
SuE Enforcer

policy

Scaling Up Proactive Enforcement

François Hublet1, Leonardo Lima2, David Basin1,
Srđan Krstić1, and Dmitriy Traytel2

Available

CAV
Evaluation
Artifact

{f

1 ETH Zürich, Zurich, Switzerland
rancois.hublet, basin, srdan.krstic}@inf.ethz.ch
2 University of Copenhagen, Copenhagen, Denmark

{leonardo, traytel}@di.ku.dk

Abstract. Runtime enforcers receive events from a system and output
commands ensuring the system’s policy compliance. Proactive enforcers
extend traditional (reactive) enforcers by emitting commands at any
time, rather only as a response to system actions. However, proactive en-
forcers have so far lacked support for many useful policy features. This,
along with the existing tools’ poor performance, hinders their adoption.
We present a performance-optimized, proactive enforcement algorithm
for a rich policy language: metric first-order temporal logic with func-
tion applications, aggregations, and let bindings. We have implemented
this algorithm in EnfGuard, the first proactive enforcer tool that sup-
ports the above constructs. We evaluated our tool using a novel set of
six benchmarks containing both real-world and synthetic policies and
logs, demonstrating that it enforces realistic policies out-of-the-box and
achieves the necessary performance to be used in real-time systems.

1 Introduction

Statically certifying the behavior of large, complex systems is often impossible.
As an alternative, runtime enforcement [41] has emerged as a family of techniques
aimed at observing and correcting the behavior of systems during their execution.

In runtime enforcement, an enforcer is a policy enforcement mechanism that
observes the real-time execution of a system under enforcement (SuE) through
the sequence of events that occur in it and sends commands to the SuE to ensure
policy compliance (Figure 1). These commands instruct the system to suppress,
cause, modify, or delay specific events. In reactive enforcement, the enforcer emits
commands immediately upon receiving events (Figure 1, interactions 1.1–1.2).
In proactive enforcement [4], the enforcer can additionally give commands at any
time, rather than only after SuE events (Figure 1, interactions 2.1–2.2). This is
crucial whenever policies require action to be taken before a deadline, even in
the absence of SuE actions, as in common, e.g., in privacy regulations [24].

1.1: events

1.2: (reactive) command
P

2.2: (proactive) command 1.1, 2.1: time τ

Fig. 1: Communication diagram for enforcement. R-step: 1.1, 1.2; P-step: 2.1, 2.2
© The Author(s) 2025
R. Piskac and Z. Rakamarić (Eds.): CAV 2025, LNCS 15933, pp. 370–392, 2025.
https://doi.org/10.1007/978-3-031-98682-6_19

https://doi.org/10.1007/978-3-031-98682-6_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-98682-6_19&domain=pdf
https://zenodo.org/records/15316370
https://zenodo.org/records/15316370
https://doi.org/10.1007/978-3-031-98682-6_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-98682-6_19&domain=pdf

×

data structures, the enforcement algorithm, and the enforceable formulae.

formulae evaluation, and memoization of subformula evaluation results.

Scaling Up Proactive Enforcement 371

To be practical, enforcers must be able to process SuE events at high rates.
Moreover, they should support policies written in an expressive specification lan-
guage. As an example, consider the policy stating “an alert must be raised when-
ever, within a 30-minute window, a data center dc has seen a pattern of unin-
tended reboots of its servers that is classified as an outlier by Grubbs’s test [18]:”

let badReboot(s, dc) = reboot(s, dc) ∧ ¬�(¬reboot(s, dc) S intendReboot(s, dc)) in
let cntReboots(dc, c) = c ← CNT(i; dc)(�[0,1800)(badReboot(s, dc) ∧ tp(i))) in
�(∀dc, l. dc, l ← GRUBBS(dc, c;) (cntReboots(dc, c))) ∧ l ≈ 1

−→ alert(“Data center ” ˆ int_to_string dc ˆ “ has rebooted too often”))

In this policy, the user-defined aggregation function GRUBBS takes a finite se-
quence of pairs (ki, vi) with ki an integer key and vi a floating-point value, and
returns a sequence of pairs (ki, bi), where bi = 1 iff the Grubbs test identifies vi as
an outlier in {v1, ..., vi, ...}. A special event tp is used to retrieve the current time-
point. Moreover, this policy contains: applications of a function int_to_string
and a string concatenation operator (ˆ); aggregations that use a user-defined ag-
gregation function GRUBBS and an SQL-style aggregation operator CNT (‘count’)
with grouping, e.g., cntReboots counts the number of reboots in each data cen-
ter within the last 1800 seconds (�[0,1800) operator); and let bindings that define,
e.g., an ‘unintended reboot’ as a reboot event that does not follow (S operator)
an announce_reboot event strictly in the past (� operator). To the best of our
knowledge, none of the existing proactive enforcement algorithms [4,23,24] sup-
ports any of these features. Thus, they cannot enforce policies like the above.

In this paper, we present the first proactive enforcement algorithm that sup-
ports metric first-order temporal logic (MFOTL) with function applications, ag-
gregations, and let bindings. We implement this algorithm in EnfGuard, a new
tool building on an existing proactive enforcement algorithm for simple MFOTL
policies [24]. The original algorithm works as follows: (1) it maintains a queue of
temporal obligations with deadlines (e.g., “fulfill P (5) within three hours”); (2) it
checks if newly observed events fulfill pending obligations (e.g., if P(5) occurred),
proactively causing events when any deadline risks being missed; and (3) it sup-
presses and causes events reactively. In addition to supporting a more expres-
sive policy language, EnfGuard achieves up to 30 speedup over prior work.

We evaluate EnfGuard on six benchmarks involving a combination of both
real-world and synthetic policies and system logs. Our evaluation shows that our
tool, unlike previous work [23,24], directly supports all policies from these bench-
marks and can enforce them at high event rates (up to 1,000–10,000 events/s).

After reviewing prior work (Section 2), we make the following contributions:
– We extend prior work to support function applications, aggregations, and let

bindings (Section 3). This extension fundamentally changes the underlying

– We describe our enforcement algorithm’s optimizations (Section 4). These
involve the lazy evaluation of Boolean operators, skipping unnecessary sub-

– We implement our algorithm in the EnfGuard enforcer. We validate our

×

372 F. Hublet et al.

tool’s expressiveness and performance on six benchmarks (Section 5), show-
ing that it can be used in real-time and surpasses existing tools’ capabilities.

The proofs of all propositions can be found in our technical report [25]. Enf-
Guard is open source and is publicly available on GitHub [26].

Related Work. Reactive enforcement was introduced by Schneider et al. using
security automata [41,13] that terminate the SuE to prevent violations. Subse-
quent research supported the suppression [9,17] and causation [31] of individ-
ual events by buffering SuE events before making decisions. This (unrealistic)
buffering capability was later dropped [34], and other capabilities, such as de-
laying events [37,14] and SuE code inspection [38], were considered.

Many enforcers use (timed) automata either as a policy language [15,16] or as
the translation target for logics such as MITL [36,40]. Controller synthesis tools
for LTL [27,12,43], Timed CTL [10,35], and MTL [30,22] also generate enforcers.

Very few works enforce first-order temporal policies: Hallé and Villemaire [19]
give an enforcer for LTL-FO+, a first-order variant of future-only LTL. Hublet
et al. [23] reactively enforce a restricted set of MFOTL policies that cannot refer
to the future. Aceto et al. [1,2] consider safety policies in Hennessy-Milner Logic
with recursion; their approach is non-metric and does not support causation.

To the best of our knowledge, only two works study proactive enforcement.
Basin et al. [4] describe a proactive enforcer for finite automata and dynamic
condition response graphs [21], which is a propositional formalism. Hublet et
al. [24] provide the only existing proactive first-order enforcement algorithm,
which we substantially extend in this paper.

2 Preliminaries

We now review proactive enforcement (Section 2.1) and metric first-order tem-
poral logic (Section 2.2). We then summarize the relevant data structures (Sec-
tion 2.3) and the enforcement algorithm (Section 2.4) by Hublet et al [24].

2.1 Proactive runtime enforcement

Let Σ be a signature (D, E, a) with an infinite domain D of values, a finite set
of event names E, each with arity a(e) ∈ N, e ∈ E. An event e(d1, . . . , da(e)) ∈
E D

a(e) is a pair of an event name e and its a(e) parameters d1, . . . , da(e).
Events encode system actions that can be observed and controlled by the

enforcer, or only observed. The enforcer can control an event by suppressing or
causing it. We partition E into suppressable event names (S ⊆ E), causable event
names (C ⊆ E), and observable event names (O = E \ (S ∪ C)). The enforcer
can cause all events with names in C and suppress all events with names in S.
The set DB of databases over Σ is P({e(d) | e ∈ E, d ∈ Da(e)}) and a trace
σ is a sequence 〈(τi, Di)〉0≤i≤k , k ∈ N ∪ {∞} of timestamps τi ∈ N and finite
databases Di ∈ DB, where timestamps grow monotonically (∀i < |σ|. τi ≤ τi+1)
and progress (if |σ| = ∞, then limi τi = ∞). An index 0 ≤ i < |σ| in a trace σ is
called a time-point. The empty trace is denoted by ε, the set of all traces by T,

∈ · ⊆

∀ ∃ ∈ { }

E

Scaling Up Proactive Enforcement 373

1 run(s, σ, σ′, τ) = case σ′ of ε ⇒ ε
2 | (τ ′, D) · σ′′ when τ ′ > τ ⇒ let (o, s′) = μ(σ, s, τ, tick) in
3 case o of PCom(DC) ⇒ (τ, DC) · run(s′, σ · (τ, DC), σ

′, τ + 1)
4 | NoCom ⇒ run(s′, σ, σ′, τ + 1)
5 | (τ ′, D) · σ′′ when τ ′ = τ ⇒ let (o, s′) = μ(σ, s, τ, D); D′ = (D \ DS) ∪ DC in
6 case o of RCom(DC, DS) ⇒ (τ, D′) · run(s′, σ · (τ, D′), σ′′, τ + 1)
7 E(σ) = run(s0, ε, σ, case σ of ε ⇒ 0 | (τ, D) · σ′ ⇒ τ)

Fig. 2: Enforced trace

and the set of finite (resp. infinite) traces by Tf (resp. Tω). For traces σ ∈ Tf

and σ′
T, σ σ′ denotes their concatenation. A property is a subset P Tω.

Given a prefix of a SuE trace, a proactive enforcer can either perform a (re-
active) R-step (Figure 1, interactions 1.1 and 1.2), where it reads a new times-
tamp τ and database D, or a (proactive) P-step (interactions 2.1 and 2.2) where
it reads a τ only. In both cases, it returns an appropriate command. In R-steps, a
command is of the form RCom(DC, DS) where DC and DS ⊆ D are databases over
the signatures (D, C, a) and (D, S, a), respectively. Such a command instructs the
SuE to cause DC and suppress a subset DS of D. In P-steps, a command is of
the form PCom(DC) or NoCom. In the former case, DC is caused; in the latter,
no event is caused or suppressed. Cmd denotes the set of all commands.

Definition 1. A (proactive) enforcer E is a triple (S, s0, μ), where S is a set of
states, s0 ∈ S is an initial state, and μ : Tf ×S × N × (DB ∪ {tick}) → Cmd ×S
is a computable update function, such that the following two conditions hold:

∀σ, τ, D �= tick, s. ∃DC, DS, s
′. μ(σ, s, τ, D) = (RCom(DC, DS), s

′) ∧ DS ⊆ D

σ, s, τ. DC, s
′. μ(σ, s, τ, tick) (PCom(DC), s

′), (NoCom, s′) .

The first three arguments of μ are the trace prefix σ (containing all of the past ex-
cluding the present), the state of the enforcer s, and the current timestamp τ . In
R-steps, μ’s fourth argument is a new database D and μ returns RCom(DC, DS).
In P-steps, μ’s fourth argument is the special symbol tick and the enforcer can
return either PCom(DC) or NoCom. This induces a trace transduction:

Definition 2. For any σ ∈ T and enforcer E = (S, s0, μ), the enforced trace
(σ) is defined co-recursively in Figure 2.

To compute the enforced trace E(σ) from the original SuE trace σ, the update
function μ is called once on every time-point to generate an R-command (lines
6–7) and once before each clock tick to generate a P-command (lines 3–5).

The enforcer’s correctness with respect to a target property P is typically ex-
pressed in terms of soundness and transparency [31]. A sound enforcer ensures
that the modified trace always complies with P , while a transparent enforcer
modifies the system’s behavior only when necessary to ensure compliance.

Definition 3. An enforcer E is sound with respect to a property P iff for any
σ ∈ Tω, E(σ) ∈ P . An enforcer E = (S, s0, μ) is transparent with respect to a
property P iff for any σ ∈ P , E(σ) = σ. A property P (resp. a formula ϕ) is
enforceable iff there exists a sound enforcer with respect to P (resp. L(ϕ)).

¬ ¬ ∞

L

374 F. Hublet et al.

2.2 Metric first-order temporal logic

Metric first-order temporal logic (MFOTL) [8,11] is an expressive logic for spec-
ifying trace properties. In this paper, we extend MFOTL with function applica-
tions in terms, aggregations [7], and non-recursive let bindings [44]. Our MFOTL
syntax is defined by the following grammar (extensions highlighted):

t ::= c | x | f (t, . . . , t)
ϕ ::= e(t, . . . , t) | t ≈ c | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ | �I ϕ | �I ϕ | ϕ UI ϕ | ϕ SI ϕ

| x, . . . , x ← ω(t, . . . , t; x, . . . , x) ϕ | let e(x, . . . , x) = ϕ in ϕ .

In the above, e ∈ E, c ∈ D, i ∈ N, x ranges over a set V of variables, f over a
set F of function names, and ω over a set Ω ⊇ {SUM, AVG, STD, MED, CNT, MIN, MAX}
of aggregation operators. In a subformula let e(t) = ϕ1 in ϕ2, the event e is
not allowed to appear in ϕ1. We extend the arity function a to functions and
aggregation operators so that for any f ∈ F, a(f) ∈ N is the number of arguments
of f , and for any ω ∈ Ω, a(ω) is a pair in N2 such that a(ω)1 and a(ω)2 are the
input and output arities of ω, respectively. We define the shorthands � := p∨¬p,
⊥ := ¬�, ϕ −→ ψ := ¬ϕ ∨ ψ, and the operators “once” (�I ϕ := � SI ϕ),
“eventually” (♦I ϕ := � UI ϕ), “always” (�I ϕ := ¬ ♦I ¬ϕ), and “historically”
(�I ϕ := �I ϕ).The interval [0,) can be omitted in subscripts.

Next, we present the semantics of MFOTL, deferring the semantics of our
extensions to Section 3. A valuation v : V → D maps variables to domain
elements in D. Under a valuation v, a variable x evaluates to �x �v = v(x) and a
constant c ∈ D to � c �v = c. We write v[x �→ d] for the mapping v updated with
the assignment x �→ d, where x ∈ V and d ∈ D. The sequent v, i �σ ϕ (defined
in Figure 3 for a fixed, infinite σ) denotes that ϕ is satisfied at time-point i of
trace σ under valuation v (i.e., v is a satisfaction). The property induced by a
formula ϕ is L(ϕ) = {σ ∈ Tω | ∃v. v, 0 �σ ϕ}, and we say that a formula ϕ is
enforceable when there exists a sound enforcer for (ϕ).

We write fv(ϕ) and const(ϕ) for the set of free variables and constants of
formula ϕ, respectively. The active domain ADσ,E(ϕ) of a formula ϕ over a
finite trace σ = 〈(τi, Di)0≤i<|σ|〉 and set of event names E ⊆ E is const(ϕ) ∪(⋃

0≤j<|σ|{d | d is one of dk in e(d1, ..., da(e)) ∈ Dj and e ∈ E}
)
. Intuitively, the

active domain consists of all domain values present in the trace as well as all
constants occurring in the formulae.

2.3 Partitioned decision trees

Let Satϕ(v, i, σ) be a function that returns true iff v, i �σ ϕ, i.e., iff a trace σ
satisfies ϕ at i under v, and false otherwise. A monitor for a formula ϕ is an al-
gorithm that computes Satϕ(v, i, σ) by incrementally observing σ’s prefixes.

Inspired by binary decision diagrams [33], Lima et al. [32] introduce parti-
tioned decision trees (PDTs) to compactly represent sets of valuations. PDTs

� ⊥

{ } \ { } ⇒
3 | (D, pdt) :: parts ⇒

∈ s

⇒
| Nodex parts ⇒

Scaling Up Proactive Enforcement 375

v, i � t ≈ c iff � t �v = c | v, i � e(t1, ..., ta(e)) iff e([[t1]]v, ..., [[ta(e)]]v) ∈ Di

v, i � ∃x. ϕ iff v[x �→ d], i � ϕ for some d ∈ D v, i � ¬ϕ iff v, i �� ϕ
v, i � �I ϕ iff v, i + 1 � ϕ and τi+1 − τi ∈ I v, i � ϕ ∧ ψ iff v, i � ϕ and v, i � ψ
v, i � �I ϕ iff i > 0 and v, i − 1 � ϕ and τi − τi−1 ∈ I
v, i � ϕ UI ψ iff v, j � ψ for some j ≥ i with τj − τi ∈ I and v, k � ϕ for all i ≤ k < j
v, i � ϕ SI ψ iff v, j � ψ for some j ≤ i with τi − τj ∈ I and v, k � ϕ for all j < k ≤ i

Fig. 3: MFOTL semantics for a fixed, infinite trace σ

x

1, 2 D 1, 2

1 let find d parts = case parts of
2 [(D, pdt)] (D, pdt)

y ⊥ 4 if d D then (D, pdt) else find d part
{3} D \ {3}

5 let specialize pdt v = case pdt of Leaf � �
6

ϕ := A(x) ∧ B(y)

σ := (0, {A(1), A(2), B(3)})...
7 let (_, pdt′) = find (v x) parts in
8 specialize pdt′

(a) PDT of ϕ’s satisfactions on σ (b) Specialization of PDTs

Fig. 4: Partitioned decision trees (PDTs)

are trees whose internal nodes are labeled with free variables, whose edges are
marked with sets of elements that partition D, and whose leaves contain data of
interest, e.g., Boolean values. The corresponding algebraic data type is Pdt a =
Leaf a | Node V (Pc(D) × Pdt a)), where Pc(X) denotes the set of finite or co-
finite subsets of X. An example of a PDT storing the satisfactions of the formula
ϕ := A(x)∧ B(y) on a trace σ := (0, {A(1), A(2), B(3)})... is shown in Figure 4a.
Given a specific valuation v, the value Satϕ(v, i, σ) (indicating if v is a satisfac-
tion) can be extracted from a PDT of Satϕ(•, i, σ) using the specialize function
shown in Figure 4b: for any leaf, the stored value is immediately returned (l.
8); for any node labeled by a variable x, the child whose edge label contains the
value v(x) is selected, and specialization continues from that child (l. 9–10).

Lima et al. [32] describe a monitoring algorithm for MFOTL based on PDTs.
They first define a series of functional operations on PDTs, and then describe
a monitoring algorithm combining these operations. For example, to compute
Satϕ1∧ϕ2(•, i, σ), they apply a function apply2 (λb1 b2. b1 ∧ b2) on the PDTs p1
and p2 of Satϕ1(•, i, σ) and Satϕ2(•, i, σ). This function is such that

∀f, p1, p2, v. specialize (apply2 f p1 p2) v = f (specialize p1 v) (specialize p2 v).

Hence, applying apply2 (λb1 b2. b1 ∧ b2) correctly evaluates the conjunction.
Compared to table-based monitoring algorithms [8], PDT-based algorithms lift
many of the restrictions on the supported MFOTL fragment imposed in previ-
ous work [8,39], thus significantly increasing expressivity.

∈ ∈

376 F. Hublet et al.

2.4 Enforcement algorithm

Not all MFOTL formulae are enforceable, e.g., ∀x. A(x) −→ B(x) is enforce-
able only if A is suppressable or B is causable. MFOTL enforceability is unde-
cidable [23], yet there are syntactic fragments that guarantee enforceability.

Hublet et al. [24, Section 4] define such an enforceable fragment, called EM-
FOTL. EMFOTL is defined using type sequents Γ � ϕ : α, where the context Γ :
E → {C, S} is a mapping from event names to {C, S}, ϕ is an MFOTL formula,
and α ∈ {C, S} is a type. Intuitively, a formula types to C under Γ (“ϕ is caus-
able under Γ ”) if it can be enforced by causing events ec(...) such that Γ (ec) = C
and suppressing events es(...) such that Γ (es) = S. Conversely, it types to S un-
der Γ (“ϕ is suppressable under Γ ”) if ¬ϕ can be enforced under the same condi-
tions on Γ . EMFOTL is defined as the set of all ϕ for which ∃Γ. Γ � ϕ : C. The
types C and S overload the names of the sets of suppressable and causable event
names so that only events e(...) with e C (resp. e S) can type to C (resp. S).

Our technical report [25, Appendix A] gives the complete set of typing rules.

Example 1. Consider the formula ϕ = �(∀x. A(x) −→ ♦[0,30] B(x)) with A ∈ O

and B ∈ C. The formula ϕ can be shown enforceable using the rules

� ϕ : PG(x)− Γ � ϕ : C

Γ � ∀x. ϕ : C ∀C
Γ (e) = C e ∈ C

Γ � e(t1, ..., ta(e)) : C
E

C

� e(..., x, ...) : PG(x)+
E

+
PG

Γ � ϕ : C

Γ � �ϕ : C�C
a < ∞ Γ � ϕ : C

Γ � ♦[0,a] ϕ : C
♦C

Γ � ψ : C

Γ � ϕ −→ ψ : C −→
CR

� ϕ : PG(x)+

� ϕ −→ ψ : PG(x)− −→−
PG

as follows:

� A(x) : PG(x)+
E
+
PG

� A(x) −→ ♦[0,30] B(x) : PG(x)− −→−
PG

30 < ∞
B ∈ C

B : C � B(x) : C
E

C

B : C � ♦[0,30] B(x) : C
♦C

B : C � A(x) −→ ♦[0,30] B(x) : C
−→CR

B : C � ∀x. A(x) −→ ♦[0,30] B(x) : C
∀C

B : C � �(∀x. A(x) −→ ♦[0,30] B(x)) : C
�C .

Each rule shows how to enforce the corresponding MFOTL operator. The ∀C
rule expresses that to cause ∀x. ϕ (i.e., Γ � ∀x. ϕ : C), it is sufficient to (i) cause
ϕ for any valuation (i.e., Γ � ϕ : C) and (ii) ensure that all x’s values for which
ϕ must be caused can be computed from the arguments of present or past events
(i.e., � ϕ : PG(x)−). Condition (ii), called past-guardedness, excludes formulas
for which an infinite number of events must be caused. It is checked by other past-
guardedness rules that derive sequents � ϕ : PG(x)+ (resp. � ϕ : PG(x)−) that
mean “whenever ϕ is true (resp. false) for some valuation v, then v(x) must be
the argument of an event in the trace in the past or present”. The E+

PG rule is the
base case, whereas the −→−

PG rule states that when ϕ’s satisfactions provide such
values for x, then ϕ −→ ψ’s violations also do (since ¬(ϕ −→ ψ) implies ϕ). The
�C, −→CR, and ♦C rules show how to enforce the other operators: to cause �ϕ,
one must cause ϕ (at all times); to cause ϕ −→ ψ, one must cause ψ (when ϕ is
false); to cause ♦[0,a] ϕ where a < ∞, one must cause ϕ (in at most b time units).

∈ \ { }

⇒ { } ∅ ∅

Scaling Up Proactive Enforcement 377

1 let enf (σ, X, ts, D) =
2 if D �= tick then 	 R-step
3 let Φ =

∧
(ξ,v,+)∈X ξ(ts)[v] ∧

∧
(ξ,v,−)∈X ¬ξ(ts)[v] in

4 let (DC , DS , X
′) = enf+

ts, (Φ, σ (ts, D TP), ,) in⊥ · ∪ { } ∅ ∅
5 (RCom(DC , DS), X

′)
6 else 	 P-step
7 let Φ =

∧
(ξ,v,+)∈X ξ(ts)[v] ∧

∧
(ξ

′ +
,v,−)∈X ¬ξ(ts)[v] in

8 let (DC , DS , X) = enfts,�(Φ, σ · (ts, ∅), ∅, ∅) in
9 TP DC (PCom(DC TP), X ′) (Nif then else oCom, X)

25 let (�) (DC , DS , X) (D′
C , D

′
S , X

′) =10 let enf+
ts,b (ϕ, σ, X, v) = case ϕ of

26 (DC ∪ D′
C , DS ∪ D′

S , X ∪ X ′)
11 e(t) (e(� t �v) , ,)

27 let fp (σ · (τ, D), X, f) =12 | ϕ1 −→CR ϕ2 ⇒ enf+
ts,b(ϕ2, σ,X, v)

C + 28 (DC , DS) ← (∅, ∅); r ← None
13 | ∀ x. ϕ1 ⇒ fp(σ, X, enfall,ϕ1,v,ts,b

)
C

29 while (DC , DS , X) �= r do
14 | ♦[0,a] ϕ1 ⇒
15 if a = 0

30 r ← (DS , DC , X)
∧ b then

+
31 (DC , DS , X) ← r �

16 enfts,b(ϕ1, σ,X, v) 32 f (σ · (τ, (D \ DS) ∪ DC), X)
17 else

33 (DC , DS , X)
18 (∅, ∅, {(λτ ′. ♦[0,a−(τ ′−τ)]

19 34 let enf+
all,ϕ1,v,ts,b

(σ, X) =
35 r (, ,)

(TP ∧ ϕ1), v, +)})
C ← ∅ ∅ ∅

E

20 | � ϕ1 ⇒
21

+ 36 for d ∈ ADσ, (ϕ1) do
enfts,b(ϕ1, σ,X, v) �

37 if ¬Sat∗
¬ϕ1

(v[d/x], |σ| − 1, σ,X)
38 r r

22 (∅, ∅, {(λτ ′.�ϕ1, v, +)})
then ← �

+23 . . .
39 enfts,b(ϕ1, σ,X, v[d/x])

24 let enf−
ts,b (ϕ, σ, X, v) = . . .

r40

Fig. 5: Proactive real-time first-order enforcement algorithm [24, Algorithm 2]

The EMFOTL enforcement algorithm [24, Algorithm 2] is shown in Figure 5.
Its state is a set X ⊆ fo of future obligations. The set fo of future obligations
contains all triples (ξ, v, p) where ξ is a function N → EMFOTL, v a valuation,
and p ∈ {+, −}. At every time-point i with timestamp ts, the algorithm en-
forces Φ =

∧
(ξ,v,+) ξ(ts)[v] ∧

∧
(ξ,v,−) ¬ξ(ts)[v] by causing or suppressing events

and updating the future obligations to be enforced at i + 1.
The algorithm uses a Sat∗ monitor extending Sat (Section 2.3) over finite

traces in two ways: (1) Sat∗ inputs a set X of obligations assumed to hold after
the last time-point. For example, Sat∗

�A(v, 0, (0, {A}), {(λτ. �A, ∅, +)}) holds:
if A holds at time-point 0 and �A is assumed to hold at time-point 1, then �A
holds at time-point 0; and (2) Sat∗ always returns a conservative evaluation of
the formula when future information is lacking. For example, if A occurs at time-
point 0, we can conclude that ♦ A holds (Sat∗

♦ A(v, 0, (0, {A}), ∅)), but not nec-
essarily that �A holds (¬Sat∗

�A(v, 0, (0, {A}), ∅)) at time-point 0. A fixpoint
computation is used in cases that require recursively enforcing multiple subfor-
mulae (e.g., causing ∀x. ϕ or ϕ1 ∧ ϕ2). A special causable event TP denotes the
existence of a time-point. Such an event is always present in R-steps, where a
time-point already exists, but not in P-steps. In P-steps, causation of TP leads
to the insertion of a time-point (i.e., a PCom).

〈 { } { } 〉

∅ ∅

{ }

{ } { }

→

378 F. Hublet et al.

Example 2. The algorithm from Figure 5 enforces the formula ϕ in Example 1
over the trace σ = (0, A(1)), (50, B(2)) as follows.

Initially, ts = 0, D = {A(1)}, and we have one future obligation correspond-
ing to ϕ, namely fo = (λτ. ϕ, ∅, +). The algorithm performs an R-step on the
first time-point; the formula to be enforced is Φ = ϕ (l. 3). Since ϕ = �ψ
with ψ = ∀x. A(x) −→ ♦[0,30] B(x), the algorithm generates the same future
obligation fo and proceeds with enforcing ψ (l. 20–22). Next, since ψ = ∀x. χ
where χ = A(x) −→ ♦[0,30] B(x), the algorithm performs a fixpoint computa-
tion (l. 13; 27–33). In each iteration of this computation, the algorithm enforces
χ under all valuations {x �→ d}d∈D for which χ is not yet satisfied (l. 34–40).
Here, the only such valuation is v = {x �→ 1}. Since χ = A(x) −→ χ′ where
χ′ = ♦[0,30] B(x) and the rule −→CR was used to type χ in Example 1, the algo-
rithm enforces χ′ under v (l. 12). It does so by generating the future obligation
fo′ = (λτ. ♦[0,30−τ](TP ∧ B(x)), {x �→ 1}, +) (l. 19). After generating fo and fo′,
the formula Φ holds and the computation terminates, returning RCom(,).

Next, the algorithm performs a P-step with ts = 0. The formula to be en-
forced, computed from fo and fo′, is Φ = �ψ ∧ ♦[0,30](TP ∧ B(1)) (l. 7). To sat-
isfy Φ’s two conjuncts, the future obligations fo and fo′′ = (λτ. ♦[0,30−τ](TP ∧
B(1)), ∅, +) are generated. The logic used to enforce � and ♦ is the same as
above; the enforcement of ∧ uses a fixpoint computation (omitted in Figure 5).
As generating fo and fo′ suffices to satisfy Φ, the algorithm returns NoCom.

Since there is no time-point with timestamp 1 in the trace, the enforcer
then performs a P-step with ts = 1. The formula to be enforced is Φ = �ψ ∧
♦[0,29](TP∧B(1)); note the smaller bound on ♦ due to the new ts. The algorithm
again generates the future obligations {fo, fo′′}. Similarly, a P-step is performed
for ts = 2, . . . , 29, propagating fo, fo′′ . Each of these P-steps returns NoCom.

When ts reaches 30, the algorithm enforces Φ = �ψ∧♦[0,0](TP∧ B(1)). Since
♦’s interval is [0, 0], this conjunct can only be enforced by causing TP ∧ B(1)
(l. 16), i.e., causing both TP and B(1). The future obligation fo is also generated.
The algorithm returns PCom(B(1)), inserting a time-point (30, B(1)) in σ.

Beyond this time-point, the trace always satisfies ψ and the set of future obli-
gations is just {fo}. Therefore, the trace is not further modified.

3 An Extended Enforceable Fragment of MFOTL

We now describe the semantics, typing rules, and monitoring and enforcement
algorithms for our three extensions. All proofs of soundness and transparency
are given in our technical report [25, Appendix A].

3.1 Function applications

Assume that every function symbol f ∈ F is associated with a (terminating)
function f̂ : Da(f)

D. Our semantics of terms is standard:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

∈

∀ −→ ∧ ∧ ¬ ≈

∈ ∩

Scaling Up Proactive Enforcement 379

Monitorability. To ensure that only finitely many function calls are needed to
decide whether a given formula is satisfied, restrictions must be imposed. In
contrast to classical monitorability which focuses on informative prefixes [29],
our definition focuses on ensuring finite evaluation steps of first-order formulae.

Example 3. Given a binary function eq∈ F such that eq(x, y) := if x = y then 1
else 0 used to compare two variables, and some f F, consider the formulae

ϕ1 := ∀x, y. B(x) ∧ B(y) ∧ ¬(eq(x, y) ≈ 1) −→ A(f (x, y))

ϕ2 := x, y. A(f (x, y)) B(x) B(y) (eq(x, y) 1).

The formula ϕ1 is monitorable: whenever two B events occur for different values
of x and y, the event A(f (x, y)) also occurs. In contrast, the formula ϕ2 cannot
be monitored without further assumptions about f : when some A(z) is true, the
set of pairs (x, y) such that z = f (x, y) may be neither finite nor co-finite.

The key difference between the formulae is that, when ϕ1 is false, there are
always events in the present that contain x and y as parameters. There are
finitely many such events, and hence the full set of satisfactions can be obtained
by filtering satisfactions of B(x) ∧ B(y) ∧ ¬(eq(x, y) ≈ 1) based on the value of
A(f (x, y)). In contrast, when ϕ2 is false, all values of x and y for which A(f (x, y))
is true (or, alternatively, B(x) ∧ B(y) ∧ ¬(eq(x, y) ≈ 1) is false) would need to
be checked, but the set of such values may be infinite.

Based on these observations, we adopt the following notion of monitorability:

Definition 4. A closed MFOTL formula ϕ is monitorable iff for any of its
quantified subformulae Qx. ψ, where Q ∈ {∀, ∃}, either � ψ : PG+ (x), or � ψ :
PG−(x), or x does not appear inside any function argument in ψ.

Note that the definition of rule E+
PG shown in Example 1 is unchanged, i.e.,

a variable is only past-guarded when it occurs directly as an argument of a
predicate, and not within a function application.

Monitoring. We now describe how to extend the PDTs from Section 2.3 to
efficiently monitor formulae with function applications. Instead of trees labeled
by variable names, we consider trees labeled with elements of the type

lbl = LVar ident | LEx ident | LAll ident | LClos ident (term list),

containing either free variables (LVar), existentially quantified variables (LEx),
universally quantified variables (LAll), or closures with a function name and a
list of terms (LClos). An example of an extended PDT is shown in Figure 6a.

We call a PDT well-formed with respect to a set of variables V iff:

1. Any LClos f t node with z fv(t) V has an LEx z or LAll z node higher up.

This condition ensures that the value of all terms with free variables in V labeling
a node can be computed using the knowledge of the value of variables higher up.

Given a PDT representing satisfactions Satϕ(•, i, σ) well-formed with respect
to the set of all variables in ϕ, a valuation v can be checked as in Figure 6b. In our
technical report [25, Appendix A], we extend Lima et al.’s [32] algorithm to use
the new PDTs and show that it monitors all formulae covered by Definition 4.

⊥ { �→ �→ }

380 F. Hublet et al.

LAll x

LAll y

LClos eq [x, y]

⊥
{1}

LClos f [x, y]

⊥
{3}

�
D \ {3}

D \ {1}

{1, 2}
⊥

D \ {1, 2}

{1, 2}
⊥

D \ {1, 2}

ϕ := ϕ1 from Example 3

σ := (0, {A(1), A(2), B(3)})...

(a) PDT of ϕ’s satisfactions on σ

1 let specialize pdt v = case pdt of Leaf � ⇒ �
2 | Node (LVar x) parts ⇒
3 let (_, pdt ′) = find parts (v x) in
4 specialize pdt ′ v
5 | Node (LEx x) parts ⇒
6

∨(D,pdt′)∈parts

|D|<∞
∨

d∈D specialize pdt
′ v[x �→ d]

7 ∨∨(D,pdt′)∈parts

|D|=∞ specialize pdt ′ v

8 | Node (LAll x) parts ⇒
9

∧(D,pdt′)∈parts

|D|<∞
∧

d∈D specialize pdt
′ v[x �→ d]

10 ∧∧(D,pdt′)∈parts

|D|=∞ specialize pdt ′ v

11 | LClos f t ⇒ specialize (find parts [[f (t))]]v) v
(b) Specialization of extended PDTs

Fig. 6: Extended PDTs

Example 4. Consider the formula ϕGrubbs from Section 1. Let ϕ′
Grubbs := dc, l ←

GRUBBS(dc, c;)(cntReboots(dc, c))) ∧ l≈ 1 and ϕ′′
Grubbs := ϕ′

Grubbs −→alert(msg(dc)),
where msg(dc) abbreviates the string term in ϕGrubbs’s alert event. Note that
only variable dc occurs within a function argument. By Definition 4, the formula
ϕGrubbs is monitorable iff ∀l. ϕ′′

Grubbs is either PG+ (dc) or PG−(dc). In Exam-
ple 7, we will show that ϕ′

Grubbs is PG+ (dc). Using rules −→−
PG and ∀PG (see (i)

below), we show that ∀l. ϕ′′
Grubbs is also PG+ (dc). Thus, ϕGrubbs is monitorable.

ϕ (dc, l) (0, 1), (1, 1) alert(m)Suppose that ′
Grubbs holds for ∈ { } and holds iff

m = msg(1). Monitoring ϕ′′
Grubbs, our extended Sat computes the PDT below (ii).

x �= z Γ � ϕ : PGp (z)

Γ � ∀x. ϕ : PGp (z)
∀PG

(i) ∀PG rule

(ii) PDT

t0 t1

LVar dc

LVar l

LClos msg [dc]

⊥
{msg(1)}

�
D \ {msg(1)}

{1}
�

D \ {1}

{0}

LVar l

LClos msg [dc]

⊥
{msg(1)}

�
D \ {msg(1)}

{1}
�

D \ {1}

{1}
�

D \ {0, 1}

To enumerate the values of dc for which ϕ′′
Grubbs is violated, we evaluate the

closures. In the subtree marked with t0, dc is equal to 0. We obtain msg(0) ∈ D \
{msg(1)} and t0 reduces to �. In the subtree marked with t1, dc is equal to 1 and
hence t1 reduces to . The formula is thus violated only for v = dc 1, l 1 .

Enforceability. Our enforcement algorithm (Figure 5) does not terminate in
general if functions are naïvely applied. Consider �(∀x. A(x) −→ A(x + 1)),
where A is causable. If A(i) occurs in the present, the algorithm causes A(i +1),
then A(i+2), A(i+3), etc. This formula would thus require infinitely many events
to be caused once some A(x) occurs. Hence, further restrictions must be intro-
duced to define a fragment of extended EMFOTL that is realistically enforceable.

Key to these restrictions is the notion of a stable function:

� � ∈

{ }
⊆ ⊆ ≥

∞

Scaling Up Proactive Enforcement 381

Definition 5. Let � be a well-founded relation on D. A function f : Dk → D
is �-stable iff there exists a finite Cf ⊆ D such that for any dsup ∈ D and
d1, . . . , da(f) dsup, either f (d1, . . . , da(f)) dsup or f (d1, . . . , da(f)) Cf .

A �-stable function can only produce outputs that are smaller than one of its
inputs with respect to some well-founded relation �, or are in some finite set
Cf . This guarantees that the number of distinct domain elements obtainable by
repeatedly applying stable functions to an initial, finite set of domain elements
is finite. For example, if D = N, then f1 = λx. max(x − 1, 2) is ≤-stable, but
f2 = λx. x+1 is not. Applying f1 repeatedly to elements in a set {d1, . . . , dk} ⊆ N
only produces natural numbers in {0, . . . , max1≤i≤k di} or the natural number
2, while applying f2 repeatedly to 0 reaches all of N.

Formally, for F F, X D, and n 0, define cln inductively as follows:

cl0 (F, X) = X ∀i ≥ 0. cli+1 (F, X) = X ∪
⋃
f ∈F

f ((cli (F, X))a(f)).

er, define cl(F, X) as limn cln (F, X). We have:Furth

Lemma 1. cl(F, X) is finite for a finite set of stable functions F and a finite X.

Back to our enforcement setup, if the parameters of all caused events are obtained
by applying stable functions to existing domain elements, then only finitely many
events may be caused and the enforcement algorithm terminates. In fact, we can
be slightly more permissive: causation of events with parameters not obtained
by applying stable functions is admissible as long as these parameters cannot be
further used to derive parameters of caused events. Denoting by Fs the subset
of all stable functions in F, we get our final lemma:

Lemma 2. Let D ∈ DBω , k ≥ 1, and disjoint Cs, Cn ⊆ C such that ∀i ≥ 2,
Di−Di−1⊆{e(d1, ..., da(e)) | e ∈ C ∧ ∀i ∃f ∈ cl(Fs, Di−1), d′ ∈ ADDi,Cn

(ϕ)a(f) . di= f̂ (d′)}
∪ {e(d1, ..., da(e)) | e ∈ Cs ∧ ∀i ∃f ∈ clk (F, Di−1), d′ ∈ ADDi,Cn

(ϕ)a(f) . di= f̂ (d′)},

where ADDi,E(ϕ) := AD〈(0,Di)〉,E(ϕ), then D is eventually constant.

This lemma ensures that if we can (i) partition the set of causable events C
into two sets of strict causable events Cs and nonstrict causable events Cn, (ii)
ensure that the parameters of existing nonstrict causable events cannot be used
to compute the parameters of newly caused events, and (iii) ensure that the
parameters of newly caused, strict causable events are obtained from existing
domain elements by applying only stable functions, then only finitely many new
domain elements can be generated through causation. As a consequence, the
enforcement loop fp(σ, X, enf+

all,ϕ,v,ts,b) in Figure 5 terminates.
C C S STo check (i)–(iii), we type event names to elements in { n, s, n, s}, rather

than just {C, S}, and store additional typing judgments x : PG+
E if the current

value of x is the parameter of some event e ∈ E in the past or present. The
type lattice is modified as shown in Figure 7, with solid lines representing �
(oriented bottom-up) and dotted lines representing an operator ¬ that exchanges
causability and suppressability. We then replace the rules ∀C from Example 1 by
the rules in Figure 8, where Cα matches Cs or Cn and fn(ϕ) denotes the set of
all functions symbols in ϕ. All PG rules are updated with the subscript E.

�

382 F. Hublet et al.

O

C S

CS

�

¬

O

Cs Cn SsSn

C S

CS

�

¬
¬
¬

Fig. 7: Hublet et al.’s type lattice [24] (left) and our extended type lattice (right)

Γ � ϕ : τ ′ τ 	 τ ′

Γ � ϕ : τ
cast

Γ, x : PG+
E � ϕ : Cα � ϕ : PG−

E (x)

Γ � ∀x. ϕ : Cα
∀C

ti = x

� e(t) : PG+
{e}(x)

E
+
PG

Γ � ϕ : Cα

Γ � �ϕ : Cα
�C

a < ∞ Γ � ϕ : Cα

Γ � ♦[0,a] ϕ : Cα
♦C

Γ � ψ : Cα

Γ � ϕ−→ ψ : Cα
−→CR

� ϕ : PG+
E(x)

� ϕ−→ψ : PG−
E (x)

−→−
PG

e ∈ C Γ (e) = Cα ∀x ∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ −1(Cn). Γ (x) = PG+
E

⋃k
i=1 fn(ti) ⊆ Fs

Γ � e(t1, ..., tk) : Γ (e)
ECα

e ∈ C Γ (e) = Cn ∀x ∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ −1(Cn). Γ (x) = PG+
E

Γ e(t1, ..., tk) : Cn
ECn

Fig. 8: Selected modified typing rules for function applications (cf. Example 1)

Example 5. In ϕGrubbs, the concatenation function (ˆ) within the term in alert is
not stable. However, ϕGrubbs is still enforceable by causing alert(msg(dc)) when-
ever ϕ′

Grubbs holds. In our type system, this is reflected by the fact that if alert
types to Cn in Γ , the E Cn rule can be applied to derive Γ � alert(msg(dc)) : Cn.
This rule accepts non-stable functions such as (ˆ) in the argument of alert. How-
ever, it still requires some non-Cn event to guard the variable dc in the argument.
The non-causable reboot event provides such a guard, as we show in Example 7.

In contrast, a formula such as �(∀x. alert(x) −→ alert(x ˆ x)) cannot be typed
to C by causing alert(x ˆ x): using alert as a guard for x precludes alert : Cn, but
alert : Cn would be required to cause the right-hand side as it contains (ˆ).

Enforcement. With the additional restrictions that we just introduced and
our extended monitor, the enforcement algorithm proposed by Hublet et al. [24,
Algorithm 2] can be reused when function applications are introduced. The mod-
ified termination and correctness proofs rely on Lemma 2 [25, Appendix A].

3.2 Aggregations

Assume that every aggregation operator ω ∈ Ω is associated with a (terminating)
function ω̂ : (Da(ω)1)∗ → (Da(ω)2)∗ that maps a multiset of a(ω)1-tuples into a
multiset of a(ω)2-tuples. Our semantics of MFOTL aggregations is as follows:

v, i �σ x ← ω(t; y) ϕ iff v(x) ∈ ω(M) where z = fv(ϕ) \ y and

M =
[
[[t]]v[z
→d] | v[z �→ d], i �σ ϕ, d ∈ D|z|

]
and |y| > 0 implies M �= [],

\

� ∈ \

←
∈ \

Scaling Up Proactive Enforcement 383

where v(x) := (v(x1), . . . , v(x|x|)) and [[t]]v := ([[t1]]v, . . . , [[t|t|]]v). Note the last
condition, which specifies that when there is at least one group variable, the ag-
gregation is only satisfied when at least one valuation satisfies ϕ. A similar ap-
proach is followed in most SQL implementations: aggregation over an empty set
without grouping returns a default value (such as 0 for sums), whereas aggrega-
tion over an empty set with grouping returns an empty result set. Our defini-
tion of aggregation generalizes over that of past monitoring tools [8] by support-
ing operators that return tuples, rather than a single value. Various algorithms
(e.g., clustering algorithms) can thus be implemented as aggregation operators.

Monitorability. Monitoring an aggregation x ← ω(t; y) ϕ, where t is a se-
quence of terms that may contain function applications, requires that the above
set M is finite. Hence, there must exist only finitely many valuations of z :=
fv(ϕ) y satisfying ϕ. We modify Definition 4 accordingly.

Definition 6. An MFOTL formula ϕ is monitorable iff the condition in Defini-
tion 4 holds, and, additionally, for any subformula x ← ω(t; y) ψ of ϕ, we have
ψ : PG+ (z) for all variables z fv(ψ) y.

Monitoring. We now show how to transform a PDT of ϕ into a PDT of
x ω(t; y) ϕ, imposing the following additional constraint on the PDT of ϕ:

2. All LVar y nodes with y in y appear above all LVar y′ nodes with y′ fv(ϕ) y.

This condition allows collecting values to be placed in the PDT below all nodes
labeled with the group variables. Our algorithm (Figure 9) inputs x, t, and y, a
PDT pdt for ϕ, and a list z containing a linearization of the set x∪y. The variable
appearing in nodes of pdt are assumed to form, top-down, a subsequence of z.

The algorithm proceeds in three steps, exemplified in Figure 10. First, the
original PDT with Boolean leaves is transformed into a PDT with nodes in
{LVar y | y ∈ y} and leaves containing the multiset M . This is done using the
gather function (l. 7–18) that uses standard concat : list list a → list a and map :
(a → b) → list a → list b functions as well as a function applyn that provides an
analogue of apply2 for lists of PDTs. The function traverses the tree top-down,
collecting constraints on the value of different variables and terms in a list sv. At
the leaves, that list is converted into a list of satisfactions vs that are then used
to compute all possible evaluations of t. In a second step, the aggregation oper-
ator ω is applied at the leaves using apply to obtain a PDT with leaves carry-
ing ω(M). The function agg (l. 19) wraps ω to map any empty multiset to None
when |y| > 0. Third and finally, this PDT is transformed into a Boolean PDT,
inserting the new variables x at their correct position in z using insert (l. 20–29),
which relies on a function all_leaves [25, Appendix A] that gathers all elements
stored in the leaves of a PDT. Being able to insert the x at any position is im-
portant, since the monitoring algorithm requires free variables in a PDT to be
ordered according to their De Bruijn indices in the overall formula. We show:

Lemma 3. Let x ← ω(t; y) ϕ be monitorable and z = fv(ϕ) \ y. Let pdt be well-
formed with respect to the bound variables in ϕ. Further assume that condition 2.
above holds for pdt and that pdt stores Satϕ(•, i, σ). Then aggregate x t y z pdt
stores Satx←ω(t;y) ϕ(•, i, σ).

384 F. Hublet et al.

1 let distribute f x (D, pdt) = if |D| < ∞ then [({d}, f d pdt) | d ∈ D] else [(D, x)]

2 let tabulate t sv vs = case sv of [] ⇒ [
[[t]]v | v ∈ vs

]

3 | (x, D) :: sv′ where x ∈ V ⇒ tabulate t sv′ [v[x �→ d] | d ∈ D, v ∈ vs]
4 | (t, D) :: sv′ ⇒ tabulate t sv′ [v | v ∈ vs, [[t]]v ∈ D]

5 let gather sv t y pdt = let f t (D, pdt) = (D, gather (sv · (t, D)) t y pdt) in
6 case pdt of Leaf � ⇒ if � = � then Leaf (tabulate t sv [∅]) else Leaf []
7 | Node (LVar x) parts ⇒ if x /∈ y then applyn (∪) (map (f x) parts) else
8 let g d pdt = gather {v[x �→ d] | v ∈ vs} t y pdt in
9 Node (LVar v) (concat (map (distribute g []) parts)

10 | Node (LEx x) parts ⇒ applyn (∪) (map (f x) parts)

11 | Node (LAll x) parts ⇒ applyn (∩) (map (f x) parts)

12 | Node (LClos h t _) parts ⇒ applyn (∪) (map (h(t)) parts)

13 let agg y ω M = if |y| > 0 ∧ M = [] then None else ωM

14 let insert v x z pdt = case z, pdt of
15 x :: z′, _ where x ∈ x ⇒ let D = map (λv. v x) (all_leaves pdt) in
16 if D = [] then Leaf ⊥
17 else Node (LVar y, distribute (λd pdt. insert v[x �→ d] x z′ pdt) ⊥ (D, pdt))

18 | y :: z′, Node (LVar y′, parts) where y = y′ ⇒
19 Node (LVar y′, map (λ(D, pdt). (D, insert x z pdt))) parts

20 | _ :: z′, Node _ ⇒ insert v x z′ pdt
21 | _, Leaf (Some vs) ⇒ if ∃v′ ∈ vs. ∀x ∈ dom v. v x = v′ x then � else ⊥
22 | _, Leaf None ⇒ ⊥
23 let aggregate ω x t y z pdt = insert ∅ x z (apply (agg y ω) (gather [] t y pdt))

Fig. 9: Computing aggregations in PDTs

Example 6. In ϕGrubbs, let cntReboots hold for (dc, c) ∈ {(0, 2), (1, 2), (2, 5), (3, 7)}.
Assume that the GRUBBS function maps data centers 0 and 1 to cluster l = 0 and
data centers 2 and 3 (as outliers) to l = 1. Our algorithm (Figure 9) computes:

LVar dc

LVar c

�
{2}

⊥
D \ {2}

{0, 1}

LVar c

�
{5}

⊥
D \ {5}

{2}
LVar c

�
{7}

⊥
D \ {7}

{3}
⊥

D \ {0, 1, 2, 3}

[[0, 2], [1, 2], [2, 5], [3, 7]] [[0, 0], [1, 0], [2, 1], [3, 1]]

LVar dc

LVar l

�
{0}

⊥
D \ {0}

{0, 1}

LVar c

�
{1}

⊥
D \ {1}

{2, 3}
⊥

D \ {0, 1, 2, 3}

gather
apply (app [] GRUBBS) insert

Note that the intermediate PDTs are just leaves as there is no grouping variable.

Enforceability. Aggregations are generally not causable. Formula x← ω(t; y) ϕ
is suppressable iff y is non-empty and ∃z1, . . . , zk. ϕ is suppressable, where z =
fv(ϕ) \ y (rule aggS in Figure 11). Aggregations can provide past-guardedness in
two ways: x ← ω(t; y) ϕ types to PGp (v) iff either (a) v ∈ x, p = +, all free vari-
ables of t are past-guarded in ϕ, and the events used to guard these free vari-
ables are not used for causation in Γ (rule aggPG,x) or (b) v ∈ y and v is past-
guarded in f (rule aggPG,y). The last condition in (a) means that Γ is now rel-
evant for past-guardedness; it excludes non-enforceable formulae (e.g., ∀x. x ←

Scaling Up Proactive Enforcement 385

LVar y

LVar z

�
{2}

⊥
D \ {2}

{1}

LVar z

�
{2, 3}

⊥
D \ {2, 3}

{2}
⊥

D \ {1, 2}
LVar y

[[3]]

{1}

[[3], [4]]

{2}
[]

D \ {1, 2}

LVar y

[[3]]

{1}

[[7]]

{2}
None

D \ {1, 2}
LVar y

LVar x

�
{3}

⊥
D \ {3}

{1}

LVar x

�
{7}

⊥
D \ {7}

{2}
⊥

D \ {1, 2}

gather

apply (agg [y] ω)

insert

Fig. 10: Formula x ← SUM(z + 1; y) A(y, z) with D = {A(1, 2), A(2, 2), A(2, 3)}
∀z ∈ fv(ϕ) \ y. � ϕ : PG(z)+

Ez
Γ, ∀z. z : PG+

Ez
� ϕ : Sα |y| > 0

Γ � x ← ω(t; y) ϕ : Sα
aggS

v ∈ x ∀u ∈ fv(t). ∃Eu ⊆ Γ −1 (C). Γ � ϕ : PG+
Eu

(u)

Γ � x ← ω(t; y) ϕ : PG+⋃
u∈fv(t) Eu

aggPG,x

v ∈ y Γ � ϕ : PGp
E(v)

Γ � x ← ω(t; y) ϕ : PGp
E(v)

aggPG,y

Fig. 11: Additional typing rules for aggregations

SUM(y;)A(y) −→ A(x)). Other past-guardedness rules have the same Γ on the
LHS of all of their sequents. The rules in Figure 11 are sound [25, Appendix A].

Enforcement. To support the suppression of aggregations as given by rule
aggS above, an additional case is added to the function enf−:

| x ← ω(t; y) ϕ1 ⇒ enf+
ts,b(¬(∃z1, . . . , zk. ϕ1), σ,X, v).

3.3 let bindings

We adopt the semantics of let bindings introduced by Zingg et al. [44]:

v, i �σ let e(x) = ϕ in ψ iff v, i �σ[e�(λi.{d∈D|x||v[x
→d],i�ϕ})] ψ.

where σ[e � R] denotes the trace obtained from σ by adding, at each time-point
i, all events e(d) such that d ∈ R(i). With this semantics, let bindings can be
soundly unrolled by substituting every occurrence of e(t) in ψ with ϕ[x �→ t].
The enforcement algorithm requires no extension if unrolling is performed prior
to typing and enforcement. In fact, with memoization (Section 4) such unrolling
should not lead to any significant runtime overhead.

When applied naïvely after unrolling, type inference for the enforcement type
system becomes prohibitively slow. To avoid this issue, we introduce the typing
rules in Figure 12, proved sound in [25, Appendix A] . The rule let allows ϕ1’s
enforceability type to be reused in ϕ2. Additionally, it extends Γ with judgments
of the form lete : ⊥ and lete,i,p : E denoting the existence of a let-bound predicate
e and past-guardedness of e’s ith argument, respectively. The letPG rule extracts
past-guardedness information for let-bound predicates from Γ .

P { ∅ } L

386 F. Hublet et al.

lete ∈ dom Γ Γ (lete,i,p) = E ti = x

Γ � e(t) : PGp
E(x)

letPG

Γ � ϕ1 : τ1 Γ ∪ {lete,i,p : E | Γ � ϕ1 : PGp
E(xi)}, lete : ⊥, e : τ1 � ϕ2 : τ2

Γ � let e(x1, . . . , xk) = ϕ1 in ϕ2 : τ2
let

Fig. 12: Additional typing rules for let bindings

Our report [25, Appendix B] gives the full typing of the formula in Section 1.

Example 7. Rule aggPG,x proves that dc is past-guarded by cntReboots in ϕ′′
Grubbs

if cntReboots is not in C. It also proves that dc is past-guarded by badReboot
in c ← CNT(i; dc)(�[0,1800)(badReboot(s, dc) ∧ tp(i))) if badReboot is not in C.
Note that dc is past-guarded by reboot in reboot(s, dc) ∧ ¬�(¬reboot(s, dc) S
intendReboot(s, dc)). We can then use let, letPG, and the past-guardedness facts
established above to show that dc is past-guarded by reboot in ϕ′′

Grubbs.

Theorem 1. Let ϕ be a closed EMFOTL formula with function applications,
aggregations, and let bindings. Let enf′ be the extended enf function. Denote
unroll(ϕ) the formula obtained by unrolling let in ϕ. Then the enforcer Eϕ =
((fo), (unroll(ϕ), , +) , enf ′) is sound with respect to (ϕ).

We also prove Eϕ’s transparency for a fragment of EMFOTL [25, Appendix A].

4 Implementation and Optimizations

We have implemented our extensions in an open-source tool, called EnfGuard
(available at [26]), consisting of about 11,000 lines of OCaml code. To ease code
reuse, all MFOTL-related function are packaged into a separate library.

EnfGuard support two types of functions: built-in functions, such as arith-
metic operations, and user-defined functions. In addition to SQL-style aggrega-
tions, EnfGuard also supports user-defined aggregations. User-defined func-
tions and aggregations are provided by the user in a Python file. The user must
specify each function’s signature and whether it is stable, and ensure that it ter-
minates. The enforcer calls Python functions via the pyml bindings during moni-
toring. Support for Python functions makes EnfGuard more easily extendable.

EnfGuard’s implementation includes three main optimizations:
Associative and commutative (AC) rewriting. Multiple binary conjunctions

and disjunctions are replaced by n-ary ones and standard AC-rewriting is applied
before enforcement starts. When enforcing an n-ary operator, the enforcement
algorithm is called only once on each conjunct or disjunct inside the fixpoint
computation, which exponentially reduces the number of calls in the best case.

Memoization. When the trace changes due to causation or suppression, a
naïve algorithm drops the previously computed truth values and recomputes
new ones. Given ϕ, we compute the set of relevant event names RE(ϕ) and rel-
evant future obligations RFO(ϕ) that can affect the truth value of ϕ under as-
sumptions [25, Appendix C]. When enforcement causes new events D+ or future
obligations O, we compute the sets {e | e(v) ∈ D+} ∩ RE(ϕ) and O ∩ RFO(ϕ)
first. If both are empty, the previous verdict is still valid and can be returned.

� �

to store and look up data ownership and consent, with the same log.

spanning one day. The system’s original event rate was about 100 events/s.

form [42] and 3 platform execution logs [5] having 100–150 events/s.
agg: 6 fraud detection formulae [7] using aggregations and 2 synthetic logs.

sibly defined t [25, Appendix D] lists all formulae used.

Scaling Up Proactive Enforcement 387

Subformulae skipping. Our algorithm does not evaluate subformulae known
to be true whenever certain event names do not presently exist. For every sub-
formula ϕ, we precompute the present filter fϕ := F
(ϕ) such that

Fb(�) = λD. b F
(e(t)) = λD. ∃t. e(t) ∈ D

Fb(¬ϕ) = F¬b(ϕ) F
(ϕ ∧ ψ) = λD. F
(ϕ)(D) ∧ F
(ψ)(D)

Fb(∃x. ϕ) = Fb(ϕ) F⊥(ϕ ∧ ψ) = λD. F⊥(ϕ)(D) ∨ F⊥(ψ)(D)

Fb(ϕ) = λD. � for any ϕ = I ψ, I ψ, ψ1 UI ψ2, ψ1 SI ψ2.

Whenever fϕ(D) evaluates to false on the current database, we immediately
return without causing or suppressing any events.

5 Evaluation

Our evaluation of EnfGuard answers the following research questions:
RQ1. Can EnfGuard’s EMFOTL fragment formalize real-world policies?
RQ2. At what event rates can EnfGuard perform real-time enforcement?
RQ3. Does EnfGuard’s performance improve upon the state-of-the-art?

To evaluate EnfGuard, we introduce what is, to the best of our knowledge,
the largest set of runtime enforcement benchmarks to date. We first present these
benchmarks (Section 5.1) and then report on our results (Section 5.2).

5.1 Benchmarks and evaluation setup

We use six benchmarks, each of which pairs a set of policies and a set of logs:
gdpr: 6 formulae encoding privacy policies and a log of a job application system

produced over a period of a year [3,24].
gpdrfun: Variants of the six gdpr formulae that use custom Python functions

nokia: 11 formulae encoding data usage policies of a distributed system used
in Nokia’s mobile data collection campaign [6] and a log of this system [28]

ic: 8 formulae encoding various policies of a large Web3 distributed plat-

cluster: 2 outlier detection formulae using aggregation operators implemented
in Python and 3 synthetic logs.
Figure 13 shows benchmark statistics. For each benchmark, we report the

number of formulae and logs, the maximal formula size (defined as its number
of operators without unrolling let), the maximal log size (defined as its number
of events), and the maximum log event rate (defined as the average number of
events per second of real-time execution). We also indicate whether the formulae
use let bindings (Let), aggregations (Agg.), and function applications (Fun.), pos-

in Python (). Our repor
In this evaluation, we compare EnfGuard to three tools: EnfPoly [23] and

WhyEnf [24], the only existing MFOTL enforcement tools, and MonPoly [8],

Source Real #logs max |log| max er m
a
x
|ϕ

|

le
t

bi
nd

in

A
gg

re
g.

F
un

ct
io

n

#
fo

rm
u
l

W
h
y
E
n
f

6 6 2 6

	 	 8 8
6 6

	

Rewriting required: no no yes yes

388 F. Hublet et al.

Tool support Log statistics Formulae statistics

gs s ae

Name E
n
fP

o
ly

M
o
n
P
o
ly

E
n
fG

u
a
r
d

gdpr [3,24] 	 1 5,631 10−4 72 6
gpdrfun [3,24] 	 1 5,631 10−4 108 6 6
nokia [28,6] 	 1 9,458,824 109 44 	 11 11 11 5 11
ic [5] 	 3 634,789 147 179 8
agg [7] 2 100,000 34 	 	 6
cluster new 1 5,000 42 	 2 2

Total: 39 39 17 7 31

Fig. 13: Benchmarks’ logs (left), formulae (middle), and tool support (right)

a state-of-the-art MFOTL monitor with aggregations [7], let bindings [44], and
built-in functions. As monitoring is a simpler task than enforcement, MonPoly’s
performance is intended to suggest the likely ‘best achievable’ results for com-
parable expressivity, rather than a standard to achieve. All measurements are
performed on an AMD Ryzen™ 5 5600X (6 cores) with 16 GB RAM.

5.2 Results

We now present the results of our experiments and answer the research questions.
RQ1: Expressiveness. Figure 13 (right) shows the number of policies each tool

supports across all benchmarks. EnfGuard supports all 39 policies, whereas
MonPoly supports 31 formulae (all except those containing user-defined con-
structs), but requires manual rewriting of formulae into its monitorable fragment.
WhyEnf and EnfPoly support just 17 and 7 policies, respectively. Both tools
cannot enforce formulae with function applications, aggregations, or let bind-
ings. Without let, formulae can become much larger (up to 20 times in practical
examples [5]) and difficult to read and maintain. Aggregations strictly increase
the policy language’s expressiveness [20]: some requirements [5,7] cannot be ex-
pressed without them. EnfPoly is additionally restricted to past-only policies.

RQ2: Maximum event rate. Figure 14 shows each tool’s average latency
(avg	(a), in ms), maximum latency (max	(a), in ms) and average event rate
avger for the largest trace acceleration a ∈ {20 , . . . , 29} such that max	(a) ≤ 1 a .
A trace acceleration is the ratio between the speed that a trace is provided to
the enforcer and the trace’s real-time behavior (captured by its timestamps).
The inequality captures that latency is smaller than the interval between two
timestamps in the accelerated trace, i.e., that a tool can process the trace in real
time. We report averages over 5 repetitions of each benchmark’s largest log.

Except for one formula in ic, EnfGuard can enforce all policies in real time,
with event rates ranging from 20–200 events/s when frequent aggregation and
causation is involved (agg, cluster, some of ic) to over 1,000–14,000 events/s
in contexts when few commands are emitted and policies are simpler (gdpr,
nokia). Our experiments show maximum latency values below 20 ms in most
cases, and below 100 ms in all but 4 benchmarks using commodity hardware.

a avg �

8e6 7. 0
6e6 .2
e6 33
8e6 1. 2 51
8e6 1. 4
8e6 3. 5 934

real-tim
.2
.2
.2

1 1 †
5 3 † 9

.2

.2

.2

.2

.2

EnfGuard MonPoly
Policy ϕ |ϕ| a avger avg� max� a avger avg� max�

36
5 2 14

14
19
-ti
25

5 2 16
.0

9 16
33
39
48
25
31

EnfGuard

grubbs 42 32 160 14 32

†

Scaling Up Proactive Enforcement 389

EnfP oly MonPolyEnfGuard WhyEnf
Policy ϕ avger avg� max� a avger � max� a avger avg� max� max�|ϕ|

22 12.
14 25.
72 6.4
16 12.
17 12.
19 12.

avger avg

6 6934 .20
6 6934 .20
6 3465 .13
6 6934 .15
6 6934 .15

consent 1619 .39 2 .8e6 101 6 3 51.2e6 6480 .17 1 1
deletion 3238 .28 2 25.6e6 3238 0 1 1

d
pr gdpr 810 .87 3 .2e6 25 110 1

g information 1619 .33 2 6.4e6 810 1 5. 1
lawfulness 1619 .35 2 6.4e6 810 3 4. 51.2e6 6480 .17 1 1
sharing 1619 .32 2 3.2e6 405 0 1 .20 1

a

51.2e
51.2e
25.6e

.2e
51.2e
51.2e6 6

del-1-2 37 32 e 128 14035 .21 53503 5 19 not
del-2-3 20 128 14013 .58 6 256 28026 6 2 512 56139 .17 1
del-3-2 20 128 14013 .55 6 512 56052 6 2 512 56139 .17 1
delete 10 128 14013 .54 5 256 28026 5 2 512 56052 .16 1 512 56138 .17 1

ia ins-1-2 25 64 7007 1. 1 error not real-time

n
o
k ins-2-3 20 32 3053 1. 2 error 32 3509 2.8 1

ins-3-2 20 32 3503 5.9 29 256 28026 8 2 256 28069 .40 3
insert 10 128 14013 .65 7 256 28026 6 2 512 56052 .22 2 512 56139 .21 1
script1 44 128 14013 .64 6 256 28026 8 2 512 56052 .19 1 512 56139 .24 1
select 13 128 14013 .54 5 256 28026 5 2 512 56052 .16 1 512 56139 .16 1
update 8 128 14013 .53 6 256 28026 4 2 512 56052 .16 1 512 56139 .16 1

128 374
2

4 .26
9 .7

5
28

256
1 128

7489
3744

.

.
|ϕ| a avger avg� max�4

3
3

Policy ϕ

u
n

fconsent 25
fmanagement 22

validation 166
clean_logs 48 12.8e6 1619 .30 2
finalization 58 not real-time 128 3744 .

c divergence 50 128 3744 .23 3 128 3744 .
25.6e6 1619 .31 2

i height 162 128 3744 .24 3 not real
3

me d
pr

f fdeletion 17 25.6e6 3238 .30 2

logging 179 64 1872 .23 10 2 59 . 381 g
fgdpr 108 6.4e6 3238 .93 4

reboot 79 2 9 .4 276 128 3744 . 3
finformation 23 12.8e6 1619 .44 3

unauthorized 64 128 3744 .23 3 2 59 3 300
fs

.

haring 20 12.8e6 1619 .32 2

p1 21 64 640 5.1 .4 512 5120 . 1 cl

dbscan 42 32 160 17 31

p2 22 32 320 13 27 512 5120 . 1

g
g p3 27 8 80 44 102 512 5120 . 1

a p4 31 2 20 54 392 512 5120 . 1 The tool returns incorrect results on test
p5 32 64 640 6.3 11 512 5120 . 1 cases. The formula is not correctly enforced.
p6 34 64 640 6.8 12 512 5120 . 1

Fig. 14: Latency and processing time for the largest a such that max	(a) ≤ 1/a.

RQ3: Comparison with the state-of-the-art. Our comparison on the gdpr
benchmarks shows EnfGuard to be 1.5–30× faster than WhyEnf and up
to 4 times slower than the much less expressive, table-based EnfPoly. Likely
due to its more complex data structures, EnfGuard is sometimes slower than
WhyEnf on small formulae (nokia), but with a latency still below 10 ms. The
large gdpr formula exhibits EnfGuard’s performance advantage over WhyEnf:
while WhyEnf, with an event rate of only 25, suffers a significant slowdown
compared to the same benchmark’s other formulae, EnfGuard is still able to
process 810 events per second. The comparison with MonPoly reveals potential
for further optimizations, especially for aggregations (agg). However, the per-
formance gap between EnfGuard and MonPoly is smaller for large formulae
(ic), with the two tools showing incomparable performance on complex formulae.

Acknowledgments. Hublet is supported by the Swiss National Science Founda-
tion grant "Model-driven Security & Privacy" (204796). Lima and Traytel are
supported by a Novo Nordisk Fonden start package grant (NNF20OC0063462).
We thank the anonymous CAV reviewers for their insightful feedback.

Disclosure of interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Science 19 (2023)

enforcement of branching-time properties. Acta Informatica pp. 1–67 (2023)

Security (ESORICS). LNCS, vol. 11735, pp. 681–699. Springer (2019)

obligations. J. Comput. Secur. 32(3), 247â€“289 (2024)

on Formal Methods. pp. 383–402. Springer (2023)

(2013)

(2015)

temporal properties. Journal of the ACM (JACM) 62(2), 1–45 (2015)

on Foundations of Computer Security (FCS). Citeseer (2002)

121–125. Springer (2007)

186 (1995)

Analysis of Systems (TACAS). LNCS, vol. 6605, pp. 272–275. Springer (2011)

Security Paradigms. pp. 87–95. ACM (1999)

gramming 123, 2–41 (2016)

verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021)

ification, (RV). LNCS, vol. 11757, pp. 48–69. Springer (2019)

390 F. Hublet et al.

References

1. Aceto, L., Cassar, I., Francalanza, A., Ingolfsdottir, A.: Bidirectional runtime en-
forcement of first-order branching-time properties. Logical Methods in Computer

2. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On first-order runtime

3. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider,
S.A., Ryan, P.Y.A. (eds.) 24th European Symposium on Research in Computer

4. Basin, D., Debois, S., Hildebrandt, T.: Proactive enforcement of provisions and

5. Basin, D., Dietiker, D.S., Krstić, S., Pignolet, Y.A., Raszyk, M., Schneider, J., Ter-
Gabrielyan, A.: Monitoring the internet computer. In: International Symposium

6. Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: Monitoring data usage in dis-
tributed systems. IEEE Transactions on Software Engineering 39(10), 1403–1426

7. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal methods in system design 46, 262–285

8. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order

9. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Workshop

10. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) In-
ternational Conference Computer Aided Verification (CAV). LNCS, vol. 4590, pp.

11. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems (TODS) 20(2), 149–

12. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) International Conference on Tools and Algorithms for the Construction and

13. Erlingsson, Ú., Schneider, F.: SASI enforcement of security policies: a retrospective.
In: Kienzle, D., Zurko, M.E., Greenwald, S., Serbau, C. (eds.) Workshop on New

14. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regu-
lar timed properties by suppressing and delaying events. Science of Computer Pro-

15. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime

16. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Finkbeiner, B., Mariani, L. (eds.) 19th International Conference on Runtime Ver-

17. Fredrikson, M., Joiner, R., Jha, S., Reps, T.W., Porras, P.A., Saïdi, H., Yeg-
neswaran, V.: Efficient runtime policy enforcement using counterexample-guided
abstraction refinement. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 548–563. Springer (2012)

21(4), 27–58 (1950)

with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

ACM 48(4), 880–907 (2001). https://doi.org/10.1145/502090.502100

of Logic and Algebraic Programming 82(5-7), 164–185 (2013)

ing and Formal Methods (SEFM). LNCS, vol. 13085, pp. 372–379. Springer (2021)

pp. 211–232. Springer (2022)

pp. 156–181. Springer (2024)

forcement: Technical report (2025), https://doi.org/10.5281/zenodo.15501642

enfguard

(2006)

68(7) (2010)

https://doi.org/10.1023/A:1011254632723

SPIN Symposium on Model Checking of Software. pp. 102–111. ACM (2017)

time security policies. International Journal of Information Security 4, 2–16 (2005)

rithms for the Construction and Analysis of Systems. pp. 288–307. Springer (2024)

Springer Science & Business Media (1995)

(POPL). pp. 43–54. ACM (2015)

18. Grubbs, F.E.: Sample criteria for testing outlying observations. Ann. Math. Statist.

19. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts

20. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. J.

21. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. The Journal

22. Hofmann, T., Schupp, S.: TACoS: A tool for MTL controller synthesis. In: Cali-
nescu, R., Pasareanu, C.S. (eds.) International Conference on Software Engineer-

23. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-
order temporal logic. In: European Symposium on Research in Computer Security.

24. Hublet, F., Lima, L., Basin, D., Krstić, S., Traytel, D.: Proactive real-time first-
order enforcement. In: International Conference on Computer Aided Verification.

25. Hublet, F., Lima, L., Basin, D., Krstić, S., Traytel, D.: Scaling-up proactive en-

26. Hublet, François and Lima, Leonardo and Basin, David and Krstić, Srđan and
Traytel, Dmitriy: EnfGuard (2025), https://github.com/runtime-enforcement/

27. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: International Con-
ference Formal Methods in Computer-Aided Design (FMCAD). pp. 117–124. IEEE

28. Kiukkonen, N., Blom, J., Dousse, O., Gatica-Perez, D., Laurila, J.: Towards rich
mobile phone datasets: Lausanne data collection campaign. Proc. ICPS, Berlin

29. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Meth-
ods Syst. Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723,

30. Li, G., Jensen, P., Larsen, K., Legay, A., Poulsen, D.: Practical controller synthesis
for MTL0,∞. In: Erdogmus, H., Havelund, K. (eds.) ACM SIGSOFT International

31. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-

32. Lima, L., Huerta y Munive, J.J., Traytel, D.: Explainable online monitoring of
metric first-order temporal logic. In: International Conference on Tools and Algo-

33. Minato, S.i.: Binary decision diagrams and applications for VLSI CAD, vol. 342.

34. Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of security
policies on black box reactive programs. In: Rajamani, S.K., Walker, D. (eds.) 42nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

35. Peter, H., Ehlers, R., Mattmüller, R.: Synthia: Verification and synthesis for timed
automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) International Conference on
Computer Aided Verification (CAV). LNCS, vol. 6806, pp. 649–655. Springer
(2011)

Scaling Up Proactive Enforcement 391

https://doi.org/10.1145/502090.502100
https://doi.org/10.5281/zenodo.15501642
https://github.com/runtime-enforcement/
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723

Verification (RV). pp. 306–320. Springer (2015)

381–422 (2014)

Predictive runtime enforcement. Formal Methods Syst. Des. 51(1), 154–199 (2017)

relational calculus queries. Logical Methods in Computer Science 19 (2023)

275. Springer (2017)

50 (2000)

Paper 2022/087 (2022), https://eprint.iacr.org/2022/087

Conference (HVC). LNCS, vol. 10629, pp. 147–162. Springer (2017)

36. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: TiPEX: A tool chain for timed
property enforcement during execution. In: International Conference on Runtime

37. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena Timo, O.:
Runtime enforcement of timed properties revisited. Formal Methods Syst. Des. 45,

38. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.:

39. Raszyk, M., Basin, D., Krstić, S., Traytel, D.: Efficient evaluation of arbitrary

40. Renard, M., Rollet, A., Falcone, Y.: GREP: games for the runtime enforcement
of properties. In: Yevtushenko, N., Cavalli, A., Yenigün, H. (eds.) International
Conference on Testing Software and Systems (ICTSS). LNCS, vol. 10533, pp. 259–

41. Schneider, F.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–

42. The DFINITY Team: The Internet Computer for geeks. Cryptology ePrint Archive,

43. Zhu, S., Tabajara, L., Li, J., Pu, G., Vardi, M.: A symbolic approach to safety LTL
synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) International Haifa Verification

44. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order
monitoring with recursive rules. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 236–253. Springer (2022)

392 F. Hublet et al.

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://eprint.iacr.org/2022/087
http://creativecommons.org/licenses/by/4.0/

