
Tests and Refutation

Mohammad Torabi Dashti and David Basin

Department of Computer Science, ETH Zurich

Abstract. The purpose of testing a system with respect to a requirement is to
refute the hypothesis that the system satisfies the requirement. We build a the-
ory of tests and refutation based on the elementary notions of satisfaction and
refinement. We use this theory to characterize the requirements that can be re-
futed through black-box testing and, dually, verified through such tests. We con-
sider refutation in finite time and obtain the well-known finite falsifiability of
hyper-safety temporal requirements as a special case. We extend our theory with
computational constraints and separate refutation from enforcement in the con-
text of temporal hyper-properties. Overall, our theory provides a basis to analyze
the scope and reach of black-box tests and to bridge results from areas including
testing, verification, and enforcement.

1 Introduction

Testing is a widely adopted quality-assurance activity and there is a general agreement
as to its purpose and importance. However, a solid understanding of testing’s strength
and limitations is lacking, despite the manifest importance of this topic. For instance, it
is commonly agreed upon that the purpose of testing a system with respect to a require-
ment is to refute the hypothesis that the system satisfies the requirement [6, 15]. Yet,
existing testing theory is inadequate for answering basic questions such as: which class
of requirements are refutable, given a class of tests? Or, which class of tests, if any,
can refute a class of requirements? The need for research advances here is imperative
as current analytic frameworks for testing are incapable of even articulating, let alone
answering, these fundamental questions in a satisfactory manner. We show how this can
be done for black-box testing, the most basic system analysis technique, by presenting a
theory of tests and refutation that fully characterizes the class of refutable requirements
and provides a foundation for bridging results in testing with other related disciplines.

We start with an abstract model of systems and requirements (§2) and introduce two
types of requirements: obligations and prohibitions (§3). A requirement is an obligation
if it obliges the systems to exhibit certain (desired) behaviors, and it is a prohibition if it
prohibits the systems from exhibiting (undesired) behaviors. We show that these two re-
quirement types admit a straightforward order-theoretic characterization. Namely, given
a refinement (or abstraction) partial-order on a set of systems, the satisfaction of an obli-
gation is abstraction-closed, and for a prohibition it is refinement-closed. We then turn
to black-box tests (§4).

A system is a black-box if we can observe its input and output, but cannot observe
how the latter is produced from the former. Therefore, a tester can analyze such a sys-
tem only by interacting with it through its interface. In black-box testing, sometimes

called “testing by sampling” [6], testing a system amounts to inspecting a sample of its
behaviors. The sample obtained through tests can be seen as a refinement of the system
under test, a notion we make precise in the following sections. All a tester learns by
sampling is that a system exhibits certain behaviors. From this, the tester cannot infer
that the system does not exhibit other behaviors as well. Such a conclusion could only
be justified through the sample’s exhaustiveness, which black-box testing alone cannot
establish. A requirement is therefore refutable through tests if, for any system that vi-
olates the requirement, the hypothesis that the system satisfies the requirement can be
refuted by inspecting a refinement of the system. It follows that a requirement whose
violation is contingent upon demonstrating the absence of behaviors cannot be refuted
through black-box testing. Based on this, we prove that any refutable requirement is a
prohibition, and all non-trivial obligations are irrefutable (§5). We then define the no-
tion of verification dual to refutation, and show that any verifiable requirement is an
obligation and that non-trivial prohibitions cannot be verified through tests (§6).

Contributions. We present a theory for reasoning about the strength and the limitations
of black-box testing. Our theory has minimal formal machinery, which gives rise to
direct, elementary proofs (Appendix A). We use the theory to prove new results and to
obtain known results as special cases.

We fully characterize the requirements that can be refuted and those that can be
verified through black-box tests. This characterization augments, and in some cases
rectifies, the folkloric understanding that exists in the community. For example, we
highlight the fundamental role that determinacy assumptions play in making sense of
day-to-day black-box tests.

Our theory is abstract. Extending it to account for refutation in finite time and refu-
tation under computational constraints is therefore immediate. We present different ap-
plications of our theory of finite refutability (§7). We demonstrate that the well-known
finite falsifiability of hyper-safety temporal requirements [4] can be derived as a special
case in our theory. Moreover, we explicate the relationship between finite refutabil-
ity and system self-composition [3, 4], a central technique in information flow anal-
ysis. Finally, we use our characterization to separate refutability from enforceability:
we show that any enforceable temporal requirement is refutable, but refutable require-
ments need not be enforceable; we give a precise definition of the notion of enforceable
requirements in the following sections. The separation hinges upon analyzing the com-
putational constraints of refutation (and enforcement) via a notion of algorithmically
refutable requirements (§8).

Related Work. Below, we review the most closely related work.
Our definition of refutability is inspired by Popper’s notion of testable theories [19].

Theories of black-box testing proposed in the software engineering literature are largely
concerned with the notions of test selection and test adequacy; see, e.g., [10, 27, 9, 24].
Refutable requirements have not been investigated in prior works. In contrast, enforce-
able temporal requirements have been extensively studied. Intuitively, a requirement
is enforceable if there exists a reference monitor that can tell when a system violates
the requirement only by observing the system’s behaviors [11, 16]. Due to its technical
nature, we relegate comparing refutability and enforceability to §7.

Obligations and prohibitions, as requirement types, implicitly appear in various do-
mains of software engineering. For example, Damm and Harel introduce existential
charts for specifying the obligatory behaviors of a system, and universal charts for
specifying all the behaviors the system exhibits [5]. An existential chart intuitively cor-
responds to an obligation, and a universal chart corresponds to a semi-monotone re-
quirement in our theory, which is the conjunction of an obligation and a prohibition.
The notions of necessity and possibility also have a central role in modal logic. For ex-
ample, Larsen and Thomsen’s modal transition systems specify obligations and prohi-
bitions through, respectively, must and may transitions [13]. Similarly, Tretmans’ IOCO
testing theory [24] is based on specifications that define both a lower bound and an up-
per bound on a system’s behaviors, which roughly speaking correspond to, respectively,
obligations and prohibitions (see §6). The existing works define prohibitions and obli-
gations in concrete modeling formalisms. In contrast, we present abstract definitions
which can be instantiated by the existing ones.

We briefly discuss the limitations of our theory in §9.

2 Systems and Requirements

We start with a simple abstract model of systems and requirements. A system is an
entity that is capable of exhibiting externally observable behaviors. Operating systems,
digital circuits and vending machines are all examples of systems. We keep the no-
tion of a behavior unspecified for now. Let S denote the nonempty set of all systems
under consideration. For example, S may stand for the set of all Java programs. We
assume that (S,�) is a partially-ordered set (poset), where � denotes a refinement re-
lation: S1 � S2 states that system S1 refines system S2, or that system S2 abstracts
system S1. That is, S1 � S2 means that S1 exhibits fewer behaviors than S2. There
exists a large body of research on refinement and abstraction; see for instance [1, 14,
25]. Examples of refinement relations include trace containment and various algebraic
simulation relations. In the interest of generality, we do not bind � to any particular re-
lation. We write dSe and bSc respectively for the set of systems that abstract a system S
and those that refine it: dSe = {S′ ∈ S | S � S′} and bSc = {S′ ∈ S | S′ � S}.
We assume that the poset (S,�) is bounded: it has a greatest element > and a least
element ⊥. The “chaos” system > (sometimes called the “weakest” system [12]), ab-
stracts every system, and the “empty” system ⊥ refines every system in S. In short, our
abstract model of systems is a four-tuple (S,�,⊥,>).

We extensionally define a requirement as a set of systems. A system satisfies a
requirement R if it belongs to R. For now, we need not expound on the satisfaction
relation between systems and requirements; we will give examples later. We write χR
for a requirementR’s characteristic function, which maps S to {0, 1}. A requirementR
is trivial if all or none of the systems in S satisfy it, i.e. χR is a constant function.
Let R denote the set of all requirements. It is immediate that (R,⊆), where ⊆ is the
standard set inclusion relation, is a complete lattice. We define the conjunction of two
requirements R1 and R2, denoted R1 ∧ R2, as their meet. For a set R of systems, we
write dRe =

⋃
S∈RdSe and bRc =

⋃
S∈RbSc. A set R is an upper set if R = dRe,

and a lower set if R = bRc. These terms originate from order theory.

3 Obligations and Prohibitions

A requirement is an obligation if it obliges the systems to exhibit certain (desired) be-
haviors, often corresponding to intended functionalities and features. For example, a
requirement for a database system obliges it to provide the user with an option to com-
mit transactions. Intuitively, this requirement cannot be violated by adding behaviors to
the system, for example by providing the user the option to review transactions. The sat-
isfaction of an obligation R is therefore abstraction-closed: ∀S, S′ ∈ S. S ∈ R ∧ S �
S′ → S′ ∈ R. That is, an obligation is an upper set.

A requirement is a prohibition if it prohibits the systems from exhibiting certain
(undesired) behaviors. For instance, consider the requirement that prohibits a database
system from committing malformed transactions. Intuitively, this requirement cannot
be violated by removing behaviors from the system, for example removing the option
for committing transactions altogether. That is, the satisfaction of a prohibition R is
refinement-closed: ∀S, S′ ∈ S. S ∈ R ∧ S′ � S → S′ ∈ R. In other words, a
prohibition is a lower set of systems.

Definition 1. A requirement R is an obligation if R = dRe and R is a prohibition
if R = bRc.

The following example illustrates obligations and prohibitions.

Example 2. Consider the system model (2N×N,⊆, ∅,N×N), where a system is exten-
sionally defined as a subset of N× N, with N being the set of natural numbers, and the
refinement relation is the standard subset relation. For an input i ∈ N, a system S can
produce an output o, non-deterministically chosen from the set {n ∈ N | (i, n) ∈ S},
and it does not produce any outputs when {n ∈ N | (i, n) ∈ S} is empty. We call this
the extensional input-output system model eio.

The requirement P stipulating that systems are deterministic is a prohibition: if S is
deterministic, meaning ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| ≤ 1, then so is any refinement,
i.e. subset, of S. In particular, the empty system satisfies the definition of determinacy.

The requirement O stipulating that systems define total relations is an obligation:
if S is total, meaning ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| > 0, then so is any abstraction,
i.e. superset, of S. The requirement R, stating that systems extensionally define total
functions is clearly neither a prohibition nor an obligation: from ∀i ∈ N. |{n ∈ N |
(i, n) ∈ S}| = 1 we cannot conclude that an arbitrary subset or superset of S defines a
total function. Note that R = P ∧O. N

A requirement R is an obligation iff χR is monotonically increasing in �, that
is, S � S′ → χR(S) ≤ χR(S

′). Similarly, R is a prohibition iff χR is monotonically
decreasing, that is, S � S′ → χR(S

′) ≤ χR(S). Therefore, any requirement that is
both an obligation and a prohibition must have a constant characteristic function. The
following lemma is now immediate.

Lemma 3. If a requirement R is both an obligation and a prohibition, then R is trivial.

This lemma implies that a prohibition cannot in general be replaced with an obligation
and vice versa. For example, the prohibition smoking is forbidden has no equivalent

obligation and the obligation sacrifice a ram has no equivalent prohibition. The lemma
does not however imply that obligations and prohibitions exhaust the set of require-
ments. Namely, a non-monotone requirement, i.e. one whose characteristic function is
neither monotonically increasing nor monotonically decreasing, is neither an obligation
nor a prohibition. For instance, the requirement R = P ∧ O, defined in Example 2, is
not monotone. Therefore, R is neither an obligation nor a prohibition.

Note that prohibitions implicitly define which behaviors are permissible. Namely,
the set of permissible behaviors complements the set of prohibited ones, cf. deontic
logic [26]. To avoid inconsistency, all obligatory behaviors must be permissible, but
not all permissible behaviors need be obligatory. Consequently, the set of permissible
behaviors for a system, delimited by the prohibitions, does not necessarily coincide with
its set of obligatory behaviors.

4 Black-Box Tests

We start by defining the notion of a test setup. This notion enables us to distinguish
system behaviors from what a black-box tester observes. Let (S,�,⊥,>) be a system
model. By sampling the behaviors of a system S ∈ S , a tester makes an observation.
For now, we do not further specify observations. We give examples shortly. A test
setup is a pair (T, α), where T is an (uninterpreted) domain of observations and α is an
order-preserving function from S to 2T , i.e., S � S′ → α(S) ⊆ α(S′). Intuitively,
the set α(S) consists of all the observations that can be made by testing a system S
in this test setup. Since α is order-preserving, if t belongs to α(S) for some system S,
then t ∈ α(S′) for any system S′ that abstracts S. This reflects the nature of black-
box testing where analyzing a system S “by sampling” amounts to inspecting a sample
of S’s behaviors [6]. Therefore, if an observation can be made on S by inspecting the
behaviors S exhibits, then the same observation can also be made on any system S′ that
abstracts S, simply because S′ exhibits all of S’s behaviors.

We define the function α̂ : T → 2S to map an observation to the set of systems that
can yield that observation. Formally, α̂(t) = {S ∈ S | t ∈ α(S)}, for any t ∈ T . In
black-box testing, a tester knows nothing about the behaviors of the system under test
beyond what is observed by interacting with it. Therefore, all the tester can conclude
from an observation t is that the system under test can be any system that could yield t.
That is, solely based on an observation t, the tester cannot distinguish between the
system under test and any other member of the set α̂(t). We call this condition the
indistinguishability condition. Clearly black-box tests combined with, say, white-box
system inspection [17], are not constrained by this condition.

The above condition delimits the knowledge a tester can obtain through black-box
testing. Suppose that Ted (the tester) performs a black-box analysis of a system S. Ted
cannot distinguish S from, say, >, simply because > abstracts every system. This epis-
temic limitation is not alleviated by exhaustive tests: regardless of whether or not Ted
samples and analyzes all the behaviors of S during testing, > ∈ dSe is still true. That
is, black-box testing can neither demonstrate the absence of behaviors nor the exhaus-
tiveness of an observation; otherwise, Ted could tell that the system under test is not >,
which exhibits all behaviors, thereby distinguishing S from >. But, as just discussed,

this falls beyond the scope of black-box testing. The following example illustrates these
points.

Example 4. Consider the eio system model and the test setup Tr = (S, b·c), where
a tester may observe an arbitrary refinement of the system under test. Note that b·c is
order-preserving and hence Tr is a test setup. Suppose Ted observes that the system
under test S outputs 0 for input 0, and 1 for input 1. That is, Ted makes the observa-
tion t = {(0, 0), (1, 1)}. Ted can neither conclude that S does not output 1 for input 0,
e.g. due to internal nondeterminism, nor that S extensionally defines the identity func-
tion. This is because >, which abstracts t and hence belongs to α̂(t), satisfies these
requirements, and Ted cannot differentiate S from > by observing t alone. N

Note that the conclusions drawn above hold true regardless of whether or not obser-
vations can be carried out in a finite amount of time. We return to this point in §7.

5 Refutable Requirements

The purpose of testing a system with respect to a requirement is to refute the hypothesis
that the system satisfies the requirement [19, 6, 15]. Below, we characterize the class of
requirements that can be refuted using black-box tests, after presenting an illustrative
special case.

Any system model M = (S,�,⊥,>) induces a reflexive test setup TM
r = (S, b·c),

where each observation on a system S ∈ S is a system in S that refines S. When M
is clear from the context, we simply write Tr for M’s reflexive test setup, as we did in
Example 4. In the reflexive setup, testing a system S against a requirement R amounts
to inspecting a refinement Sw of S to refute the hypothesis that S ∈ R. By merely
observing Sw, with Sw ∈ bSc, the tester cannot distinguish S from any other system
that abstracts Sw, due to the indistinguishability condition. Therefore, the tester can
infer S 6∈ R after observing Sw iff every element of dSwe violates R. Hence R is
refutable in a reflexive test setup if, for any S that violates R, there is at least one
witness system Sw ∈ bSc such that any system that abstracts Sw violates R. That is, R
is refutable in Tr if ∀S ∈ S. S 6∈ R→ ∃Sw ∈ bSc. dSwe ∩R = ∅.

Example 5. Consider a program whose input and output domains are the set of lists
of natural numbers. A requirement R restricts the program’s outputs to ascending lists.
Suppose that a system S violates R. Then there must exist an input i for which S
produces an output list o that is not ascending. Let us refer to the system that exhibits
just this forbidden behavior as Sw = {(i, o)}. Clearly Sw refines S, and any system that
abstracts Sw violates R by exhibiting the forbidden behavior. Therefore, R is refutable
in the test setup Tr. N

We now generalize the above and define refutability in an arbitrary test setup T.

Definition 6. Let T = (T, α) be a test setup for a system model (S,�,⊥,>). A re-
quirement R is T-refutable if ∀S ∈ S. S 6∈ R→ ∃t ∈ α(S). α̂(t) ∩R = ∅.

Let R be a (T, α)-refutable requirement. Then, for any system S, S 6∈ R → dSe ∩
R = ∅, simply because α is order-preserving. The contrapositive implies that if S1 ∈ R
and S2 � S1, then S2 ∈ R. That is, R is a prohibition. The following theorem is now
immediate.

Theorem 7. Let T be a test setup. Any T-refutable requirement is a prohibition.

Example 8. Consider the model where each system extensionally defines a binary tree
where each node is colored either red or black, and � is the subtree relation. The re-
quirement R stipulates that the two children of any red node must have the same color.
Observing a tree t in which a red node has a red child and a black child implies that any
tree that abstracts t violates R. Therefore, R is refutable in Tr and, due to Theorem 7,
it is a prohibition. N

Given a system model, we say a test setup Ti is more permissive that a test
setup Tj if any Tj-refutable requirement is Ti-refutable. The following lemma along
with Theorem 7 imply that, in any system model M, the reflexive test setup TM

r =
(S, b·c) is the most permissive test setup.

Lemma 9. In any system model M, any prohibition is TM
r -refutable.

The proof is straightforward: if R is a prohibition and S 6∈ R, then S′ 6∈ R for any S′

that abstracts S. Therefore, S itself can serve as the witness system demonstrating R’s
violation in Tr. To further illustrate, observe that any test setup T = (T, α) induces a
set of obligations: O(T) = {α̂(t) | t ∈ T}. Testing a system S in T amounts to the
conclusion that S satisfies an obligation that includes S, namely the obligation α̂(t),
where t ∈ α(S) is the observation obtained through testing. Therefore, the smaller α̂(t)
is, the more we learn about S by observing t; recall the indistinguishability condition.
For any system S, the smallest obligation in R that includes S is dSe, which belongs
to O(Tr) = {dSe | S ∈ S}. This intuitively explains why M’s reflexive setup TM

r

is the most permissive test setup in any system model M. In §7, we show that Tr is
“too permissive” in some settings, going beyond what is in practice refutable in a finite
amount of time.

That Tr is the most permissive test setup implies that a requirement that is ir-
refutable in Tr is irrefutable for any test setup. Obligations are prominent examples
of such irrefutable requirements, as stated in the following lemma, whose proof is im-
mediate by Lemma 3 and Theorem 7.

Lemma 10. Nontrivial obligations are irrefutable in any test setup.

Example 11. Consider the setting of Example 4 and assume that the system S should
satisfy the obligation O stating: systems must exhibit the behavior (1, 0). Suppose Ted
observes t = {(1, 1)}. Based on this, he cannot refute the hypothesis S ∈ O, simply
because > abstracts t and satisfies the obligation. Note that interpreting O as the re-
quirement P stating that the system may output nothing but 0 for input 1 results in a
refutable requirement. But O and P are not equivalent: O is an obligation and P is a
prohibition; recall Lemma 3. Clearly if Ted knows that S is deterministic, then observ-
ing twould demonstrateO’s violation. Determinacy itself cannot however be concluded

through black-box tests alone, simply because determinacy is a prohibition (see Exam-
ple 2) and prohibitions cannot be verified through black-box tests as we prove below in
Lemma 15. N

As the last example suggests, determinacy assumptions can play a significant role in
testing. For example, passing a test that checks a program’s output when the input is the
empty list is in practice taken as a “proof” that the program behaves correctly on empty
lists. This reasoning hinges upon the assumption that the program is deterministic.

We now turn to the irrefutability of non-monotone requirements. Suppose that a
requirement R is not monotone. Although R is irrefutable by Theorem 7, it is pos-
sible that for some systems the violation of R can be demonstrated through tests, as
explained in the following. We say a non-monotone requirement is semi-monotone if
it is the conjunction of two monotone requirements. It is easy to prove that a require-
mentR is semi-monotone iffR = bRc∧dRe (see Theorem 26 in Appendix A). Clearly
any system S that violates the prohibition bRc violates the semi-monotone R as well.
Since S 6∈ bRc can be demonstrated through tests, so can S 6∈ R. For instance, the
non-monotone requirement R = P ∧ O, defined in Example 2, is semi-monotone. For
the system S = {(0, n) | n ∈ N}, any test that demonstrates S 6∈ P also demonstrates
that S violates R.

For a requirementR that is not semi-monotone, it is possible that testing can demon-
strateR’s violation for none of the systems under consideration, as the following exam-
ple illustrates.

Example 12. Consider the eio model and the requirementR stating that for each (i, o) ∈
S there exists some (i′, o) ∈ S, with i 6= i′. This requirement, which can be seen as
a simplified form of a k-anonymity requirement [23], intuitively states that by solely
inspecting a system’s outputs, an observer cannot determine whether or not the input is
some particular i ∈ N. Note that R is not monotone. Moreover, R’s violation (for any
system) cannot be demonstrated through tests in any test setup (T, α): every observa-
tion t ∈ T obtained by testing any system belongs to α(>), and > ∈ R. It is easy to
check that dRe ∧ bRc = S and hence R is not semi-monotone. N

6 Verifiable Requirements

We define testing with the purpose of verifying the satisfaction of a requirement as dual
to testing for refutation.

Definition 13. Let T = (T, α) be a test setup for a system model (S,�,⊥,>). A
requirement R is T-verifiable if ∀S ∈ S. S ∈ R→ ∃t ∈ α(S). α̂(t) ⊆ R.

In particular, a requirement R is TM
r -verifiable in the system model M = (S,�

,⊥,>) if ∀S ∈ S. S ∈ R → ∃Sw ∈ bSc. dSwe ⊆ R. That is, if there exists a
witness system Sw that refines S and any system that abstracts Sw satisfies R, then by
observing Sw we have conclusively demonstrated S ∈ R. The following theorem is
dual to Theorem 7. Its proof is immediate.

Theorem 14. Let T be a test setup. Any T-verifiable requirement is an obligation.

An observation t ∈ α(S) shows that the system S satisfies the obligationO = α̂(t).
It also proves that S ∈ R for any requirement R ⊇ O. Therefore, as O becomes
smaller, more obligations are proved by the observation. This also explains why Tr

is the most permissive test setup for verification: any T-verifiable requirement is Tr-
verifiable. Consequently, a requirement that is not Tr-verifiable is non-verifiable in any
test setup. Prohibitions are prominent examples of such non-verifiable requirements.
The following lemma’s proof is straightforward.

Lemma 15. Nontrivial prohibitions are non-verifiable in any test setup.

The lemma expresses the essence of Dijkstra’s often-quoted statement that “program
testing can be used to show the presence of bugs, but never to show their absence” [6].
Contrary to the folklore, this does not mean that no requirement is verifiable through
black-box tests. For instance, the requirement that obliges a magic 8-ball to output
ask again later is clearly verifiable through black-box tests: observing this output once
demonstrates the obligation’s satisfaction. The following example illustrates this point.
We return to this example in §7 where we investigate temporal requirements.

Example 16. Consider the setting where a system S is identified with the set b(S) of
its behaviors, and S1 � S2 denotes b(S1) ⊆ b(S2). Suppose that a system behavior is
a sequence of events and e is an event. Assume that a system S satisfies the require-
ment Re stating that systems exhibit at least one behavior where e eventually appears.
Note thatRe is an obligation since its satisfaction is abstraction-closed. Now, observing
a refinement Sw of S where Sw exhibits one behavior π in which e eventually appears
demonstrates S ∈ Re: any abstraction of Sw exhibits π as well, hence satisfying Re.
We conclude that the obligation Re is verifiable through tests in Tr. N

We can now sharpen Dijkstra’s dictum to: (D) Program testing can be used to show
the presence of behaviors, but never to show their absence. If a software bug is a pro-
hibited behavior, then (D) coincides with Dijkstra’s statement, simply stipulating that
prohibitions are refutable, but not verifiable. However, if a bug is the absence of an
obliged behavior, then (D) translates to: program testing can be used to show the ab-
sence of bugs, but never to show their presence. This statement, which is dual to Dijk-
stra’s, simply stipulates that obligations are verifiable, but not refutable.

We conclude this section with an intuitive interpretation of refutability and verifi-
ability. The examples thus far given in the paper suggest that a system S satisfies an
obligation O if the set of desired behaviors that O obliges is included in the set of
behaviors of S. Any violation of O is therefore due to the behaviors that S “lacks”.
Consequently, O can be seen as a “lower-bound” for the set of S’s behaviors. Simi-
larly, S satisfies a prohibition P iff the set of behaviors of S is contained in the set of
behaviors P permits. Any violation of P is therefore due to “excessive” behaviors of S.
In this sense, P constitutes an “upper-bound” for the set of S’s behaviors; see Figure 1.

7 Refutation in Finite Time

A requirement that is deemed refutable in our theory might not be refutable in practice.
For example, a requirement whose refutation hinges upon measuring the exact momen-
tum and position of a quantum object is impossible to refute due to the laws of physics.

Prohibited
Permissible

Obligatory

S

Fig. 1. The hatched area stands for the set of prohibited behaviors. The white box is the set of
permissible ones which includes the set of obligatory behaviors, represented by the oval. The tri-
angle represents a system S’s behaviors. The white circle represents a violation of the obligation
denoted by the oval, and the black circle represents a violation of the prohibition depicted by the
hatched area.

This limitation, not unexpectedly, does not follow from our logical theory of tests and
refutation. Below, we extend our theory to account for a practically relevant limitation
of system testing: we consider refutation through black-box tests that proceed in a finite
amount of time.

In a system model (S,�,⊥,>), to show that a requirement R’s satisfaction is
refutable through tests in a finite amount of time, we prove that R is T-refutable in
a setup T = (T, α) where (1) every observation in

⋃
S∈S α(S) consists of finitely

many elements and (2) each such element is observable in finite time. In this case, we
say R is finitely refutable in T. The notion of finite verifiability is defined dually.

Condition (2) above refers to the world: determining whether a given element can be
observed in finite time falls outside our theory’s scope, and this condition’s satisfaction
must be substantiated by other means. Thus our theory cannot establish a requirement’s
finite (ir)refutability unless assumptions are made about what can be observed in finite
time in the world. The following example illustrates this point.

Example 17. Consider the eio system model and the family Tk = ((N × N)k, αk) of
test setups, where k ≥ 1 and αk maps any system S to Sk, inductively defined as S1 =
S and Sk+1 = S × Sk. Testing a system S in the setup Tk amounts to observing k
input-output pairs belonging to S. Assume that natural numbers are observable in finite
time. Then, observing every element of (N × N)k, where k ≥ 1 belongs to N, takes
finite time. The requirement Rnz stating that systems never output zero is, under this
assumption, finitely refutable in T1. Now consider the requirement Rfz , stating that
systems may output zero for at most finitely many inputs. It is easy to check that Rfz ,
although refutable in the reflexive test setup Tr, is not Tk-refutable for any k ≥ 1.

It now seems reasonable to conclude that Rfz is not finitely refutable: no finite set
of behaviors can refute Rfz . This conclusion does not however follow from our theory.
To illustrate, consider an alternative test setup T = ({∗, ω}, α), where α(S) = {∗} if S
outputs zero for finitely many inputs, and α(S) = {∗, ω} otherwise. Since α is order-
preserving, T is formally a test setup. The requirement Rfz is finitely refutable in T,
under the assumption that the elements of {∗, ω} are observable in finite time, which
is the essence of Condition (2) above. Whether this is a tenable assumption cannot
be settled inside our theory. Although T hardly appears realizable, such observations

are possible in certain cases, for example by measuring the electromagnetic radiation
emitted from a black-box system, cf. [22]. N

Condition (1) above is satisfied if finitely many behaviors of the system under test
are sampled for each observation, and only a finite portion of those behaviors are in-
spected even when the behaviors themselves are not finite objects. We illustrate this
point with an example.

Example 18. Consider the system model (2R×R,⊆, ∅,R × R), where R is the set of
real numbers. This system model is similar to the eio model except its input-output pairs
belong to R. Define pre(r) as the set of finite truncations of the decimal expansion of a
real number r. For instance, pre(

√
2) = {1, 1.4, 1.41, 1.414, 1.4142, · · · }. Note that a

real number can have more than one decimal expansions, for example, 1 and 0.999 · · · ,
but accounting for this point is unnecessary for our discussion here. We define the test
setup T = (F× F, α), where F is the set of rational numbers that have a finite decimal
expansion and αmaps any system S to the set

⋃
(i,o)∈S pre(i)×pre(o). An observation

of a system S in this setup is a pair (f1, f2), where f1 is a truncation of an input i and
f2 is a truncation of an output o, where (i, o) ∈ S. That is, we may observe only finite
portions of the decimal expansions of the inputs and outputs. Assume that F’s elements
are observable in finite time. That is, any T-refutable requirement is finitely refutable.

Now consider the requirement R<, stating that system outputs are strictly smaller
than

√
2. Clearly R< is a prohibition, hence Tr-refutable. Below, we show that R<

is not T-refutable. Define the system S = {(1, 1.4142 · · ·)}, which outputs
√
2, deci-

mally expanded, for the input 1. Even though S violates R<, no truncation of S’s out-
put’s decimal expansion conclusively demonstrates this, because the set of permissible
outputs according to R<, namely {o ∈ R | o <

√
2}, is not a closed set in R’s standard

topology. That is, there is a number, namely
√
2, that is arbitrarily close to this set, but

is not a member of the set. No finite truncation of this numbers decimal expansion can
therefore conclusively determine whether it is a member, or not. We therefore conclude
that R< is not T-refutable. An analogous argument shows that the requirement R≤
stating that system outputs must be less than or equal to

√
2 is T-refutable, and hence

finitely refutable, because the set of permissible outputs it induces, namely (−∞,
√
2],

is topologically closed. N

The example suggests that there is a fundamental connection between refutability
and topological closure when system behaviors are infinite sequences. This connection
has been investigated by Alpern and Schneider in the context of temporal properties [2],
which we turn to next.

To investigate temporal requirements, we model systems that induce infinitely long
sequences of events, such as operating systems, and their requirements following [4].
Let Σ be an alphabet (e.g. of events or states), where every element of Σ can be ob-
served in finite time. We write Σ∗ and Σω for, respectively, the sets of finite and count-
ably infinite sequences ofΣ’s elements. A behavior is an element ofΣω and a system is
a set of behaviors. The complete lattice (2Σ

ω

,⊆, ∅, Σω) instantiates our system model,
defined in §2. For a behavior π ∈ Σω , we write pre(π) for the set of all finite prefixes
of π, and we denote the concatenation of an element of Σ∗ with one of Σω by their
juxtaposition. As usual, a requirement is a set of systems.

We define the test setup T∗ as (T∗, α∗), where T∗ is the set of all finite subsets
of Σ∗, and α∗(S) is the set of all finite subsets of

⋃
π∈S pre(π) for a system S. In-

tuitively, any element of α∗(S) is a possible observation of S where finite prefixes
of finitely many behaviors of S are observed. For any T∗-refutable requirement R
and any S 6∈ R, there exists a finite (witness) set tw of finite prefixes of S’s behav-
iors such that any system S′ that could have yielded the observation tw, i.e. tw ∈
α∗(S

′), violates R. Clearly, every T∗-refutable requirement is finitely refutable. Next,
we relate T∗-refutability and T∗-verifiability to the notions of properties and hyper-
properties.

A property is a set of (permitted) behaviors [18, 2], i.e. a subset of Σω . We have
(extensionally) defined a system as a set of behaviors. A property can therefore be seen
as a system. By overloading the notion of satisfaction, we say a system S satisfies
a property φ if S ⊆ φ. Any property φ thereby defines a refinement-closed require-
ment Rφ = bφc. A property φ is safety if ∀π 6∈ φ. ∃σ ∈ pre(π).∀π′ ∈ Σω. σπ′ 6∈ φ
and liveness if ∀σ ∈ Σ∗.∃π ∈ Σω. σπ ∈ φ. That is, safety and liveness properties are
closed and dense sets, respectively [2]. The following example illustrates properties.

Example 19. A linear-time temporal logic (LTL) formula φ defines a set b(φ) of behav-
iors or executions; see, e.g., [18]. A system S satisfies the requirement expressed by φ
if the set of system behaviors is contained in b(φ). Clearly if S satisfies the requirement
and S′ ⊆ S, for some system S′, then S′ satisfies it as well. Here the satisfaction rela-
tion is refinement-closed, with S1 � S2 if S1 ⊆ S2. Hence, for every φ, regardless of
whether b(φ) is a safety property, a liveness property, or an intersection of the two [2],
the requirement expressed by φ is a prohibition. Note that the obligation Re of Exam-
ple 16 is not expressible in LTL, where the satisfaction relation is refinement-closed as
just discussed, because then Re would have to be trivial by Lemma 3. However, Re
is expressed as EF e in the computation tree logic CTL. This argument amounts to a
simple proof for the well-known result that LTL is not more expressive than CTL [7]. N

Theorem 20. A temporal property φ is T∗-refutable iff φ is safety. Moreover, all tem-
poral properties are Tr-refutable and any T∗-verifiable property is trivial.

The theorem, whose proof hinges upon Lemma 3 and Theorem 7, implies that nontrivial
liveness properties, although Tr-refutable, are not T∗-refutable; cf. [8]. We now turn
to hyper-properties.

A hyper-property is a set of properties [4], i.e. a requirement in our model. A
system S satisfies a hyper-property H, if S ∈ H. A hyper-property H is hyper-safety
if for any S 6∈ H, there exists an observation t ∈ α(S) such that ∀S′ ∈ α̂(t). S′ 6∈
H; see [4]. It is easy to check that a temporal requirement R is hyper-safety iff R
is T∗-refutable. Now it is immediate by Theorem 7 that any hyper-safety requirement
is a prohibition. Therefore, finitely verifiable hyper-safety requirements must be trivial.
These results show how existing, specialized concepts and their refutability follow as
special cases of the notions we defined. For instance, Example 16’s requirement Re,
which is clearly finitely verifiable in T∗, cannot be hyper-safety due to the above results
and it is therefore not finitely refutable in T∗.

We conclude this section with another application of our theory and consider refu-
tation through system self-composition. Suppose we want to refute the hypothesis H

stating that a plane figure S is a circle by observing a number of points lying on the
figure. Since any three (non-collinear) points define a circle, in general we must ob-
serve at least four points lying on the figure to refute H . Alternatively, we may con-
sider the fictitious entity defined by the relation r4, where the relation r is obtained
from S: (x, y) ∈ r iff the point (x, y) lies on S. Then, observing a single element of
the set r4, which consists of four-tuples of the coordinates of the figure’s points, can
refute H . This line of reasoning is central to the self composition technique [3]: to
refute a k-property, which is a temporal property that cannot be refuted by observing
less than k system behaviors [4], one can make a single observation on the fictitious
entity that contains k copies of the system under test. Returning now to the family of
test setups Tk, with k ≥ 1, defined in Example 17, we remark that a requirement that
is Tk+1-refutable, but not Tk-refutable, can be refuted by observing a single behavior
of the entity that is found by self-composing the system under test no less than k + 1
times. We proceed with an example.

Example 21. The prohibition P , stating that systems are deterministic, given in Ex-
ample 2, is not T1-refutable: observing any single behavior of a non-deterministic eio
system S is insufficient to refute the hypothesis S ∈ P . However, observing a single el-
ement of S2 can demonstrate P ’s violation. Therefore, P is T2-refutable: determinacy
can be refuted by self-composing the system under test. N

Intuitively, the less stringently a requirement is specified, the larger is the number
of times the system under test must be self-composed to facilitate the requirement’s
refutability. We illustrate this point with a simple example. Consider the eio system
model and the prohibition R defined as: S satisfies R iff ∀(i, o) ∈ S. o = f(i), where f
is a function from N to N. Suppose that f is not available, but it is known that f is
monotonically increasing: i1 ≤ i2 implies f(i1) ≤ f(i2). We write R′ for the cor-
responding (less stringent) requirement: S ∈ R′ iff ∀(i1, o1), (i2, o2) ∈ S, i1 ≤ i2
implies o1 ≤ o2. The requirement R is T1-refutable, whereas R′, which is a superset
of R, is not: R′’s test oracle cannot make a decision solely based on a single input-
output pair; a test oracle for a requirement R is a (partial) decision function that given
a set of system behaviors tells whether the system violates R. Note however that R′

is T2-refutable. Since Tk+1 is strictly more permissive than Tk, we conclude that the
less stringently specified R is (in the above sense), the more a system must be sampled,
or self-composed, to facilitate a test oracle for R; cf. [21]. That is, a partially specified
requirement is harder to refute, because it leaves more leeway.

8 Algorithmic Refutability

We now characterize the requirements whose violation can be demonstrated through
algorithmic means. We start with an auxiliary definition. Any requirement R induces a
set ΩR of irremediable observations {t ∈ T | α̂(t) ∩ R = ∅} in a test setup T =
(T, α). It follows that a system S violates a T-refutable R iff α(S) ∩ ΩR 6= ∅. In-
tuitively, a requirement is algorithmically refutable only if it induces a recursively
enumerable set of irremediable observations. Recall that, given a countable set U , a

set E ⊆ U is recursively enumerable if there is a (semi-)algorithm AE that termi-
nates and outputs true for any input u ∈ U that is a member of E. If u 6∈ E, then AE
does not terminate.

Definition 22. A requirement R is algorithmically refutable in the test setup T =
(T, α) if R is finitely refutable in T, and ΩR is a recursively enumerable subset of the
countable set T .

If a system S violates an algorithmically refutable requirement R in T, then there is
at least one observation t ∈ α(S) that can be carried out in finite time, where AΩR

terminates on t and outputs true. Here, true means t ∈ ΩR, demonstrating S 6∈ R.
Observing such a t through testing, therefore, conclusively refutes the hypothesis S ∈
R. The following example illustrates Definition 22.

Example 23. Consider the prohibition P for eio systems stating that a system may
never output 0 for an odd input. Clearly, P is T1-refutable, and whether an obser-
vation {(i, o)} is irremediable is decidable since the set ΩP = {{(2i + 1, 0)} ∈
T1 | i ∈ N} is recursive. If natural numbers are finitely observable, then P is algo-
rithmically refutable in T1: any S that violates P has a finitely observable behavior,
e.g. t = {(3, 0)}, and whether, or not, t ∈ ΩP can be decided by a Turing machine. N

LetR be an algorithmically refutable requirement in T = (T, α), and S be a system.
The decision problem that asks whether S violates R is semi-decidable, if α(S) is a
recursively enumerable subset of T . We illustrate this point using the following test
algorithm, which relies on dovetailing. For a formal treatment of dovetailing, which is
a poor man’s parallelization technique, see, e.g., [20].

Algorithm 24. Fix an arbitrary total order on T ’s elements. Dovetail Aα(S)’s compu-
tations on the elements of T . In parallel, dovetail AΩR

’s computations on those obser-
vations for which Aα(S) terminates. Output true and terminate, when any computation
of AΩR

terminates.

If S 6∈ R, then there exists at least one observation tw in the set α(S)∩ΩR. The test
algorithm is bound to terminate on tw and output true, thus demonstrating S 6∈ R in fi-
nite time. However, if S ∈ R, then the test (semi-)algorithm does not terminate. Ideally,
standard test selection methods [15] place likely witnesses of R’s violation early in the
ordering assumed on T . Note that the above test algorithm achieves the (impractical)
ideal of testing: it not only has “a high probability of detecting an as yet undiscovered
error” [15], the algorithm is in fact guaranteed to reveal flaws in any system that violates
an algorithmically refutable requirement. We proceed with an example.

Example 25. Fix an ordering on the set of all Turing machines:M0,M1, · · · . In the eio
model the requirement R is defined as: S ∈ R if for any (i, o) ∈ S the machine Mi di-
verges on o. It is easy to check that R is T1-refutable and the set ΩR is recursively enu-
merable. Suppose that α1(S) is recursively enumerable for a system S. That is, Aα(S)
is guaranteed to terminate on any (i, o) ∈ S in the universe N×N. If S 6∈ R, then there
is a “witness” (iw, ow) ∈ S where Miw terminates on ow. Therefore, dovetailing Mi’s
computations on o for all (i, o) on which Aα(S) terminates is bound to witness a termi-
nating computation, thus demonstrating S 6∈ R in finite time. N

Next, we apply the notion of algorithmic refutability to the temporal requirements
introduced in §7 and the corresponding test setup T∗. It is easy to check that a safety
property φ is algorithmically refutable iff φ’s set of irremediable sequences ∇φ =
{σ ∈ Σ∗ | ∀π ∈ Σω. σπ 6∈ φ} is recursively enumerable. This condition separates
refutability from enforceability, as explained below. To enforce the safety property φ
on a system S, a reference monitor observes some t ∈ α(S). If t demonstrates that S
violates φ, then the monitor stops S. Otherwise, the monitor permits S to continue its
execution. For enforcement, the set∇φ must therefore be recursive [11]. It then follows
that any enforceable temporal property is algorithmically refutable. An algorithmically
refutable property need not however be enforceable: any property φ, where∇φ is recur-
sively enumerable but not recursive, is algorithmically refutable, but not enforceable.

To further illustrate the relationship between refutability and enforceability, we de-
fine weak enforceability for a hyper-safety requirement R as follows. By monitoring
the executions of a system S, a monitor observes some t ∈ α∗(S). If t does not con-
clusively demonstrate S 6∈ R, then the monitor permits S to continue. However, if t
does conclusively demonstrate R’s violation, then the monitor may either stop S, or
diverge and thereby stall S. Recall that a system S violates a hyper-safety require-
ment R iff α∗(S) ∩ ΩR 6= ∅. To weakly enforce R, the set ΩR must therefore be
co-recursively enumerable, i.e. T∗ \ ΩR must be recursively enumerable. This obser-
vation, which concurs with [16, Theorem 4.2], illustrates that weak enforceability and
algorithmic refutability are complementary in the sense that the former requires ΩR
to be co-recursively enumerable and the latter requires ΩR to be recursively enumer-
able. This duality between refutability and enforceability becomes evident only after
explicating the computational constraints of testing and enforcement.

9 Concluding Remarks

We have formally characterized the classes of refutable and verifiable requirements
for black-box tests. Naturally black-box testing can be combined with other analysis
techniques, like white-box system inspection; see, e.g., [17]. The indistinguishability
condition of §4, stating that the system under test can be any abstraction of an obser-
vation obtained through tests, would then no longer be applicable. For instance, if the
system under test is known to be deterministic, then clearly more requirements become
refutable as discussed in §5. In other words, augmenting black-box analysis with knowl-
edge that itself cannot be verified through black-box tests (e.g., coming from white-box
analysis) would expand the analysis’s capabilities, leading to more powerful refutation
methods. Developing such an extension of our theory and exploring its applications
remain as future work.

We remark that our theory of tests and refutation is not readily applicable to prob-
abilistic constraints. For example, a gambling regulation requiring that slot machines
have a 75% payout cannot be refuted through black-box test. Nevertheless, tests refut-
ing such probabilistic constraints with a controllable margin of error can be devised.
Developing a corresponding theory of tests and refutation also remains as future work.

Acknowledgments. We thank E. Fang, M. Guarnieri, G. Petric Maretic, S. Radomirovic,
C. Sprenger, and E. Zalinescu for their comments on the paper.

References
1. Martin Abadi and Leslie Lamport. The existence of refinement mappings. In LICS, pages

165–175. IEEE, 1988.
2. Bowen Alpern and Fred Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,

1985.
3. Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-

composition. In CSFW ’04, pages 100–114. IEEE Computer Society, 2004.
4. Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
5. Werner Damm and David Harel. LSCs: Breathing life into message sequence charts. Formal

Methods in System Design, 19(1):45–80, 2001.
6. Edsger W. Dijkstra. Notes on structured programming. Technical Report T.H. Report 70-

WSK-03, Technological University Eindhoven, April 1970.
7. E. Allen Emerson and Joseph Halpern. ”Sometimes” and ”Not Never” Revisited: On branch-

ing versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.
8. Yliès Falcone, Jean-Claude Fernandez, Thierry Jéron, Hervé Marchand, and Laurent

Mounier. More testable properties. STTT, 14(4):407–437, 2012.
9. Marie-Claude Gaudel. Testing can be formal, too. In TAPSOFT ’95, pages 82–96. Springer,

1995.
10. John Goodenough and Susan Gerhart. Toward a theory of test data selection. IEEE Trans.

Softw. Eng., 1(2):156–173, 1975.
11. Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for en-

forcement mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.
12. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall, 1998.
13. Kim Larsen and Bent Thomsen. A modal process logic. In LICS, pages 203–210. IEEE,

1988.
14. Carroll Morgan. Programming from Specifications. Prentice Hall, 1998.
15. Glenford Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. Wiley, 2011.
16. Minh Ngo, Fabio Massacci, Dimiter Milushev, and Frank Piessens. Runtime enforcement of

security policies on black box reactive programs. In POPL ’15, pages 43–54. ACM, 2015.
17. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.

Springer, 2005.
18. Amir Pnueli. The temporal logic of programs. In FOCS ’77, pages 46–57. IEEE, 1977.
19. Karl Popper. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge,

1963.
20. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,

1987.
21. Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortes. A survey on

metamorphic testing. IEEE Transactions on Software Engineering, 42(9):805–824, 2016.
22. François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework for the anal-

ysis of side-channel key recovery attacks. In EUROCRYPT ’09, pages 443–461. Springer-
Verlag, 2009.

23. Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., 10(5):557–570, 2002.

24. Jan Tretmans. Model based testing with labelled transition systems. In Formal Methods and
Testing, volume 4949 of LNCS, pages 1–38. Springer, 2008.

25. Rob J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In
CONCUR ’90, volume 458 of LNCS, pages 278–297. Springer, 1990.

26. Georg H. von Wright. Deontic logic. Mind, 60(237):1–15, 1951.
27. Elaine J. Weyuker. Axiomatizing software test data adequacy. IEEE Trans. Softw. Eng.,

12(12):1128–1138, 1986.

A Proofs

We first present the proofs of the lemmas and theorems that are given in the paper.
Afterwards, we formally state and prove the claim that a requirement is semi-monotone
iff it is the intersection of its upper set and its lower set, which is mentioned in §5.

Proof (Lemma 3’s Proof). If no system satisfies R, then R is trivial. Suppose that some
system S satisfies R. Then, every system in bdSec satisfies R, because R is an obliga-
tion and a prohibition. As bdSec = S, for any S ∈ S, we conclude that every system
satisfies R. That is, R is trivial.

Proof (Theorem 7’s Proof). Suppose R is T-refutable, with T = (T, α). We prove
that R is a prohibition. If R is empty, then R is a trivial prohibition. Assume that R is
nonempty and let S ∈ R. Now, suppose S′ � S. All we need to prove is that S′ ∈ R.
We present a proof by contradiction.

Assume that S′ 6∈ R. Then ∃t ∈ T. α̂(t) ∩R = ∅ simply because R is T-refutable.
Since α is order-preserving and S′ � S, we have t ∈ α(S). Therefore, S ∈ α̂(t). This
entails S 6∈ R, which contradicts the assumption S ∈ R. We conclude that S′ ∈ R.
Therefore, R is a prohibition.

Proof (Lemma 9’s Proof). Fix a system model M = (S,�,⊥,>), and assume that R is
prohibition. We show that R is TM

r -refutable, where TM
r = (S, b·c). Assume that some

system S violates R. Since R is a prohibition, any system that abstracts S violates R.
Moreover, S ∈ bSc. We conclude that ∃Sw ∈ bSc. dSwe ∩ R = ∅, namely Sw = S.
Therefore, R is TM

r -refutable.

Proof (Lemma 10’s Proof). Suppose R is a nontrivial obligation. We prove by contra-
diction that R is not refutable in any test setup.

Assume that R is T-refutable in some test setup T. By Theorem 7, R is a prohi-
bition. Then, R must be trivial by Lemma 3, because R is both a prohibition and an
obligation. That R is a trivial contradicts the assumption that R is a nontrivial obliga-
tion. We conclude that R is not refutable in any test setup.

Proof (Theorem 14’s Proof). Suppose R is T-verifiable, with T = (T, α). We prove
that R is an obligation. If R is empty, then R is a trivial obligation. Assume that R is
nonempty and let S ∈ R. Now, suppose S � S′. All we need to prove is that S′ ∈ R.
Since R is T-verifiable, from S ∈ R we conclude ∃t ∈ α(S). α̂(S) ⊆ R. As α is
order-preserving and S � S′, we have t ∈ α(S′). That is, S′ ∈ α̂(S). We conclude
that S′ ∈ R. Therefore, R is an obligation.

Proof (Lemma 15’s Proof). Suppose R is a nontrivial prohibition. We prove by contra-
diction that R is not verifiable in any test setup.

Assume that R is T-verifiable in some test setup T. By Theorem 14, R is an obli-
gation. Then, R must be trivial by Lemma 3, because R is both a prohibition and an
obligation. That R is a trivial contradicts the assumption that R is a nontrivial prohibi-
tion. We conclude that R is not verifiable in any test setup.

Proof (Theorem 20’s Proof). We split the proof into several parts.
(1) Suppose that a property φ is T∗-refutable. We show that φ is safety. Assume

that π 6∈ φ, for some π ∈ Σω . Then, the system Sπ = {π} violates φ. Now, by φ’s T∗-
refutability, there exists a finite set t of φ’s finite prefixes that demonstrates Sπ 6∈ Rφ,
where Rφ = bφc. Let σ be the longest element in t; note that since {π} is a single-
ton, there always exists a single longest element in t. Then, for any π′ ∈ Σω , the
system Sπ′ = {σπ′} violates φ, simply because t belongs to α(Sπ′). We conclude
that σπ′ 6∈ φ, for all π′ ∈ Σω . That is, φ is a safety temporal property.

(2) Suppose that φ is safety. We show that φ is T∗-refutable. Assume that a system S
violates φ. That is, ∃π ∈ S. π 6∈ φ. Since φ is safety, a finite prefix of π, say σ, satisfies
the following condition: ∀π′ ∈ Σω. σπ′ 6∈ φ. Now, define the observation t ∈ T∗
as {σ}. Note that t ∈ α(S), and moreover α̂(t) ∩ Rφ = ∅ due to the above condition.
This shows that φ is T∗-refutable.

(3) Any temporal property φ is Tr-refutable becauseRφ’s satisfaction is abstraction-
closed, for any φ. Then, by Lemmas 3 and 15, any Tr-verifiable or T∗-verifiable prop-
erty must be trivial.

Theorem 26. A requirement R is semi-monotone iff R = bRc ∧ dRe.

Proof. We split the proof into two parts, reflecting the theorem’s two statements.
(1) Assume that R is semi-monotone. We show that R = bRc ∧ dRe. Clearly R ⊆

dRe ∧ bRc, for any requirement R. All we need to prove is that dRe ∧ bRc ⊆ R.
If dRe ∧ bRc = ∅, then the claim trivially holds. Suppose S ∈ dRe ∧ bRc for some
system S. From S ∈ dRe, we conclude ∃S− ∈ R. S− � S. Similarly, from S ∈ bRc,
we conclude ∃S+ ∈ R. S � S+. In short, we have S− � S � S+, S− ∈ R, and
S+ ∈ R. Then, Lemma 27 below implies that S ∈ R, simply because R is semi-
monotone. Therefore, if R is semi-monotone, then R = dRe ∧ bRc.

(2) Assume that R = bRc ∧ dRe. We prove that R is semi-monotone. Note that
for any requirement Q, the requirement bQc is a prohibition, hence monotone. More-
over, dQe is an obligation, hence monotone. Therefore, bQc ∧ dQe is semi-monotone,
that is the intersection of two monotone requirements, for any requirement Q. In par-
ticular, R is semi-monotone because R = bRc ∧ dRe.

Lemma 27. If R is a semi-monotone requirement, then for any three systems S−, S,
and S+ the following condition holds.

S− � S � S+ ∧ S− ∈ R ∧ S+ ∈ R → S ∈ R

Proof. Either (1) R is monotone, that is R is the conjunction of two prohibitions or the
conjunction of two obligations, or (2) R is the conjunction of a prohibition P and an
obligation O. The lemma’s claim is immediate for case (1). Let us consider case (2).
Suppose S− � S � S+ ∧ S− ∈ R ∧ S+ ∈ R. Note that S− ∈ R implies that
S− ∈ O. Then, S− � S implies that S ∈ O. Similarly, S+ ∈ R implies that S+ ∈ P .
Then, S � S+ implies that S ∈ P . These two statements show that S ∈ P ∧ O. That
is, S ∈ R.

