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Abstract. Consensus algorithms are fundamental building blocks for
fault-tolerant distributed systems and their correctness is critical. How-
ever, there are currently no fully-automated methods for their verifica-
tion. The main difficulty is that the algorithms are parameterized: they
should work for any given number of processes. We provide an expressive
language for consensus algorithms targeting the benign asynchronous
setting. For this language, we give algorithm-dependent cutoff bounds.
A cutoff bound B reduces the parameterized verification of consensus to
a setting with B processes. For the algorithms in our case studies, we
obtain bounds of 5 or 7, enabling us to model check them efficiently. This
is the first cutoff result for fault-tolerant distributed systems.

1 Introduction

Fault-tolerant distributed systems are hard to get right: processes can stall,
crash, or recover, and the network might lose, delay, or duplicate messages [6].
As the number and the cost of failures of these systems increase, industry is
increasingly applying push-button verification methods to them, such as model
checking [41] and testing [31]. These methods analyze individual system config-
urations with a small, fixed number of participating processes. However, many
real distributed systems are intended to work for any given number of processes,
i.e., they are parameterized in this number. The deployed instances are often
larger than the analyzed ones, and the analyses then offer no a priori guarantees
for the deployed system. Still, an informal observation known as the small-scope
hypothesis [25] states that analyzing small system instances suffices in practice.
Empirical studies [4,42,49] support this hypothesis in different settings. For ex-
ample, in the distributed setting, a recent study [49] of 198 bug reports for several
popular distributed systems found that 98% of those bugs could be triggered by
three or fewer processes.

A crucial question is then: can we state and formally prove this hypothesis?
That is, given a parameterized system and a property ψ, can we determine a
cutoff bound : a number B such that whenever all systems with parameter val-
ues of B or less satisfy ψ, then systems with arbitrary parameter values also
satisfy ψ? The answer is no in general as the parametric verification problem is
undecidable even when we can decide the system’s correctness for each parameter
instance [5,45]. The best we can hope for is to find cutoff bounds for interest-
ing classes of systems and properties. While such results exist [15,16,17,20,30,29],



none apply to fault-tolerant distributed systems in general, and to algorithms for
solving the distributed consensus problem in particular. Consensus algorithms
are fundamental building blocks for distributed systems [22]: they are required
whenever multiple processes want to maintain, in a fault-tolerant way, a consis-
tent shared state or a consistent order of operations (for instance, in a database).

In addition to the lack of cutoff results, no fully automated method exists for
the parametric verification of consensus algorithms. The invariant verification
approach of [13] comes the closest, but it is not fully automated as the user
must find inductive invariants that are automatically checked. Also, while the
authors report good practical results, their main algorithm is only a semi-decision
procedure. Other reported results have either performed bounded verification
(e.g., [47,48,12]) or used interactive verification methods (e.g., [27,35,11,21,44]).

Contributions. Our main contribution is to prove the small scope hypothesis
for an expressive class of consensus algorithms. In more detail:

1. We define a language ConsL (Section 3), capable of expressing numerous con-
sensus algorithms that target the asynchronous and partially synchronous
setting with benign (i.e., non-Byzantine) failures. The central feature of
ConsL are guards based on fractional thresholds and selection predicates.
These guards capture algorithm constructs such as “if messages have been
received from more than 2

3 of the processes, then select the smallest received
value”. We have specified the following algorithms in ConsL: Paxos [36],
Chandra-Toueg [8], Ben-Or [7], 1

3 -rule and three algorithms from the Uni-
form Voting family [10], and the algorithm from [40].

2. For ConsL algorithms, we prove a zero-one principle for consensus (Sec-
tion 4): the algorithm’s correctness for binary inputs (from the set {0, 1})
entails the algorithm’s correctness for inputs from any ordered set, finite or
infinite. This is an analogue of the same principle for sorting networks [32].

3. We give cutoff bounds for algorithms run on binary inputs (Section 5): given
a ConsL algorithm A, we show that A solves consensus on binary inputs if
it solves it for exactly B = 2d + 1 processes, where d is the least common
denominator of the fractional thresholds in A’s guards. Together with Step 2,
this proves the small scope hypothesis for ConsL algorithms.

4. The bounds we obtain for real-world algorithms are indeed small: 5 or 7 pro-
cesses for all algorithms considered in this paper. We can thus leverage model
checking to provide the first fully automated decision procedure applicable
to a range of consensus algorithms, and we provide a tool (Section 6) that
generates Promela/Spin [23] models from ConsL algorithms. The resulting
verification times are competitive with the semi-automated method of [13].

2 Preliminaries

We start with set-theoretic preliminaries and briefly review the consensus prob-
lem and the Heard-Of (HO) model [10] for fault-tolerant distributed algorithms.

A multisetM over a set S is a function S → N, whereM(x) is the multiplicity
of x in M . We define |M | =

∑
s∈SM(s) and the multiset M \ X for a set X
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by (M \ X)(x) = 0 if x ∈ X and (M \ X)(x) = M(x) otherwise. Note that
this operation removes all occurrences of X’s elements from M . The multiset
image of a partial function f : A ⇀ B, is the multiset #[f ] : B → N defined by
#[f ](y) =

∣∣f−1(y)∣∣. We introduce notation for specifying multisets. For example,
M = {mx× x,my × y} denotes the multiset M where M(x) = mx, M(y) = my,
and M(z) = 0 for z /∈ {x, y}. We also define [a, b)Q = {c ∈ Q | a ≤ c < b}.

2.1 Consensus

The consensus problem assumes a fixed set Π = {1, . . . , n} of communicating
processes. Usually, we want an algorithm that solves this problem for any n > 0,
i.e., an algorithm parameterized by n. Each process in Π receives an input from
the value domain V, and the goal is to have all processes decide on a common
output. More precisely, a system solves the consensus problem [10] if it provides:

Uniform agreement: No two processes ever decide on two different values.
Termination: Every process eventually decides on a value.
Non-triviality: Any value decided upon was input to some process.
Stability: Once a process decides, it never reverts to an undecided state.

Note that the termination requirement says nothing about execution stop-
ping. In fact, to simplify modeling, we assume that all processes run forever.
Furthermore, the requirements make no exemption for failed processes. We fol-
low [10] where failed processes continue receiving and processing messages, and
can thus still decide. However, the messages they send are no longer received by
the other processes. We next explain this model in more detail.

2.2 The Heard-Of Model

We will define the semantics of our language via a translation into the HO model.
This model characterizes round-based algorithms, where every process performs
the following actions in each round: (1) send messages to other processes; (2)
wait and collect messages from other processes; and (3) update the local state.
The rounds must be communication-closed, such that the only messages collected
in a round are the messages that are sent in that round.

A salient point of the HO model is that message collection (Step 2) is assumed
to be performed by a lower-level messaging layer outside of the model. This layer
ensures communication closedness (for example, by buffering early and dropping
late messages) and handles issues such as message duplication. It decides when
to stop the collection and advance the round (for instance, using a timeout), and
hands over the received messages to the algorithm. Environment effects such as
crashed or late senders or message loss or delay might prevent the delivery of
some messages. The possible causes are indistinguishable to the receivers. The
HO model chooses to uniformly model all such effects, including process crashes,
as message loss. The environment effects are thus encapsulated in the heard-of
sets HOrp ⊆ Π, where HOrp models the set of processes whose messages are
collected by the messaging layer for process p in round r.
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Initially: inpp is p’s proposed value and decp is ⊥
sendr

p:
send inpp to all

nextrp:
if

∣∣HOr
p

∣∣ > 2
3
n and all received messages equal some v then

decp := v

if
∣∣HOr

p

∣∣ > 2
3
n then

inpp := smallest most often received value

Fig. 1: The HO model of 1
3 -rule

LetM denote the message space. An algorithm in the HO model is specified
by the following three elements, indexed by processes p and rounds r:

1. Ip ⊆ Sp is the set of initial states of p (contained in p’s state space Sp).
2. The send function sendrp : Sp ×Π →M, where sendrp(sp, q) determines the

message p sends to q in round r, based on p’s current state sp. This function
is total; not sending a message is modeled by a special dummy message ?.

3. The update function nextrp : Sp × (Π ⇀ M) → 2Sp . Let µrp : Π ⇀ M
model the messages p receives in round r, i.e., given HOrp and sq, let µrp(q) =
sendrq(sq, p) if q ∈ HOrp and let it be undefined otherwise. Then nextrp(sp, µ

r
p)

determines the set of possible successor states of p’s current state sp.

Example 1. Figure 1 shows the pseudo-code for the HO model of the 1
3 -rule

consensus algorithm [10], where the state of each process consists of the fields
inp and dec and sendrp and nextrp are the same for all processes p and rounds r.
The updates of the inp and dec fields in nextrp are done simultaneously. We do
not explain here why this algorithm works; we just use it to showcase the HO
model and motivate the design of our specification language, described shortly.

The semantics of an algorithm in the HO model is defined as the transition
system (S,→, I), where each state s ∈ S (respectively s ∈ I) consists of the local
states sp ∈ Sp (respectively sp ∈ Ip) of each process p ∈ Π and a value s.rnd ∈ N
recording the current round (initially 0). Given an HO collection {HOrp}r∈Np∈Π ,
there is a transition s→ s′ in round r = s.rnd if and only if s′.rnd = r + 1
and, for all processes p ∈ Π and µrp defined as above, s′p ∈ nextrp(sp, µ

r
p), i.e., all

processes simultaneously execute an update. Each HO collection induces a set
of infinite state sequences, called traces. The width of states and traces is |Π|.
This lockstep semantics models HO algorithm executions in synchronous settings
in an obvious way. But crucially, for consensus properties and communication-
closed algorithms, it also soundly abstracts the fine-grained semantics [9,14],
which models executions in asynchronous environments where processes progress
independently of each other. Hence, we can verify consensus properties in the
lockstep semantics of the HO model and conclude that they carry over to an
asynchronous environment.

Solving consensus requires assumptions on the environment [18]; for instance,
message loss can prevent consensus even with full synchrony [43]. As the HO
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model encapsulates environment effects in the HO collections, each algorithm
states its environment assumptions using a communication predicate, a set of
allowed HO collections. These then induce the algorithm’s set of traces. To be
useful, a predicate must reflect realistic assumptions on distributed systems, i.e.,
be implementable by a messaging layer using these assumptions. Two of the most
important such assumptions can be reflected in two types of round formulas φth
and φuf of the forms:

φth(c, r) , ∀p.
∣∣HOrp∣∣ > c · |Π| and φuf (r) , ∀p, q. HOrp = HOrq .

The threshold formula φth(c, r) requires that, in round r, all processes receive
messages from at least the fraction c ∈ [0, 1)Q of processes, reflecting the as-
sumptions about the number of failures and timeouts in round r. The uniformity
formula φuf (r) requires that all processes receive messages from the same set of
processes in round r. This reflects the partial synchrony assumption of a stable
period that spans an entire round. In stable periods, no crashes or recoveries oc-
cur, and all messages from non-crashed processes are delivered in a timely way.
For example, the communication predicate for the 1

3 -rule algorithm is given by
∃r1, r2. r2 > r1 ∧ φth( 23 , r1) ∧ φuf (r1) ∧ φth(

2
3 , r2).

While the modular construction of messaging layers implementing such pred-
icates is an open question, provably correct ad-hoc implementations for partially
synchronous environments exist [24,14], with modest proof complexity.

3 Specification Language

The HO model leverages the round structure present in many distributed algo-
rithms to create a simple model for them. However, similarities between consen-
sus algorithms for the asynchronous setting with benign failures run deeper than
just their round structure. In this section, we exploit these similarities to define
ConsL, a language that captures many algorithms for this setting.

3.1 Structural Commonalities Between Algorithms

To motivate the syntactic choices for ConsL, we use the 1
3 -rule algorithm to

highlight the typical structural characteristics of consensus algorithms:

1. All processes are fully symmetric, i.e., execute the same code.
2. The state of each process p contains two distinguished fields inp (the input
p receives) and dec (p’s decision). Initially, dec is set to the distinguished
value ⊥, indicating that no decision has been made.

3. The send function always sends the value of a single state field.
4. In the next function, each state field is either left unchanged or is updated to

some received value. No new values are produced; instead, values are simply
propagated between fields. Moreover, their origins are irrelevant. The map
µrp : Π ⇀ M of received messages can hence be replaced by the multiset
Rrp = #[µrp]. A field f is then updated to a value v from Rrp if:
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〈rspec〉 ::= 〈send-field〉 〈cp〉 〈instr〉∗

〈send-field〉 ::= identifier
〈cp〉 ::= ↘↗ | |

〈instr〉 ::= 〈guard〉 . 〈upd-field〉
〈guard〉 ::= (〈th〉,〈pred〉)
〈th〉 ::= fraction

〈pred〉 ::= any | smor | min | all= | maxts
〈upd-field〉 ::= identifier

(a) Syntax of ConsL round specifications.

inp ↘↗
( 2
3
, all=) . dec

( 2
3
, smor) . inp

(b) The 1
3
-rule algorithm

(0, inp)

(1, inp) (1, dec)

(c) The phase graph of 1
3
-rule

Fig. 2: ConsL syntax and example algorithm

(a)
∣∣Rrp∣∣ is strictly larger than some threshold, expressed as a fraction of
the total number of processes; in the example, this fraction is 2

3 for the
updates to both inp and dec, and

(b) v fulfills a particular predicate with respect to the set of received mes-
sages. In the example, the predicate for the dec update is that all mes-
sages in Rrp equal v, and for the inp update that v is a value with the
highest multiplicity in Rrp and is the smallest such value.

3.2 Syntax

The above observations motivate the syntax for the basic building block of
ConsL, the specification of a single round (Figure 2a). Here, we focus on the
core language, typeset in normal font; the greyed out parts are extensions (Sec-
tion 3.4). A round specification starts with the state field that is sent in the round,
followed by the communication pattern. In the ↘↗ pattern, all process pairs ex-
change messages. The specification ends with a list of update instructions.

An instruction instr consists of a guard and the updated field. We assume
that each upd-field appears at most once in the instruction list. The guard con-
sists of a threshold th ∈ [0, 1)Q, and a predicate pred. Intuitively, if messages
are received from more than the given threshold of processes, the target field is
updated with some value satisfying the predicate. The predicates are:

– any: any received value,
– smor: the smallest most often received value,
– min: the smallest received value, and
– all=: satisfied by v if all the received values equal v.

We will use the grammar symbols as projections where convenient; for example,
given a guard G, we write th(G) for its threshold. Figure 2b shows the (single)
round specification of the 1

3 -rule algorithm.
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While the 1
3 -rule algorithm repeats the same round indefinitely, many algo-

rithms use finite sequences of rounds, called phases, as units of repetition.1 A
ConsL algorithm A consists of a finite set of phases, a phase sequence, specified
by an infinite word w over this set, and a communication predicate, specified as
below. The phase sequence determines the infinite sequence of round specifica-
tions to execute, reflecting our assumption that processes run forever. While our
theorems also hold for arbitrary phase sequences, to obtain finite-state systems
and enable model-checking, we require w = uvω, for finite words u and v.

Communication predicates. As we use an HO model semantics, ConsL algo-
rithms must express their environment assumptions using communication pred-
icates. Arbitrary predicates could make cutoff bounds unobtainable, so we pro-
vide a restricted but sufficient way to specify them. The building blocks are the
round formulas φth(c, r) and φuf (r) from Section 2.2. Abusing notation, we as-
sociate the round labels φth(c) and φuf with the corresponding round formulas.
Let L = {φuf } ∪ {φth(c) | c ∈ [0, 1)Q} be the set of all round labels. A ConsL
communication predicate is then specified by a language of infinite words over
the alphabet Σ = P(L). Again, to ensure a finite representation, we require the
language to be ω-regular. For example, the communication predicate of the 1

3 -
rule algorithm is now specified as Σ∗Λ1Σ

∗Λ2Σ
ω, with Λ1 = {φth( 23 ), φuf } and

Λ2 = {φth( 23 )}.

Restrictions. To ensure that cutoff bounds exist, ConsL has several syntactic
restrictions. They are technical in nature and we provide some intuition for the
two main ones here.

First, we constrain the data flow within a phase. Intuitively, a phase of a
consensus algorithm is a single attempt to reach a decision on one of the input
values. We exploit this by assuming that all data within a phase originates from
the inp field, and that inp and dec are updated at most once. We formalize this
using the notion of a phase graph. First, given a phase Φ = [rs1, rs2, . . . , rsn],
and a field f , let f ’s latest update before i, denoted lu(f, i), be the largest j, with
j < i, such that f is updated in rsj , and 0 if no such j exists. The phase graph
is then a directed graph whose nodes are pairs (i, f) such that either the field f
is updated in rsi, or i = 0 and f is sent in some rsj with lu(f, j) = 0. An edge
(i, f) → (j, g) exists in the graph iff f is sent in rsj , g is updated in rsj , and
i = lu(f, j). Figure 2c shows 1

3 -rule’s phase graph. Our first restriction is then:

(R1) The phase graph of each phase is a tree rooted at (0, inp). For f ∈
{inp, dec}, at most one node (i, f) with i > 0 exists, and it must be a
leaf. Moreover, these are the only leaves of the graph.

Hence, each phase has at most one round where two fields are simultaneously
updated. In the phase graph, these rounds correspond to fork points, where the
dec-path (0, inp) ; (j, dec) forks off from the inp-path (0, inp) ; (i, inp) (see
Figures 2c and 4). Handling these is the most challenging part of our proofs, as
discussed later.
1 Some authors exchange the meanings of phases and rounds; we follow [10].
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The second main restriction is based on the observation that, to ensure agree-
ment, consensus algorithms require that decided values get stored as inputs for
future phases. Hence, at the fork point, an update on the dec-path must imply
an update on the inp-path. Therefore, the guard of the update on the dec-path
must be stronger than the guard of the update on the inp-path. We exploit this
and require a total ordering of the update guards in an algorithm. We start
by defining a partial order vP on the predicates by any vP P , P vP P , and
P vP all=, for all predicates P . Hence, P1 vP P2 iff whenever a value v satisfies
P2, then it also satisfies P1. We extend this order to guards such that G1 v G2 iff
th(G1) ≤ th(G2) and pred(G1) vP pred(G2). The associated restriction is (R2),
which we list along with the remaining restrictions (R3) and (R4):

(R2) The set of all guards used in the algorithm is totally ordered.
(R3) min and smor predicates only appear in instructions where send-field is inp.
(R4) If th(G) = 0, then pred(G) = any.

3.3 Semantics

Guards. We assume in the rest of the paper that the system is parameterized
by a set Π of processes and a totally ordered set V of values. Given a multisetM
of elements from the message spaceM , V ∪{⊥, ?}, define vs(M) ,M \{⊥, ?}.
Then, given a guard G = (t, p), a multisetM (of received messages), and a value
v ∈ V, we write M |= G(v) if |vs(M)| > t · |Π|, and one of the following four
conditions holds:

1. p = any and vs(M)(v) > 0,
2. p = all= and vs(M)(v) = |vs(M)|,
3. p = min and v is the smallest value in vs(M), or
4. p = smor and v is the smallest most frequent value in M ′ = vs(M), i.e.,
∀v′. M ′(v) ≥M ′(v′) ∧ (M ′(v) =M ′(v′) =⇒ v ≤ v′).

Send and next functions. As mentioned earlier, the phase sequence of a ConsL
algorithm uniquely determines a round specification rs(r) for each round r ∈ N
to be executed. We give an HO model semantics to such an algorithm by (1)
specifying the same set of initial states for each process: inp takes an arbitrary
value from V and all other fields are ⊥; and (2) translating each round specifi-
cation rs(r) into a pair (sendrp, nextrp) as follows:

– sendrp returns process p’s current (in round r) value of the send-field of rs(r).
– nextrp updates process p’s state by selecting new values for all fields in the

instruction list of rs(r). Given an instruction G . f and the partial function
µrp : Π ⇀M of messages received by the process p, let Rrp = #[µrp]. The set
of possible new values of the field f of process p is determined as follows:
• For all v ∈ V such that Rrp |= G(v), v is a possible new value for f .
• If no such value v ∈ V exists, the only possible value is the fallback value:

the old value of f of process p if f ∈ {inp, dec}, and ⊥ otherwise.
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We call fields other than inp and dec ephemeral since their fallback value ⊥ and
the restriction (R1) jointly imply that they do not keep state between successive
phases. Example 2 below presents an algorithm using ephemeral fields. Moreover,
the semantics ensures that the dec field never reverts from a value in V to ⊥.
Hence, the stability requirement of consensus holds by construction for all ConsL
algorithms, including those using the language extensions described later. We
therefore do not further discuss this requirement.

Labeled transition system semantics. In Section 2.2 we introduced the un-
labeled transition system semantics of the HO model. To restrict reasoning to
those traces satisfying the communication predicates, we label the traces with
round labels from Σ (Section 3.2). The r-th unlabeled transition s→ s′ of a
trace generated by an HO collection {HOrp}r∈Np∈Π gives rise to a set of labeled

transitions s Λ−→ s′, where Λ ∈ Σ, such that:

1. φuf ∈ Λ implies that the formula φuf (r) holds for {HOrp}r∈Np∈Π .
2. φth(c) ∈ Λ implies that φth(c, r) holds, and that c appears as the threshold

of some guard in the algorithm. For technical reasons, we also require that
for all guards G in the transition, th(G) = 0 ∨ th(G) = c.

A labeled trace includes both states and labels. The semantics of a ConsL algo-
rithm A is the set of infinite traces whose labels form a word in the communi-
cation predicate of A. Property satisfaction is relative to this semantics.

3.4 Extensions

To cover additional algorithms, we increase the expressiveness of ConsL by
including three additional features: leaders (l), timestamps (t), and random-
ness (r). We write ConsLE for a given set E ⊆ {l, t, r} to denote the language
with the corresponding extensions. An algorithm must specify the extensions it
uses. As we do not know of any algorithms combining randomness and times-
tamps, for simplicity we assume {r, t} 6⊆ E. The leaders and timestamp ex-
tensions are also subject to some syntactic restrictions required for our proofs.
The restrictions and extensions’ formal semantics are detailed in [38]; for space
reasons, we only provide an informal overview here.

Leaders. Leaders are distinguished processes that act as coordinators: they
collect the possible inputs and select one of them. Leaders add two new commu-
nication patterns:

– , where only the leader broadcasts a message in a round, and
– , where all processes send a message exclusively to the leader.

To prevent a failed leader from blocking progress, we assume that leaders can
switch arbitrarily between phases. We also assume that the leader of each round
is known in advance, as given by a function ldr : N → Π. This assumption is
common (e.g., [36,8]). Still, many algorithms work without it [10] as long as all
processes eventually agree on the phase leader. We believe that our results also
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1. inp ( 1
2
, maxts) . lvote

2. lvote (0, any) . inp
(0, any) . vote

3. vote ( 1
2
, any) . ldec

4. ldec (0, any) . dec

Communication predicate:
(Σ4)∗{φlr(

1
2
)}{φls}{φlr(

1
2
)}{φls}Σω

Fig. 3: Paxos written in ConsL

(0, inp)

(1, lvote)

(2, vote) (2, inp)

(3, ldec) (4, dec)

Fig. 4: Paxos phase graph

hold without the assumption, but we have not yet proved this. Next, to ensure
progress, we add two new round formulas:

– a leader send formula φls(r) , ∀p. ldr(r) ∈ HOrp, requiring that all processes
hear from the round leader, and

– a leader receive formula φlr(c, r) , |HOrldr(r)| > c · n, requiring that the
leader receives a sufficient number of messages in round r.

These formulas ensure that the algorithm is not stuck with a leader that has
failed or is partitioned from the other processes. We also extend the set L of
transition labels with the set {φls} ∪ {φlr(c) | c ∈ [0, 1)Q}.

Timestamps. A timestamped field stores a value together with the time of its
last update, thereby recording information about the execution history. Time
is logical, expressed by round numbers. When sending out a timestamped field,
both the value and the timestamp are transmitted. A new predicate, maxts, then
selects a value with the highest timestamp; to break ties, the smallest such value
is selected. In ConsL, timestamps only make sense with the inp field, since the
other fields are either never sent out or do not persist between phases.

Example 2. To showcase the use of leaders and timestamps, Figure 3 shows our
ConsL model of the Paxos algorithm [36], or more precisely, its Synod part. The
single four-round phase is repeated forever. Compared to [36], (1) our phases
(called “ballots” there) appear to start automatically (by conceptually moving
the NextBallot message of [36] to the messaging layer), (2) we assume that all
processes receive an input instead of just the leader, and (3) we replace phase
numbers by round numbers in inp’s timestamps (these are isomorphic by (R1)).

Randomness. Randomization is an alternative to partial synchrony for making
consensus solvable [7]. Randomized algorithms normally have a probabilistic ter-
mination guarantee: all processes eventually decide with probability 1. The ter-
mination proof usually relies on an almost-sure “lucky toss”, where all processes
draw the same favorable randomness. We turn this into a standard termination
guarantee by (1) modeling randomness as non-determinism: processes non-de-
terministically choose a bit for the fallback values; (2) providing a way to specify
lucky tosses, inspired by the Ben-Or algorithm; and (3) extending the set L of
transition labels with a special label λ, indicating that a lucky toss occurred.
For randomized algorithms, we make the usual assumption that V = {0, 1}.
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4 The Zero-One Principle

The zero-one principle for sorting networks [32] is a well-known result stating
that a sorting network correctly sorts all sequences of inputs if and only if it
correctly sorts all sequences of elements from B , {0, 1}. We prove an analo-
gous result for our language and the consensus problem. We call the consensus
problem for the binary domain V = B the binary consensus problem. Since the
randomization extension already assumes this domain, we restrict our attention
here to non-randomized algorithms. We also need a further restriction on ConsL,
listed separately as we need it only for the termination part of the 0-1 principle.
The other results hold without this restriction.

(RT) min and all= guards do not appear in the same round specification.

Theorem 1. An algorithm expressed in ConsLE (with r /∈ E) that additionally
obeys (RT) solves the consensus problem for an arbitrary value domain V if and
only if it solves the binary consensus problem.

There are intuitive reasons why the principle should hold. Since we assumed
r /∈ E, ConsL’s semantics immediately implies that all algorithms guarantee
non-triviality (in addition to stability). We thus only have to consider agree-
ment and termination, for which we prove that their violations are preserved
when V = B. By definition, agreement requires only two values to disprove. We
combine this with the earlier observation that ConsL algorithms simply propa-
gate values between the processes’ fields. Then it suffices to ensure that whenever
two different values can be propagated in a multi-valued agreement counterex-
ample, both 0 and 1 can be propagated when V = B. This is in general possible
as the values themselves are irrelevant and only their relative ordering matters.
Disproving termination requires showing that, whenever guards (in particular,
those for updating dec) can fail in a multi-valued setting, they can fail in the
binary setting. From the language semantics (Section 3.3), there are two ways
for a guard to fail. The first way is to have the process receive insufficiently many
non-⊥ messages. As this is independent of the size of V, we can mimic this cause
of failure in the binary setting. The second way is to have the process receive
different values when the update is guarded by an all= predicate. In this case,
two values also suffice.

Unfortunately, the proof (given in [38]) is more complex than this intuition
might suggest. One example of its intricacies is the restriction (RT). The follow-
ing problematic example shows why this restriction is necessary.

Example 3. Consider the algorithm in Figure 5. Note that the phase sequence
is Φ1Φ2Φ

ω
3 and the communication predicate demands that all processes receive

messages from a majority of processes in each round. Consequently, every round’s
threshold guard is satisfied. This algorithm violates termination in a three-valued
setting, but not in the binary setting. To see this, first consider the binary setting.
Assume that some process p is still undecided after Φ3. This requires that p
receives both 0’s and 1’s in Φ3. Hence, some majority P ⊆ Π of processes had inp
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Phase Φ1

inp ↘↗ ( 1
2
, min) . inp

( 1
2
, all=) . vote

vote ↘↗ (0, any) . dec

Phase Φ2

inp ↘↗
( 1
2
, min) . inp

Phase Φ3

inp ↘↗
( 1
2
, all=) . dec

Phase sequence: Φ1Φ2Φ
ω
3 ; communication predicate: {φth(

1
2
)}ω.

Fig. 5: Example showing the necessity of (RT)

set to 1 at the start of phase Φ2. It follows that all processes in P have updated
both inp and vote to 1 in the first round of Φ1. Due to the communication
predicate, in the second round of Φ1, p must have seen a message from at least
one process from P and thus decided, which is a contradiction. Therefore, this
algorithm terminates after at most four rounds in the binary setting.

In the multi-valued setting, the algorithm may not terminate. Consider a run
of the algorithm where all processes have pairwise distinct values in their inp
fields. In the first round, it is then possible that each process receives at least
two different values and that there is no majority for a particular value in the
inp fields at the end of the round. As a result, no process decides in the second
round of phase Φ1. Moreover, it is possible that different values still exist after
phase Φ2. Hence, phase Φ3 does not guarantee termination.

The crux of the problem is round 1 of phase Φ1, which (RT) prohibits. There,
in a multi-valued setting, two processes p and q can update inp to two different
values v and v′, while the updates to vote fail at both p and q. However, in the
binary setting, any process p that updates inp to 1 must update vote as well.

5 Cutoff Bounds for Binary Consensus

The zero-one principle shows that it suffices to verify consensus algorithms for the
binary domain V = B. We now complete our proof of the small scope hypothesis
by proving it for the binary case. For an algorithm A with the set of guards G,
let TA = {th(G) | G ∈ G∧pred(G) 6= smor}∪{ th(G)

2 | G ∈ G∧pred(G) = smor}.

Theorem 2. Let A be an algorithm written in ConsLE for some E. Let d be
the least common denominator of the (reduced-form) fractions in TA. Then, A
solves binary consensus for any number of processes if and only if A solves binary
consensus for exactly 2d+ 1 processes.

As an example, Theorem 2 yields a cutoff bound of 7 for the 1
3 -rule algorithm

(Figure 2) and a cutoff bound of 5 for Paxos (Figure 3). Like with the 0-1
principle, we only sketch the main proof ideas; the details are in [38].

We start by giving an overview of our proof technique and providing intuition
for the choice of our cutoff bound B = 2d+1. The details differ slightly depending
on the consensus property considered. We first explain the general approach,
which is same for all the properties, and focus on the differences afterwards. We
show that, given a (labeled) counterexample trace τl of a large width k > B that

12



violates a consensus property, we can create a counterexample τs of the small
width B, with the same labels as τl. A trace inflation lemma allows us to ignore
systems of widths below B by inflating small counterexamples.

Our proof is based on simulations in the style of [37]. These rely on a simu-
lation relation R relating states sl of the large system to states ss of the small
system. The main proof obligation for simulation requires that ss can mimic all
possible transitions from sl; formally, given any ss, sl, s′l, and Λ, we must prove:

(ss, sl) ∈ R ∧ sl
Λ−→ s′l =⇒ ∃s

′
s. ss

Λ−→ s′s ∧ (s′s, s
′
l) ∈ R. (s-trans)

To define the relation R, we observe that guards, and thus also transitions, are
agnostic to the absolute numbers of processes; they only use fractional thresholds
and compare the relative frequencies of values. Hence, we relate states of different
sizes based on the frequencies of values from V⊥, expressed as fractions of the
number of processes. We discretize these fractions into size-independent slots
{0, 1d ,

2
d , . . .

d−1
d }, since only d-denominated fractions appear in the algorithm’s

guards. The state ss must then be wide enough to accommodate the sl-slot of
each value from V⊥. In [38], we show that 2d + 1 is the smallest such width.
We now give more details of the simulation relation and our proof under the
assumption that V = B.

5.1 Core elements of the simulation relation

Given two natural numbers n (the system’s width) and d (with d ≥ 2), we
define two sets T , {0, 1d , . . . ,

d−1
d } and T0 , T ∪ {− 1

3d}, and a function

γn : {0, . . . , n} → T0, with γn(c) =
d d
n ce−1
d when c > 0, and γn(0) = − 1

3d . The
function γn maps process counts to slots, where γn(c) yields the smallest thresh-
old in T0 exceeded by the count c. These counts typically arise as c = #[s(f)](v),
i.e., the number of processes holding value v in field f , where we write s(f) for
the function defined by s(f)(p) = sp.f for all p ∈ Π. If state s has width n,
then γn(#[s(f)](v)) denotes the corresponding slot in T0. Given two multisets
Ms and Ml of sizes B and k respectively, we define the following relations:

(Ms,Ml) ∈ cntMS= , ∀v ∈ V⊥. γB(Ms(v)) = γk(Ml(v))

(Ms,Ml) ∈ cntMS≥(W ) , ∀v ∈W. γB(Ms(v)) ≥ γk(Ml(v))

(Ms,Ml) ∈ cntMS∑
≥(W ) , γB(

∑
v∈W

Ms(v)) ≥ γk(
∑
v∈W

Ml(v)).

The first relation requires the slot of each value from V⊥ to be exactly the same
in both multisets. Sometimes this will be too strong a requirement, and we will
switch to the other two relations, which are weaker (the first two relations can
be expressed in terms of the last one, but we retain them for convenience).

Example 4. For the 1
3 -rule algorithm, we have B = 7 and T = {0, 13 ,

2
3}. Take

k = 13 and consider the multisets M in the first column of Table 1. The second
column of the table indicates their size and the remaining columns display for
each of them the slots γ|M |(c) of the indicated counts c. Then, we have
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multiset M |M| M(0) M(1) M(⊥) M(0) +M(1)

M1
s = {4× 0, 3× 1} 7 1/3 1/3 −1/3d 2/3

M1
l = {5× 0, 8× 1} 13 1/3 1/3 −1/3d 2/3

M2
l = {5× 0, 7× 1, 1×⊥} 13 1/3 1/3 0 2/3

M3
l = {4× 0, 9× 1} 13 0 2/3 −1/3d 2/3

Table 1: Slots γ|M |(c) for different counts c and T = {0, 13 ,
2
3}.

– (M1
s ,M

1
l ) ∈ cntMS=,

– (M1
s ,M

2
l ) ∈ cntMS≥(V) ∩ cntMS∑

≥(V), but (M1
s ,M

2
l ) /∈ cntMS=, and

– (M1
s ,M

3
l ) ∈ cntMS∑

≥(V), but (M1
s ,M

3
l ) /∈ cntMS≥(V).

These relations form the basis of our simulation relation R. For space reasons,
we focus on just the salient points of R. For example, we require:

(#[ss(inp)],#[sl(inp)]) ∈ cntMS≥(V). (inp-rel)

for all (ss, sl) ∈ R. Similar conditions relate the other fields. The exact relation
used depends on both the property we are proving, and on the field’s position
in the phase graph. The next subsection provides additional details, focusing on
the core language ConsL (without extensions) for simplicity.

5.2 Simulating transitions

Given a transition s
Λ−→ s′ in a trace, define U to be the set of all upd-fields

appearing in the transition’s instructions, and the global update associated with
the transition to be a function U : U → Π → V⊥, where U(f)(p) is v ∈ V if p
updates the field f with v, and ⊥ if p updates f with a fallback value. We let
up(f) = U(f)(p) and call up the local update of the process p. Our simulation
proofs proceed in three stages:

(1) Simulate local updates: for any local update up possible from sl, prove that
there exists a set P ⊆ Π such that any process whose HO set is P can also
perform the local update up from ss.

(2) Simulate global updates: given any global update Ul associated with a transi-
tion sl

Λ−→ s′l, combine the local updates from the previous stage to construct
a global update Us associated with a transition ss

Λ−→ s′s, such that Us is sim-
ilar to Ul. For example, for all fields f updated in a transition before the
fork point, we require that (#[Us(f)],#[Ul(f)]) ∈ cntMS=.

(3) Simulate state updates: given sl
Λ−→ s′l, Ul, and Us as above, show that apply-

ing Us to ss yields an s′s with ss
Λ−→ s′s and (s′s, s

′
l) ∈ R. When Ul updates inp,

i.e., inp ∈ U , this is not always the case. The reason is that Us alone does not
completely determine #[s′s(inp)], as the old values are used as a fallback. For
instance, if #[ss(inp)] = M1

s = {4 × 0, 3 × 1}, we can construct two global
updates U1 and U2 with #[U1(inp)] = #[U2(inp)] = {3×0, 4×⊥}, such that
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applying U1 to ss yields a state s′s with #[s′s(inp)] = {7×0} (U1’s 3×0 over-
write all 1’s in ss(inp)), and U2 leaves ss intact (U2’s 3×0 overwrite three 0’s
in ss(inp)). Hence, to obtain the desired s′s with (s′s, s

′
l) ∈ R, we might first

have to transform Us into some appropriate U ′s with#[Us(inp)] = #[U ′s(inp)]
by permuting the processes’ local updates. This is achieved by permuting
their round HO sets. Note that this preserves the step label Λ.

Stage (1) is relatively straightforward, whereas the next two stages are signif-
icantly more involved. Stage (2) is complicated by the fork points (Section 3.2),
which make constructing similar global updates a non-trivial combinatorial prob-
lem. The restriction (R2) is crucial in solving this problem. In Stage (3), a prob-
lem arises when the inp field is updated as the following example illustrates.

Example 5. Consider states ss and sl such that #[ss(inp)] = M1
s = {4 ×

0, 3 × 1} and #[sl(inp)] = M1
l = {5 × 0, 8 × 1}. There is an update Ul with

#[Ul(inp)] = {1 × 0, 1 × 1, 11 × ⊥} that yields a state s′l with #[s′l(inp)] =
M3
l = {4 × 0, 9 × 1}. The updates Us with #[Us(inp)] = {1 × 0, 1 × 1, 5 × ⊥}

are the only ones satisfying (#[Us(inp)],#[Ul(inp)]) ∈ cntMS=. However, none
of these can be applied to ss to yield a state s′s such that (inp-rel) holds
for s′l and s′s, since attaining a fraction γ13(#[s′l(inp)](1)) = γ13(9) = 2

3 of
1’s in s′s would require #[s′s(inp)](1) ≥ 5. Hence, we might be forced to use
a Us such that (#[Us(inp)],#[Ul(inp)]) /∈ cntMS=, which in turn might cause
(#[Us(f)],#[Ul(f)]) /∈ cntMS= for the other fields updated by Us.

After the fork point, we therefore weaken the Stage (2) relation to

(#[Us(f)],#[Ul(f)]) ∈ cntMS≥(W ) ∩ cntMS∑
≥(W ),

for an appropriate W ⊂ V⊥. For ephemeral fields, this also implies that the
simulation relation must use cntMS≥(W ) and cntMS∑

≥(W ) instead of cntMS=.
The choice of W depends on the property whose violation we want to preserve.

Agreement and non-triviality. Preserving agreement and non-triviality vio-
lations requires the small system to make decisions whenever the large system
makes them. Thus, we choose W = V. This suffices to show that whenever a
value v ∈ V satisfies a guard (in particular, for updating dec) in the large system,
v also satisfies that guard in the small system. Our choice of W might force up-
dates to happen in the small system where none happened in the large system,
but this is acceptable for the violations we wish to preserve.

Termination. Preserving termination violations requires exactly the opposite:
whenever an update guard (in particular, for updating dec) fails in the large sys-
tem, its failure must also be possible in the small system. Recalling the semantics
of ConsL, guards fail for two reasons: an insufficient number of non-⊥ messages
have been received, or different values have been received and the guard uses an
all= predicate. Choosing W = {⊥} preserves the first cause of failure, but not
the second. ChoosingW = V preserves the second cause, but not the first. Thus,
the correct choice depends on the transition sl → s′l, and cannot be determined
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Algorithm Bound Agreement Termination
Time States Time States

Paxos 5 0.89 1,135,730 0.93 1,151,691
Paxos (3 rounds) 5 0.70 853,003 0.73 866,917
Chandra-Toueg 5 0.85 1,032,371 0.89 1,048,332
Algorithm from [40] 5 1.17 1,367,956 1.19 1,370,414
1
3
-rule 7 0.04 67,578 0.04 70,070

Coordinated Uniform Voting 5 0.02 39,650 0.02 39,948
Simplified Coord. Uniform Voting 5 0.01 27,304 0.01 27,616
Uniform Voting (variant) 5 0.01 17,238 0.01 17,385
Ben-Or 5 0.03 42,478 0.03 45,348

Table 2: Experimental results. Time is given in seconds.

in advance. This is a well-known problem with forward simulation, the type of
simulation that we described in (s-trans). To overcome this problem, we resort
to backward-forward simulations [37], which enable us to switch between the
two choices of W on-the-fly. As our transition systems are all finitely-branching,
backward-forward simulation ensures the inclusion of infinite traces.

6 Experimental Results

We combine Theorems 1 and 2, the finite representations of the phase sequence
and the communication predicates, and the techniques from [46] for handling un-
bounded timestamps to turn model checking into a decision procedure for ConsL
algorithms and consensus. Given a ConsL algorithm A with a cutoff bound B,
one encodes the HO model of A for |Π| = B and V = B in the model checker’s
input language and verifies it. We have built a tool that automatically translates
a ConsL algorithm into the appropriate Promela model and LTL properties for
the Spin model checker [23]. As case studies, we generated models of different
algorithms from the literature (Table 2). Our verification times confirm that the
above decision procedure is applicable in practice, with modest resources.

The tool and the generated models are available for download [39]. For sim-
plicity, our tool handles only a subset of phase sequence and communication
predicate specifications described in Section 3.2. To improve performance, the
tool implements two optimizations. First, it reduces the model’s branching factor.
In a naive modeling approach, in every round in which the uniformity formula
φuf does not hold, each of the B processes first chooses its HO set independently
and then performs a local update based on this HO set, yielding a branching
factor of 2B

2

. Instead, the tool-generated models first calculate the possible local
updates and let each process pick one of them, lowering the branching factor to
typically 2 or 3. Second, the tool reduces the state space by exploiting symme-
try in the system and applying a counter abstraction. The abstraction is sound
and complete. For leaderless algorithms this is immediate since guard satisfac-
tion (Section 3.3) is defined exactly on multisets; for leader-based algorithms, we
need an additional variable to track the leader process’ state in the abstraction.
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7 Related Work

The general parametric verification problem was shown to be undecidable by Apt
and Kozen [5]. Suzuki [45] showed that this holds also when the parameter is the
number of replicated processes, each having a fixed state space. The small scope
hypothesis is folklore, implicitly formulated by Jackson and Damon [26], and
empirically studied for Java data structures by Andoni et al. [4], for answer-set
programs by Oetsch et al. [42], and for distributed systems by Yuan et al. [49].

Cutoff bounds. Cutoff bounds have been devised for several classes of algo-
rithms and properties: for token-ring systems by Emerson and Namjoshi [17]; for
systems with existential guards and systems with universal guards by Emerson
and Kahlon [15]; for cache coherence protocols by Emerson and Kahlon [16]; for
rectangular hybrid automata by Johnson and Mitra [29]; and for software trans-
actional memories by Guerraoui et al. [20]. Kaiser et al. [30] devise a method for
determining cutoff bounds for the thread-state reachability problem dynamically,
by performing a partial search of the state space. Abdulla et al. [2] use similar
ideas, but their results apply to a larger class of systems. None of these results
applies to consensus algorithms or other types of fault-tolerant distributed sys-
tems. The only cutoff result that we are aware of in this area is by Delzanno
et al. [12]. They derive cutoff bounds for the proposer and learner roles of Paxos,
but not the acceptor role, for which they perform only bounded verification. We
adopt the more common model where all processes play all the roles.

Other (semi-)automated methods. Backward reachability analysis of well-
quasi-ordered systems [1] and regular model checking [3] are two general ap-
proaches to the verification of parametric systems. Regular model checking has
been used to verify some simple fault-tolerant algorithms [19]. However, no suit-
able well-quasi-ordering or regular transition relations are known to exist for
fault-tolerant distributed systems that rely on threshold guards. Two recent
works have explored alternative approaches for the parametric verification of
such systems.

Konnov et al. [28] introduce an abstraction for systems based on a type of
threshold guards, roughly similar to ConsL guards. Their technique yields a
sound, but incomplete (due to abstraction) verification procedure for next-free
LTL properties, and they successfully apply it to several simpler fault-tolerant
algorithms. In [33,34] they propose additional verification methods for the ab-
straction and also apply them to a simplified version of the consensus problem.

Drăgoi et al. [13] introduce the consensus logic CL, aimed at verifying the
properties of round-based consensus algorithms, and a domain specific language
for it [14]. CL is strictly more expressive than ConsL, and can encode algorithms
for the synchronous and Byzantine settings. They provide a semi-decision proce-
dure for invariant checking, which performs well in their experiments, and a full
decision procedure for invariant checking for a fragment CLdec whose expressive
power is incomparable to ConsL. Their method is only semi-automated, since
the user must find the appropriate invariants, and is not guaranteed to give an
answer for CL (outside of CLdec), since it is based on a semi-decision procedure.
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8 Conclusions

Our main contribution is the specification language ConsL for consensus algo-
rithms, for which we derive a zero-one principle and cutoff bounds for verifying
consensus properties. This language covers a relevant and non-trivial class of
consensus algorithms. Our bounds are algorithm-dependent, but fairly small,
either 5 or 7 for our case studies. This formally proves the small scope hypoth-
esis for this class, and lends additional credibility to the hypothesis for other
fault-tolerant distributed algorithms. Moreover, the bounds are small enough to
be within the reach of standard model-checking methods, yielding the first fully
automated verification procedure for consensus algorithms.

We see two directions for future work. The first is to extend our results to
other algorithms. One possible extension is to Byzantine-tolerant algorithms.
However, as these algorithms typically use thresholds with denominators in the
range of 3 to 7, model checking them could become infeasible with B = 2d+ 1.
While lowering the factor 2 in B might be possible, we suspect that B’s depen-
dency on d is fundamental since in systems with fewer than d+ 1 processes the
notions “more than d−1

d processes” and “all processes” coincide. Another possible
extension is to target higher-level primitives that build on consensus algorithms
in a white-box fashion, such as atomic (also called total-order) broadcast.

The second direction is to focus on the 0-1 principle. Putting aside the cutoff
bounds might help to remove some of the more ad-hoc ConsL features (such as
the restrictions in Section 3.2) and yield a simpler class of algorithms with hope-
fully simpler proofs. If such a class is obtained, one might consider generalizing
the principle; for example, a 0-k principle could help decide k-set agreement.
Furthermore, we believe that the unbounded growth of the input (and thus also
message) space with the increasing system width is a key obstacle for applying
the method of [28] to general consensus algorithms, and that the 0-1 principle
could provide the missing link.

Acknowledgements We would like to thank the anonymous reviewers and Ralf
Sasse for their useful feedback on the paper.
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