs ∩ [0, n] is in Θ(k) since the procedure intersect

traverses the entire sequence ııp1(γs∩ [0, n]), which contains k intervals. The choices
of n and k are independent of each other. When choosing k significantly larger
than n, the number of intervals in ııp1(γs∩ [0, n]) dominates the running time of the
interval-based algorithm, and not the number of events, which in turn determines
the running time of the point-based algorithm.

Our second example shows that Ω(|φ|2) is a lower bound for the worst-case
running time of the interval-based algorithm, even when the proposition set P is a
singleton. It again illustrates that for event-relativized formulas, the interval-based
algorithm processes, for each subformula, intermediate signal chunks that contain
information also on what happens when events do not occur. In contrast, this
information is (soundly) ignored by the point-based algorithm.

Example 6.2 Let p be an event proposition. We define the event-relativized formulas
φ1 := �[1,1] p, and φi := φi−1 ∨ �[i,i] p, for i ∈ N with i > 0. In the following,
let k ∈ N with k > 0 and let φ be the formula p ∧ φk. Note that φ has the
form p ∧

(
( �[1,1] p) ∨ ( �[2,2] p) ∨ . . . ∨ ( �[k,k] p)

)
and that |φ| ∈ Θ(k), ignoring the

representation sizes of the intervals attached to the temporal operators. Consider
the event signal γp = [0, 0]. We have that γφ = ∅ and γφi = [1, 1] ∪ [2, 2] ∪ · · · ∪ [i, i],
for i ∈ N with 1 ≤ i ≤ k. Let J̄ be an interval partition with r(J0) > k. We have
||ııp1(γp ∩ J0)|| = 1, ||ııp1(γφi ∩ J0)|| = i, and ||ııp1(γ¬φi ∩ J0)|| = i+ 1, for each i ∈ N
with 1 ≤ i ≤ k.

The running time of the first iteration of the interval-based algorithm is in
Θ(k2). It is thus in Θ(|φ|2), as for each subformula φi (which is ¬(¬φi−1 ∧¬ �[i,i] p)
when removing the syntactic sugar for the Boolean connective ∨) the procedures
invert and intersect traverse Θ(i) intervals, for 1 < i ≤ k. The running time of the
point-based algorithm on the signal chunk given by J0 is in Θ(|φ|) since there is
only one event, namely, the one that occurs at time 0.

Note that considering disjunction as a primitive and adjusting the implemen-
tation accordingly would not change the bound Θ(|φ|2). Finally, we remark that
singular intervals attached to temporal operators do not play an essential role in
this example: we obtain the same running times when replacing the intervals [i, i]
with intervals [i− ε, i+ ε], where ε ∈ T is sufficiently small.

6.2 Time Domains

In the following, we discuss different options for the time domain T and their
impact for the monitoring algorithms we presented. The choice between a dense or
a discrete time domain for MTL’s semantics, i.e., selecting T as N instead of Q≥0,
has only a minor impact on the monitoring algorithms. The point-based monitoring
algorithm can be used without any modifications for the discrete time domain and
the interval-based algorithm requires only minor modifications.

For the interval-based algorithm, the operator +K used in the equality (5.4)
must be redefined. In a discrete time domain, we extend K by one point in time
to the left if it exists, i.e., +K := K ∪ {k − 1 | k ∈ K and k > 0}. The algorithms’
correctness for the time domain N is similarly shown as in the Theorems 4.1 and 5.1,
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respectively. Note that the reasoning performed in both algorithms concerning the
time domain elements encountered reduces to subtraction and comparison (with 0)
of elements in T and is independent of whether T is dense or discrete.

In terms of complexity, if we assume a discrete and unbounded time domain,
we still cannot assume that the operations on elements from the time domain
can be carried out in constant time. But multiplication is no longer needed to
compare these elements and thus the operations can be carried out in time linear
in the representation size. The worst-case complexity of both algorithms improves
accordingly. In practice, however, it is often reasonable to assume that the time
domain elements have a bounded representation, since arbitrarily precise clocks
do not exist and a fixed number of bits suffices to encode all timestamps that the
monitor will actually encounter. For example, for many applications it suffices to
represent timestamps as Unix time, i.e., as 32 or 64 bit integers. The operations
performed by our monitoring algorithms on the time domain elements would then
be carried out in constant time.

Since clocks have a limited precision, a so-called fictitious-clock semantics [2,29]
is often used to reason about the time associated with events; this represents
another variant for the time model, which is orthogonal to whether one assumes a
dense or a discrete time domain. This semantics formalizes, for example, that if the
system event e happens strictly before the event e′, but both events fall between
two clock ticks, then we can distinguish them by their temporal ordering, but not
by time. In a fictitious-clock semantics, we timestamp e and e′ with the same clock
value and in a trace e appears strictly before e′. To order these two events in a trace,
signals must be synchronized. Note that the timestamps from logical clocks [20]
only partially order events in general and this might be insufficient to obtain such
a total “happens-before” relation. Our point-based monitoring algorithm can be
directly used for a fictitious-clock semantics. It iteratively processes a sequence of
snapshots 〈Γ0, Γ1, . . . 〉 together with a sequence of timestamps 〈τ0, τ1, . . . 〉, which
is increasing but no longer necessarily strictly increasing. In contrast, our interval-
based monitoring algorithm does not carry over to a fictitious-clock semantics. In
fact, the interval-based semantics assumes that events with equal timestamps τ ∈ T
happen simultaneously at time τ .

In the remainder of this section, we revisit and further substantiate Remark 3.1
(page 7) when assuming the discrete time domain N. Let φ be a non-event-relativized
formula, γ̂ be a family of event signals, and τ̄ be a time sequence. We cannot apply
the analogue of Theorem 3.1 for the discrete time domain, as φ is not event-
relativized. However, for the time sequence κ̄ with κi = i for each i ∈ N, the
point-based semantics and the interval-based semantics coincide. Thus, instead of
using the point-based semantics on τ̄ , which may not represent φ’s intended meaning,
we can use the point-based semantics on κ̄, which more naturally represents φ’s
meaning. Indeed, the two examples given in Example 3.2 illustrate that the interval-
based semantics is more natural than the point-based semantics, independent of
the time domain. However, there is a trade-off between the use of (one of) the
more natural semantics and the efficiency of the algorithm chosen for monitoring.
We illustrate next this efficiency issue.

We have three options for monitoring γ̂ with respect to φ: (1) using the point-
based algorithm over τ̄ , (2) using it over κ̄, or (3) using the interval-based algorithm.
Recall from the previous paragraph that option (1) may give less intuitive outputs
than options (2) and (3), which give the same outputs. Consider the nth sample
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point in τ̄ , for some n > 0. For simplicity, we ignore the representation size of
elements of T. Furthermore, we assume that the sample points in τ̄ are those time
points when an event occurs, and that the interval-based algorithm is called on the
chunks [0, τ0] and [τi−1 + 1, τi], for any i ≥ 1. We thus have that δ is in O(n), where
δ is according to Theorem 5.2. The three options then have the following upper
bounds on their running time: (1) O(n · |φ|), (2) O(τn · |φ|), and (3) O(n · |φ|2). Note
that τn can be significantly larger than n. Indeed, assuming that events occur on
average every millisecond and that the time unit is one nanosecond, τn ≈ 106n.
Thus, while option (2) is the most attractive choice, as it uses the more natural
semantics and the conceptually simpler algorithm, it is not clear that it is actually
better than (3) in terms of efficiency.

7 Related Work

The monitoring algorithms most closely related to those presented in this article are
the ones by Basin et al. [5, 6], Thati and Roşu [33], Nickovic and Maler [23, 25, 26],
Baldor and Niu [3], and Ho et al. [17]. They are related as follows to the work
presented in this article.

The monitoring algorithm of Basin et al. [5, 6] given for the future-bounded
fragment of metric first-order temporal logic, which subsumes the past-only fragment
of MTL, can be seen as an extension of the presented monitoring algorithm for
the point-based setting to future temporal operators and the first-order case. We
restricted ourselves here to the propositional case and to the past-only fragment of
MTL in order to compare the effect of different time models on monitoring.

Thati and Roşu [33] provide a monitoring algorithm for metric temporal logic
with a point-based semantics, which uses formula rewriting. Their algorithm is
more general than ours for the point-based setting since it handles temporal past
and future operators. Their complexity analysis is based on the assumption that
operations involving elements from the time domain can be carried out in constant
time. The worst-case complexity of their algorithm on the past-only fragment is
worse than ours, since rewriting a formula can generate additional formulas. In
particular, their algorithm is not linear in the number of subformulas.

Nickovic and Maler’s [23, 25, 26] monitoring algorithms are for the interval-
based setting and have ingredients similar to our algorithm for this setting. These
ingredients were first presented by Nickovic and Maler for an offline version of their
monitoring algorithms [22] for the fragment of interval metric temporal logic with
bounded temporal future operators. Their setting is more general in that their
signals are continuous functions and not Boolean values for each point in time.
Moreover, their algorithms also handle bounded [26] and unbounded [25] temporal
future operators by delaying the evaluation of subformulas. The algorithm in [25]
slightly differs from the one in [26]; namely, the algorithm in [25] also handles
temporal past operators and before initiating monitoring, it rewrites the given
formula to eliminate the temporal operators until and since with timing constraints.
However, Maler and Nickovic do not provide algorithmic details for handling the
Boolean connectives and the temporal operators. In fact, the worst-case complexity,
which is only stated for their offline algorithm [22], seems to be too low even when
ignoring representation and complexity issues for elements of the time domain.
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After the appearance of the preliminary version of this article as the conference
paper [7], Baldor and Niu [3] presented a monitoring algorithm for the interval-based
setting, which also deals with temporal future operators. In contrast to our interval-
based algorithm, where the input signals are incrementally given in “chunks,” their
algorithm is triggered by signal changes. In this respect, their algorithm has the
flavor of our point-based algorithm. However, additional machinery is needed to
soundly reason in the interval-based setting. For example, their algorithm needs to
consider the different ways in which a signal can change at a given time. Similar
to the above works, their complexity analysis is based on the assumption that
operations involving elements from the time domain can be carried out in constant
time. Furthermore, as with [22], the stated worst-case time complexity (namely,
only linear in the size of the formula) for the general case is too low. For instance,
for formulas—similar to the ones in Example 6.2—in the past-only fragment with
the temporal operators �[a,b] with a > 0, the time complexity of their algorithm
can be quadratic in the worst case in the formula size.

After the appearance of the conference paper [7] of this article, Ho et al. [17]
presented a point-based monitoring algorithm for full metric temporal logic that
handles, in particular, temporal future and past operators. Their algorithm is based
on separating metric temporal operators from non-metric operators. They show
that such a separation is always possible by rewriting the formula. Moreover, all
metric temporal operators are bounded. However, this separation might result in a
non-elementary blow-up in the formula size. Automata-theoretic methods are used
to handle the non-metric part and are combined with a dynamic programming
approach, which is used for checking the metric constraints.

Other monitoring algorithms for real-time logics are given by Kristoffersen
et al. [19], Drusinsky [12], and Bauer et al. [8]. Their real-time logics, which are
based on a point-based time model, differ from the past-only fragment of metric
temporal logic. For instance, in [8] an extension of LTL with the freeze quantifier
is considered. Similar to the monitoring algorithm in [33], the algorithm in [19]
is based on formula rewriting. However, their rewriting can lead to exponential
blow-ups. Another rewriting-based monitoring algorithm for a point-based real-
time logic with the freeze quantifier is presented in [10]. The monitoring approach
in [8] uses region automata, which are constructed from formulas with temporal
future operators of a real-time logic with a three-valued semantics. The size of the
constructed region automaton can be exponential in the size of the given formula
and the computational complexity of monitoring a trace can be exponential in the
worst case. The representation of elements of the time domain is not considered.
The monitoring approach in [12] is based on alternating automata. Although the
preprocessing step of constructing the automaton is linear in the size of the formula,
monitoring is more expensive than using non-deterministic automata as in [8].

Pike et al. [28] presented an approach for real-time monitoring. They obtain
monitors from specifications given by so-called stream equations, which can encode
the past-only fragment of LTL. The underlying semantics is point-based. Their work
is practically motivated and they do not consider real-time logics and computational
complexity questions. Reinbacher et al. [30, 31] describe and evaluate a framework
for monitoring hardware circuits. Properties are specified in a metric temporal
logic with a discrete time model. Their monitoring algorithm is tailored towards
the application area; in particular, it is designed to be realized in hardware.
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We are not aware of any work that compares different time models for runtime
verification. The surveys [2,9,27] on real-time logics focus on the expressiveness,
satisfiability, and automatic verification of real-time systems. A comparison of a
point-based and interval-based time model for temporal databases with a discrete
time domain is given by Toman [34]. The work by Furia and Rossi [14] on sam-
pling and the work on digitization [16] by Henzinger et al. are orthogonal to our
comparison. These relate fragments of metric interval temporal logic with respect
to a discrete and a dense time domain.

8 Conclusions

We have presented, analyzed, and compared monitoring algorithms for real-time
logics with point-based and interval-based semantics. Moreover, we have presented
a practically relevant fragment for the interval-based setting by distinguishing
between state variables and system events, which can be more efficiently monitored
in the point-based setting. Our comparison provides a detailed analysis of the trade-
offs between the different time models with respect to monitoring. In particular,
the interval-based semantics can be more natural than the point-based semantics.
In contrast, the point-based algorithm has better worst-case complexity bounds
and is conceptually simpler than the interval-based algorithm, which suggests that
monitoring in a point-based setting is easier than in an interval-based setting. The
meaning of “easier” is, however, admittedly informal here since we do not provide
lower bounds for the corresponding monitoring problems.

Future work is to establish such lower bounds. Thati and Roşu [33] give lower
bounds for future fragments of metric temporal logic including the temporal operator
referring to the next time point. However, we are not aware of any lower bounds
for the past-only fragment. In general, establishing lower bounds for monitoring
problems seems to be difficult. Schnoebelen and others (see [11, Section 4.1]
and [24, Section 3]) have also identified this as a relevant open problem.
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33. P. Thati and G. Roşu. Monitoring algorithms for metric temporal logic specifications. In
Proceedings of the 4th Workshop on Runtime Verification (RV), volume 113 of Elec. Notes
Theo. Comput. Sci., pages 145–162. Elsevier Science Inc., 2005.

34. D. Toman. Point vs. interval-based query languages for temporal databases (extended
abstract). In Proceedings of the 15th ACM Symposium on Principles of Database Systems
(PODS), pages 58–67. ACM Press, 1996.


