
The Next 700 Policy Miners: A Universal Method for Building
Policy Miners

Carlos Cotrini
Department of computer science

ETH Zürich
ccarlos@inf.ethz.ch

Luca Corinzia
Department of computer science

ETH Zürich
luca.corinzia@inf.ethz.ch

Thilo Weghorn
Department of computer science

ETH Zürich
thilo.weghorn@inf.ethz.ch

David Basin
Department of computer science

ETH Zürich
basin@inf.ethz.ch

ABSTRACT

Amyriad of access control policy languages have been and continue
to be proposed. The design of policy miners for each such language
is a challenging task that has required specialized machine learning
and combinatorial algorithms. We present an alternative method,
universal access control policy mining (Unicorn). We show how
this method streamlines the design of policy miners for a wide
variety of policy languages including ABAC, RBAC, RBAC with
user-attribute constraints, RBAC with spatio-temporal constraints,
and an expressive fragment of XACML. For the latter two, there
were no known policy miners until now.

To design a policy miner using Unicorn, one needs a policy lan-
guage and a metric quantifying howwell a policy fits an assignment
of permissions to users. From these, one builds the policy miner as a
search algorithm that computes a policy that best fits the given per-
mission assignment. We experimentally evaluate the policy miners
built with Unicorn on logs from Amazon and access control ma-
trices from other companies. Despite the genericity of our method,
our policy miners are competitive with and sometimes even better
than specialized state-of-the-art policy miners. The true positive
rates of policies we mined differ by only 5% from the policies mined
by the state of the art and the false positive rates are always below
5%. In the case of ABAC, it even outperforms the state of the art.

CCS CONCEPTS

• Computing methodologies→ Supervised learning by clas-

sification; • Security and privacy → Access control.
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1 INTRODUCTION

1.1 Motivation and research problem

Numerous access control policy languages have been proposed
over the last decades, e.g., RBAC (Role-Based Access Control) [26],
ABAC (Attribute-Based Access Control) [37], XACML (eXtended
Access-Control Markup Language) [34], and new proposals are
continually being developed, e.g., [7, 10, 16, 57, 78]. To facilitate
the policy specification and maintenance process, policy miners
have been proposed, e.g., [12, 18, 31, 33, 43, 52, 56, 77]. These are
algorithms that receive an assignment of permissions to users and
output a policy that grants permissions to users that match as
closely as possible the given assignment.

Designing a policy miner is challenging and requires sophisti-
cated combinatorial or machine-learning techniques. Moreover, pol-
icyminers are tailor-made for the specific policy language theywere
designed for and they are inflexible in that any modification to the
miner’s requirements necessitates its redesign and reimplementa-
tion. For example, miners that mine RBAC policies from access con-
trol matrices [31] are substantially different from those that mine
RBAC policies from access logs [56]. As evidence for the difficulty of
this task, despite extensive work in policy mining, no miner exists
for XACML [34], which is a well-known, standardized language.

Any organization that wishes to benefit from policy mining faces
the challenge of designing a policy miner that fits its own policy
language and its own requirements. This problem, which we exam-
ine in Section 3, is summarized with the following question: is there
a more general and more practical method to design policy miners?

1.2 Contribution

We propose a radical shift in the way policy miners are built. Rather
than designing specialized mining algorithms, one per policy lan-
guage, we propose Unicorn, a universal method for building policy

miners. Using this method, the designers of policy miners no longer
must be experts in machine learning or combinatorial optimization
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Figure 1: Workflow for designing a policy miner using Unicorn.

to design effective policy miners. Our method gives a step-by-step
procedure to build a policy miner from just the policy language

and an objective function that measures how well a policy fits an
assignment of permissions to users.

Let Γ be a policy language. We sketch below and in Figure 1 the
workflow for designing a policy miner for Γ using Unicorn.

Policy language and objective function (Sections 4 and 5). The
miner designer specifies a template formula for Γ in a fragment L
of first-order logic. Template formulas are explained in Section 4.
The designer also specifies an objective function L that measures
how well a policy fits a permission assignment.

Probability distribution (Section 5). From φ and L, we define a
probability distribution P on policies, conditioned on permission
assignments. A permission assignment is a relation between the set
of users and the set of permissions. The policy miner is a program
that receives as input a permission assignment Auth and aims to
compute the most likely policy conditioned on Auth; that is, the
policy I that maximizes P (I | Auth).

Approximation (Section 6). Computing maxI P (I | Auth) takes
time exponential in the size of Auth and I, encoded as strings.
Moreover, the function P (I | Auth) has many local maxima. Hence,
we use deterministic annealing and mean-field approximation [9,
11, 61, 62] to derive an iterative procedure that computes a distri-
bution q on policies that approximates P (I | Auth). Computing
arg maxI q (I) takes time polynomial in the size of Auth and I.

Implementation (Section 7). The policy miner is a procedure that
computes and maximizes q. One need not understand mean-field
approximations or deterministic annealing to implement the policy
miner. We provide a set of rewriting rules and pseudocode that
guide step by step q’s computation and maximization (see Algo-
rithm 1 and Lemma 2).

In summary, designing a policy miner for a policy language pre-
viously required expertise in machine learning and combinatorial
algorithms. Unicorn reduces this to the task of specifying a tem-
plate formula and implementing q’s maximization. We illustrate
how specifying template formulas requires only the background
in first-order logic provided in this paper and how it amounts to
just formalizing the language’s semantics in first order logic, a task
that is substantially simpler than designing a machine-learning or
a combinatorial algorithm.

1.3 Applications and evaluation

Using Unicorn, we have built miners for different policy languages
like RBAC, ABAC, and RBAC with user attributes. Furthermore, we
have built policy miners for RBAC with spatio-temporal constraints
and an expressive fragment of XACML, for which no miner existed
before. We present them in Sections 8 and 9 and in the appendix.

In Section 10, we conduct an extensive experimental evaluation
using datasets from all publicly available real-world case studies
on policy mining. We compare the miners we built with state-of-
the-art miners on both real-world and synthetic datasets. The true
positive rates of the policies mined by our miners are within 5% of
the true positive rates of the policies mined by the state of the art.
For policy languages like XACML or RBAC with spatio-temporal
constraints, the true positive rates are above 75% in all cases and
above 80% inmost of them. The false positive rates are always below
5%. For ABAC policies, we mine policies with a substantially lower
complexity and higher precision than those mined by the state of
the art. This demonstrates that with Unicorn we can build a wide
variety of policy miners, including new ones, that are competitive
with or even better than the state of the art.

Unicorn’s effectiveness follows from the wide applicability of
deterministic annealing (DA). This technique has been applied to
different optimization problems like the traveling salesman prob-
lem [61], clustering [62], and image segmentation [36]. DA can also
be applied to policy mining. However, in our case, computing the
distribution P (I | Auth) required by DA is intractable. Hence, we
use mean-field approximation (MFA) to compute a distribution q
that approximates P. This distribution q is much easier to compute.
Moreover, our approach of DA with MFA turns out to generalize to
a wide variety of policy languages.

We examine related work and draw conclusions in Sections 11
and 12. For details on deterministic annealing and mean-field ap-
proximation, we refer to the literature [9, 11, 61, 62].

2 PRELIMINARIES

2.1 Policy mining

Organizations define organizational policies that specify which per-
missions each user in the organization has. Such policies are usually
described in a high-level language. To be machine enforceable, pol-
icy administrators must specify this policy as an (access control)

policy in a machine-readable format. This policy assigns permissions
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to users and is formalized in a policy language. The policy is then en-
forced by mechanisms that intercept each request (a pair consisting
of a user and a permission) and check whether it is authorized.

Organizations are highly dynamic. New users come and existing
users may go. Moreover, groups of users may be transferred to other
organizational units. Such changes induce changes in the access
control policy, which are usually manually implemented, giving rise
to the following problems. First, the policy may become convoluted
and policy administrators no longer have an overview on who
is authorized to do what. Second, policy administrators may have
granted to users more permissions than needed to do their jobs. This
makes the organization vulnerable to abuse by its own users, who
may exploit the additional permissions and harm the organization.

To address these problems, numerous policy miners have been
proposed [12, 18, 31, 33, 43, 52, 56, 77]. We describe some of them in
Section 3.1. Policy miners are algorithms that receive as input the
current permission assignment, which is a relation between the set of
users and the set of permissions. The permission assignment might
be given as an access control matrix or a log of access requests
showing the access decisions previously made for each request.
It describes the organization’s implemented knowledge on which
permissions should be assigned to which users. The miner then
constructs a policy that is as consistent as possible with the per-
mission assignment and can be expressed using the organization’s
policy language.

A policy miner aims to solve the two problems mentioned above.
First, it can mine succinct policies that grant permissions consis-
tent with the given permission assignment. Second, policy miners
can mine policies that assign only those permissions that users
necessarily need. An administrator can then compare the mined
policy with the currently implemented policy in order to detect
permissions that are granted by the current policy, but that are not
being exercised by the users. Policy administrators can then inspect
those permissions and decide if they are necessary for those users.

The problem of policy mining is defined as follows. Given a
permission assignment and an objective function, compute a policy
that minimizes the objective function. Usually, objective functions
measure how well a policy fits a permission assignment and how
complex a policy is. We give examples of objective functions later
in Sections 5 and 8.

2.2 Quality criteria for policy miners

Policy miners can be regarded as machine-learning algorithms.
Therefore, they are evaluated by the quality of the policies they
mine, and here two criteria are used:

Generalization [18, 30, 56]. A mined policy should not only au-
thorize requests consistent with the given permission assignment.
It must also correctly decide what other permissions should be
granted to users who perform similar functions in the organization.
This is particularly important when mining from logs. For example,
if most of students in a university have requested and been granted
access to a computer room, then the mined policy should grant all
students access to the computer room rather than just to those who
previously requested access to it. For a formal definition of gen-
eralization, we refer to previous work and standard references in

machine learning [9, 18, 30]. One popular machine-learning method
to evaluate generalization is cross-validation [9, 32].

Complexity [12, 77]. A mined policy should not be unnecessar-
ily complex, as the policies are usually reviewed and audited by
humans. This is especially important when mining with the goal
of refactoring an existing policy or migrating to a new policy lan-
guage. However, there is no standard formalization of a policy’s
complexity, not even for established policy languages like RBAC or
ABAC. Each previous work has defined its own metrics to quantify
complexity [18, 29, 76, 77]. We discuss some of these metrics in
Section 8 and show how Unicorn is able to work with all of them.

3 THE PROBLEM OF DESIGNING POLICY

MINERS

3.1 Status quo: specialized solutions

Numerous policy languages exist for specifying access control poli-
cies, which fulfill different organizational requirements. Moreover,
new languages are continually being proposed. Some of them for-
mulate new concepts, like extensions of RBAC that can express
temporal and spatial constraints [1, 13, 15, 20, 49, 60, 69]. Other
languages facilitate policy specification in specialized settings such
as distributed systems [34, 70] or social networks [28].

Motivated by the practical problem of maintaining access control
configurations, researchers have proposed policy miners for a vari-
ety of policy languages. Moreover, for some policy languages, these
miners optimize different objectives. For example, initial RBACmin-
ers mined policies with aminimal number of roles [51, 63, 72, 74, 80].
Subsequent miners mined policies that are as consistent as possible
with the user-attribute information [30, 56, 75].

The development of policy miners is non-trivial and generally
requires sophisticated combinatorial and machine-learning algo-
rithms. Recent ABACminers have used association rule mining [18]
and classification trees [14]. The most effective RBAC miners use
deterministic annealing [30] and latent Dirichlet allocation [56].

The proposed miners are so specialized that it is usually unclear
how to apply them to other policy languages or even to extensions
of the languages for which they were conceived. For example, dif-
ferent extensions of RBAC that support spatio-temporal constraints
have been proposed over the last two decades, e.g., [1, 13, 15, 20, 49,
60, 69]. However, not a single miner has been proposed for these
extensions. Miners have only recently emerged that mine RBAC
policies with constraints, albeit only temporal ones [53, 54, 66].
As a result, if an organization wants to use a specialized policy
language, it must invent its own policy miner, which is challenging
and time-consuming.

3.2 Alternative: A universal method

To facilitate the development of policy miners, we propose a new
method, universal access control policy mining (Unicorn). With this
method, organizations no longer need to spend substantial effort
designing specialized policy miners for their unique and specific
policy languages; they only need to perform the following tasks
(see also Figure 1). First, they specify a template formula φ for the
organization’s policy language. We explain later in Section 4 what
a template formula is. Second, they specify an objective function.
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Finally, they implement the miner as indicated by the algorithm
template in Section 7. We formalize these tasks in the next sections.

4 A UNIVERSAL POLICY LANGUAGE

In order to obtain a universal method, we need a framework for
specifying policy languages. We choose many-sorted first-order

logic [23, 24], which has been used to model and reason about
numerous policy languages, e.g. [3, 19, 40, 71].

Let Γ be a policy language for which we want to design a policy
miner. In this section we explain the first task: the miner designer
must specify a template formula φΓ for Γ. This is a first-order for-
mula that fulfills some conditions that we explain later in Defini-
tion 5. We show how Γ can be identified with φΓ ∈ L and how
policies in Γ can be identified with interpretation functions that
interpret φΓ ’s symbols. We thereby reduce the problem of design-
ing a policy miner to designing an algorithm that searches for a
particular interpretation function.

We start by recalling first-order logic (Section 4.1). Then we pro-
vide some intuition on template formulas using RBAC (Section 4.2).
Afterwards, we propose a fragment L of first-order logic that is
powerful enough to contain template formulas for a variety of pol-
icy languages like RBAC, ABAC, and an expressive fragment of
XACML (Section 4.3).We then define template formulas (Section 4.4)
and give an example of a template formula for RBAC (Section 4.5).

4.1 Background in first-order logic

We provide here an overview of basic many-sorted first-order logic
and conventions we employ. The reader familiar with logic can read
this section lightly. We work only with finite first-order structures.
That is, structures whose carrier sets are finite. Later, in our exam-
ples, we will see that finite structures are still powerful enough to
model practical scenarios, as organizations do not need to handle
infinite sets. Even for the case of strings and integers, organizations
often only use a finite subset of them.

Definition 1. A signature is a tuple (S,R,F,V) fulfilling the fol-
lowing, where S is a finite non-empty set of sorts, R is a finite
non-empty set of relation symbols, F is a finite non-empty set of
function symbols, and V is a countable set of variables.

Each relation and each function symbol has an associated type,
which is a sequence of sorts. Furthermore, we assume the exis-
tence of two sorts USERS,PERMS ∈ S, denoting the users and
the permissions in the organization, respectively. We also assume
the existence of the sorts BOOL, INTS, STRS, which represent
Boolean values, integers, and strings, respectively. □

We denote sorts with CAPITAL BOLD letters, relation symbols
with CAPITAL ITALIC letters, and function symbols and variables
with small italic letters. To agree with standard notation, we write a
relation symbol’s type (S1, . . . , Sk ) as S1×. . .×Sk instead.Wewrite
a function’s symbol’s type (S1, . . . , Sk ) as S1 × . . . × Sk−1 → Sk in-
stead.We allowk = 1 and, in that case, we call function symbols con-
stant symbols. We denote constant symbols with small serif letters.

Definition 2. Let Σ be a signature. We define (first-order) terms

as those expressions built from Σ’s variables and function symbols
in the standard way. We also define (first-order) formulas as those

expressions obtained from terms by using relation symbols, terms,
and logical operators in the standard way. □

We only allow well-typed terms and formulas and associate to
every term a type in the standard way. In addition, we consider
only quantifier-free formulas. For a formula φ, if {x1, . . . ,xn } is
the set of all variables occurring in it, then we sometimes write
φ (x1, . . . ,xn ) instead of φ to clarify which variables occur in φ.

Definition 3. Let Σ be a signature. A Σ-structure is a pair K =
(S,I). Here,S is a function mapping each sort S in Σ to a finite
non-empty set SS , called S’s carrier set.S must map BOOL, INTS,
and STRS to the sets of Boolean values, a finite set of integers,
and a finite set of strings, respectively. I is a function mapping
(i) each relation symbol R in Σ of type S1 × . . . × Sk to a relation
RI ⊆ S

S
1 × . . . × S

S
k and (ii) each function symbol f in Σ of type

S1 × . . . × Sk−1 → Sk to a function f I : SS1 × . . . × SSk−1 → S
S
k . In

particular, a constant symbol of sort S is mapped to an element in
S
S . For any symbolW in Σ, we callW I, K’s interpretation ofW .
The function I is called an interpretation function. □

When Σ is irrelevant or clear from the context, we simply say
structure instead of Σ-structure. We denote elements of carrier sets
with small serif letters like a and b.

Let (S,I). The interpretation function I gives rise in the stan-
dard way to a function that maps any formula φ (x1, . . . ,xn ), with
xi of sortWi , to a relation φI ⊆W

S
1 × . . .×WSn . For (a1, . . . an ) ∈

W
S
1 × . . . ×WSn , φI (a1, . . . an ) holds if the formula φ evaluates to

true after replacing each xi with ai .

4.2 Motivating example

We present an example of a template formula φRBACN for the lan-
guage ΓN of all RBAC policies with at most N roles. We then show
that every RBAC policy in Γ can be identified with an interpretation

function. With this example, we provide some intuition on an ar-
gument we give later in Section 4.4: mining a policy in a policy
language Γ is equivalent to searching for an interpretation function
that interprets the symbols occurring in a template formula for Γ.

Definition 4. An RBAC policy is a tuple π = (U , Ro, P ,Ua, Pa).U
and P are non-empty sets denoting, respectively, the sets of users
and permissions in an organization. Ro is a set denoting the organi-
zation’s roles.Ua ⊆ U×Ro and Pa ⊆ Ro×P are binary relations. The
policy π assigns a permission p ∈ P to a user u ∈ U if (u, p) ∈ Ua◦Pa
(i.e., if there is a role r ∈ Ro such that (u, r) ∈ Ua and (r, p) ∈ Pa). □

Consider the language ΓN of RBAC policies with at most N
roles. We now present a template formula for ΓN . We only provide
some intuition here and give formal justifications in Section 4.5.
Let Σ be a signature with two relation symbols UA and PA of types
USERS × ROLES and ROLES × PERMS, respectively. Let

φRBACN (u, p) :=
∨
i≤N

(UA (u, ri ) ∧ PA (ri , p)) . (1)

Here, u and p are variables of sorts USERS and PERMS, respec-
tively, and ri , for i ≤ N , is a constant of sort ROLES. We now make
two observations about φRBACN (u, p).
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1) Each RBAC policy in ΓN corresponds to at least one interpretation

function. Note that for any Σ-structure K = (S,I) , the tuple

πK =
(
USERS

S,ROLESS,PERMS
S,UAI, PAI

)
(2)

is an RBAC policy. Conversely, one can show that every RBAC
policy in ΓN can be associated with a Σ-structure. Observe now
that, when an organization wants to mine an RBAC policy, S is
already known. Indeed, the organization knows the set of users and
permissions. It may not known the set of roles, but it can deduce
them from UA

I and PA
I, once it knows I. Analogously, for all

policy languages we studied, we observed thatSwas always known
by the organization. Therefore, we always assumeS given and fixed
and we conclude that every RBAC policy in ΓN corresponds to at
least one interpretation function.

2) The formula φRBACN describes ΓN ’s semantics. More precisely, if
πK has at most N roles, then for any user u in K and any p in K: πK
assigns p to u iff

(
φRBACN

)I
(u, p). This follows from two arguments.

First, by definition, πK assigns p to u if (u, p) ∈ UAI ◦ PAI . Second,
UA
I ◦ PAI =

(
φRBACN

)I .
These two observations describe the essence of a template for-

mula. Template formulas define (i) how interpretation functions
can represent policies of a policy language and (ii) how a policy
(represented by an interpretation function) decides if a permission
is assigned to a user.

4.3 Language definition

Template formulas are built from the fragment L of quantifier-free
first-order formulas.

For any signature, we require the organization to specify, for
every relation and function symbol, whether it is rigid or flexible.
Rigid symbols are those for which the organization already knows
the interpretation function. Flexible symbols are those for which an
interpretation function must be found using mining. For example,
a function that maps each user to a unique identifier should be
modeled with a rigid function symbol, as the organization is not in-
terested in mining new identifiers. In contrast, when mining RBAC
policies, one should define a flexible relation symbol to denote the
assignment of roles to users, as the organization does not know
this assignment and wants to compute it using mining.

Let K = (S,I) be a structure. We can see I as the union of
two interpretation functions Ir and If , where Ir takes as input
rigid symbols and If takes as input flexible symbols. The goal of
policy mining is to search for an interpretation function If for
the flexible symbols that minimizes an objective function. It does
not need to search forS as these function defines the carrier sets
for sorts like USERS and PERMS, which the organization already
knows. It does not need to search for Ir either. Hence, we assume
thatS and Ir are fixed and known to the organization. We also let
U = USERS

S and P = PERMS
S . We underline rigid symbols and

do not distinguish betweenW andW Ir .

4.4 Template formulas

We now formalize template formulas. Let Γ be a policy language
and let Pol (Γ) be the set of all policies that can be specified with Γ.
Suppose also that the set of access requests is modeled with a set

T
S
1 × . . . × TSℓ , where T1, . . . ,Tℓ are sorts. For example, for RBAC

and many other policy languages that we discuss here, the set of
requests is U × P = USERS

S × PERMS
S .

We assume that the semantics of Γ defines a relation assignΓ ⊆
Pol (Γ)×TS1 ×. . .×TSℓ , such that for (t1, . . . , tℓ ) ∈ TS1 ×. . .×TSℓ and
π ∈ Pol (Γ), (π , t1, . . . , tℓ ) ∈ assignΓ iff π authorizes (t1, . . . , tℓ ).
For example, in RBAC, (π , u, p) ∈ assign

RBAC
iff π assigns p to u.

Definition 5. Let Γ be a policy language and φ (t1, . . . , tℓ ) be a
formula in L, where t1, . . . , tℓ are variables of sorts T1, . . . ,Tℓ ,
respectively. The formula φ (t1, . . . , tℓ ) is a template formula for Γ
if there is a functionM such that (i)M is a surjective function
from the set of interpretation functions to Pol (Γ) and (ii) for any
interpretation function I and any request (t1, . . . , tℓ ) ∈ TS1 × . . . ×
T
S
ℓ
, we have that (t1, . . . , tℓ ) ∈ φI iff (M (I) , t1, . . . , tℓ ) ∈ assignΓ .

□

The mappingM provides a correspondence between interpreta-
tions and policies.M guarantees that each policy is represented
by at least one interpretation. Therefore, we can search for an in-
terpretation instead of a policy. For this reason, for the rest of the
paper, we identify every formula in L with a policy language and
also refer to interpretation functions as policies.

4.5 Formalizing the example

We now formally define the formulaφRBACN (u, p) ∈ L, introduced in
Section 4.2, and show that it is a template formula for the language
ΓN of all RBAC policies with at most N roles. Allowing a maximum
number of roles is sufficient as one always can estimate a trivial
bound on the maximum number of roles in an organization.

Template formula definition: Consider a signature with a sort
ROLES denoting roles and with two (flexible) binary relation sym-
bols UA and PA of types USERS × ROLES and ROLES × PERMS,
respectively. Define the formula

φRBACN (u, p) :=
∨
i≤N

(
UA(u, ri ) ∧ PA(ri , p)

)
. (3)

Here, ri , for 1 ≤ i ≤ N , is a rigid constant symbol of sort ROLES
(recall that we underline rigid symbols and denote constant symbols
with serif letters). One could also use flexible constant symbols for
roles, but, as we see later, the difficulty of implementing the policy
miner increases with the number of flexible symbols.

Correctness proof: We now define a mappingM that proves that
φRBACN is a template formula for ΓN . For any interpretation function
I, letM (I) =

(
U , {r1, . . . , rN }, P ,UAI, PAI

)
.Observe thatM (I)

is an RBAC policy. Moreover, for (u, p) ∈ U × P , (u, p) ∈
(
φRBACN

)I
iff (u, p) ∈ UAI ◦ PAI iff (πI, u, p) ∈ assignRBAC . It is also easy to
prove thatM is surjective on the set of all RBAC policies with at
most N roles. Hence, we can identify φRBACN with the language of
all RBAC policies with at most N roles. □

Example 1. To facilitate understandingM, we show an RBAC
policy π and an interpretation function I such thatM (I) = π .

Let N = 2 and assume that U = {Alice,Bob,Charlie} and that
P = {c,m, d}. The permissions in P stand for “create”, “modify”, and
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r1 r2
Alice ×
Bob ×

Charlie ×
Table 1: User-assignment

relation

c m d

r1 × ×
r2 ×

Table 2: Permission-

assignment relation

“delete”. Let r1 and r2 denote two roles. Consider the RBAC policy
defined by Tables 1 and 2.

We can define an interpretation function I such that M (I)
corresponds to the RBAC policy above. I interprets the relation
symbols UA and PA in the formula φRBACN (u, p) as follows. For
u ∈ U and i ≤ 2, UAI

(
u, ri
)
iff (u, ri ) is marked with an × in

Table 1. Similarly, for p ∈ P and i ≤ 2, PAI
(
ri , p
)
iff (ri , p) is

marked with an × in Table 2. □

5 PROBABILITY DISTRIBUTION

Let φ ∈ L be a policy language. We assume for the rest of the paper
that φ has two free variables u and p of sorts USERS and PERMS,
respectively. Our presentation extends in a straightforward way to
more general cases.

To design a policy miner using Unicorn one must specify an
objective function L. This is any function taking two inputs: a per-
mission assignment Auth ⊆ U × P , which is a relation on U and
P indicating what permissions each user has, and a policy I. An
objective function outputs a value in R+ measuring how well φI
fits Auth and other policy requirements. The policy miner designer
is in charge of specifying such a function. In Section 8, we give
other examples of objective functions.

For illustration, consider the objective function

L (Auth,I;φ) =
∑

(u,p)∈U×P
���Auth(u, p) − φ

I (u, p)��� . (4)

Here, we identify the value 1 with the Boolean value true and the
value 0 with the Boolean value false. Observe that L (Auth,I;φ)
is the size of the symmetric difference of the relations Auth and φI .
Hence, lower values for L (Auth,I;φ) are better.

The policy miners built with Unicorn are probabilistic. They
receive as input a permission assignment Auth and compute a
probability distribution over the set of all policies in a fixed policy
language Γ.We use a Bayesian instead of a frequentist interpretation
of probability. The probability of a policy I does not measure how
often I is the outcome of an experiment, but rather how strong we
believe I to be the policy that decided the requests in Auth.

We now define, given a permission assignment Auth, a probabil-
ity distribution P (· | Auth) on policies. We first provide some intu-
ition on P (· | Auth)’s definition and afterwards define it. For a per-
mission assignmentAuth and a policy I, we can see P (· | Auth) as a
quantity telling us how much we believe I to be the organization’s
policy, given that Auth is the organization’s permission assignment.

Policy miners receive as input a permission assignment Auth
and then search for a policy I∗ that maximizes P (· | Auth). Here,
P (· | Auth) is defined as the “most general” distribution that fulfills
the following requirement: for any policy I, the lower L (Auth,I;φ)

is, the more likely I is. Following the principle of maximum en-
tropy [45], the most general distribution that achieves this is

P (I | Auth) = exp (−βL(Auth,I;φ))∑
I′ exp (−βL(Auth,I′;φ)) , (5)

where I′ ranges over all policies. Recall that we consider only finite
structures. Hence, all our carrier sets are finite, so there are only
finitely many policies.

The value β > 0 is a parameter that the policy miner varies
during the search for the most likely policy. The search uses deter-
ministic annealing, an optimization procedure inspired by simulated
annealing [46, 61, 62]. In our case, it initially sets β to a very low
value, so that all policies are almost equally likely. Then it gradually
increases β while, at the same time, searching for the most likely
policy. As β increases, those policies that minimize L(Auth, · ;φ)
become more likely. In this way, deterministic can escape from
low-quality local maxima of P (· | Auth). When β → ∞, only those
policies that minimize L(Auth, · ;φ) have a positive probability and
the search converges to a local maximum of P (· | Auth).

We now define the probability distribution given in Equation 5.

Definition 6. For a formulaφ ∈ L, we define the probability space
Pφ =

(
Ω, 2Ω,P (· | Auth)

)
as follows.

• Ω is the set of all interpretation functions (i.e., policies).
• 2Ω is the set of all subsets of Ω. Since all carrier sets of all
sorts are finite (Definition 3), Ω and 2Ω are finite.
• For I ∈ Ω,

P (I | Auth) = exp (−βL(Auth,I;φ))∑
I′ exp (−βL(Auth,I′;φ)) . (6)

Finally, for O ∈ 2Ω , let P (O | Auth) = ∑I∈O P (I | Auth).
□

The following theorem proves that P (· | Auth) is the “most gen-
eral” distribution that fulfills the requirement mentioned above.
More precisely, P (· | Auth) is the maximum-entropy probability
distribution where the probability of a policy I increases whenever
L(Auth,I;φ) decreases [39, 68].

Theorem 1. P (· | Auth) is the distribution P on policies that max-
imizes P ’s entropy and is subject to the following constraints.
• ∑I P (I) L(Auth,I;φ) ≤ ℓ, for some fixed bound ℓ.
• If β > 0, then P (I) > P (I′), for any two policies I and I′
with L(Auth,I;φ) < L(Auth,I′;φ).

Proof. It suffices to drop the second constraint and use Lagrange
multipliers to verify that P (I | Auth) is the optimal distribution.
Observe that P (I | Auth) satisfies the second constraint. □

Example 2. We illustrate the probability distribution defined above
for the language of all RBAC policies with at most N roles, defined
in Section 4.5. For simplicity, we fix N = 2 in this example. Assume
that U = {Alice,Bob,Charlie} and that P = {c,m, d}, as defined in
Example 1. Assume given a permission assignment Auth and two
policies I1 and I2 as shown in Tables 3–9.

Recall that
(
φRBACN

)I1 and
(
φRBACN

)I2 are the permission assign-

ments induced by I1 and I2, respectively. Observe that
(
φRBACN

)I1

andAuth differ by one entry, whereas
(
φRBACN

)I2 andAuth differ by

Session 1D: Forensics CCS ’19, November 11–15, 2019, London, United Kingdom

100



two. Hence, L
(
Auth,I1;φRBACN

)
= 1 < 2 = L

(
Auth,I2;φRBACN

)
.

As a result, for any β > 0, we get that P (I1 | Auth) = exp(−β )
Z >

exp(−2β )
Z = P (I2 | Auth) , where Z = ∑I′ exp (−βL(Auth,I′;φ)).

□

c m d

Alice × ×
Bob × ×

Charlie × ×
Table 3: Auth

rI1
1 rI1

2
Alice ×
Bob ×

Charlie ×
Table 4: UA

I1

rI2
1 rI2

2
Alice ×
Bob ×

Charlie ×
Table 5: UA

I2

c m d

rI1
1 × ×
rI1
2 ×
Table 6: PA

I1

c m d

rI2
1 ×
rI2
2 × ×
Table 7: PA

I2

c m d

Alice × ×
Bob × ×

Charlie ×
Table 8:

(
φRBACN

)I1

c m d

Alice ×
Bob ×

Charlie × ×
Table 9:

(
φRBACN

)I2

6 APPLYING MEAN-FIELD APPROXIMATION

The policy miner that is built with Unicorn is an algorithm that re-
ceives as input a permission assignmentAuth and computes a policy
I that approximately maximizes P (· | Auth), while letting β → ∞.
Since computing P (· | Auth) is intractable, we use mean-field ap-

proximation [9], a technique that defines an iterative procedure to
approximate P (· | Auth) with a distribution q (·). It turns out that
computing and maximizing q(·) is much easier than computing
and maximizing P (· | Auth). The policy miner is then an algorithm
implementing the computation of q and its maximization.

We next introduce some random variables that help to measure
the probability that a policy authorizes a particular request (u, p) ∈
U × P (Section 6.1). Afterwards, we present the approximating
distribution q (Section 6.2).

6.1 Random variables

Recall that the sample space Ω of the distribution P (· | Auth) from
Definition 6 is the set of all policies I. Let X be a random variable
mapping I ∈ Ω to I. Although X’s definition is trivial, it will help
us to understand other random variables that we introduce later.
We can understand X as an “unknown policy” and, for a policy I,
the probability statement P (X = I | Auth) measures how much we
believe thatX is actually I, given that the organization’s permission
assignment is Auth. By definition, P (X = I | Auth) = P (I | Auth).
Definition 7. Let φ ∈ L and letW be a flexible relation sym-
bol occurring in φ of type S1 × . . . × Sk and let f be a flexible
function symbol occurring in φ of type S1 × . . . × Sk → S. Let
(a1, . . . , ak ) ∈ S

S
1 × . . . × S

S
k . Recall that S maps sorts to carrier

sets. We define the random variableW X (a1, . . . , ak ) : Ω → {0, 1}
that maps (Auth,I) ∈ Ω toW I (a1, . . . , ak ) ∈ {0, 1}. Similarly, we
define the random variable f X (a1, . . . , ak ) : Ω → S

S that maps
(Auth,I) ∈ Ω to f I (a1, . . . , ak ) ∈ SS . We call these random vari-
ables random facts of φ. □

Example 3. Let us examine some random facts of the formula
φRBACN from Example 2. One such random fact is UAX

(
Alice, r1

)
,

which can take the values 0 and 1, so UAX
(
Alice, r1

)
is a Bernoulli

random variable whose probability distribution is defined by

P
(
UA
X
(
Alice, r1

)
= 1 | Auth

)
=

P
({
I ∈ Ω | UAI

(
Alice, r1

)
= 1

}
| Auth

)
. (7)

More generally, the set of random facts for φRBACN is

F
(
φRBACN

)
=
{
UA
X
(
u, ri
)
| u ∈ U , i ≤ N

}
∪

{
PA
X
(
ri , p
)
| p ∈ P , i ≤ N

}
. (8)

If we set N = 2 and replace each random fact with a Boolean
value, as indicated by Tables 4 and 5, then we get an RBAC policy.

Just like a statement of the form P (X = I | Auth) quantifies how
much we believe that X = I for a given Auth, a statement of the
form P

(
UA
X
(
Alice, r1

)
= 1 | Auth

)
quantifies how much we be-

lieve that role r1 is assigned to Alice for a given Auth. □

Observation 1. Since we assume carrier sets to be finite, a random
fact always has a discrete distribution. In particular, random facts
built from flexible relation symbols have Bernoulli distributions as
they can only take Boolean values. □

We usually denote random facts with Fraktur letters f, g, . . . For
a random fact f of the formW X (a1, . . . , ak ), we denote by fI the
Boolean valueW I (a1, . . . , ak ). Similarly, when f is of the form
f X (a1, . . . , ak ), we denote by fI the value f I (a1, . . . , ak ). Finally,
we denote f’s range with Range (f).

For a policy language φ ∈ L, we denote by F (φ) the set of all
random facts of φ. Recall that we assume all our carrier sets to be
finite, so F (φ) is finite.

Observe that, for any formula φ ∈ L, replacing each random
fact f in F (φ) with a value in Range (f) yields a policy. Hence, a
policy miner, instead of searching for a policy I, it just searches for
adequate values for all random facts in F (φ). We formalize this in
Lemma 1, whose proof is in the full version.
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Lemma 1. For a policy language φ ∈ L,
P (I | Auth) = P

((
f
X
)
f∈F(φ ) =

(
f
I
)
f∈F(φ ) | Auth

)
. (9)

We denote by h (·) the function P
((
fX
)
f∈F(φ ) = · | Auth

)
. To

avoid cluttered notation, we write h (I) instead of h
((
fI
)
f∈F(φ )

)
.

We conclude this section by defining some other useful random
variables. Recall that X is the random variable that maps I ∈ Ω to I.

Definition 8. For (u, p) ∈ U × P , φ ∈ L, we define the random
variable φX (u, p) : Ω → {0, 1} as the function mapping (Auth,I)

to φI (u, p). □

Definition 9. For φ ∈ L, Auth ⊆ U × P , we define the following
random variable:

L (Auth,X;φ) :=
∑

(u,p)∈U×P
���Auth(u, p) − φ

X (u, p)��� . (10)

□

6.2 Approximating the distribution

A mean-field approximation of the probability distribution h is a
distribution q defined by

q (I) :=
∏
f∈F(φ )

qf
(
f
I
)
, (11)

where qf : Range (f) → [0, 1] is a probability mass function for f.
Hence, ∑b∈Range(f) qf (b) = 1. For b ∈ Range (f), the value qf (b)
denotes the probability, according to qf , that f = b.

Observe that q (I)’s factorization implies that the set of random
facts is mutually independent. This is not true in general, as h may
not be necessarily factorized like q. This independence assumption
is imposed by mean-field theory to facilitate computations. Our
experimental results in Section 10 show that, despite this approx-
imation, we still mine high quality policies.

According to mean-field theory, the distributions
{
q̂f | f ∈ F (φ)

}

that make q best approximate h are given by

q̂f (b) =
exp
(
−βEf 7→b[L (Auth,X;φ)]

)
∑
b′∈Range(f) exp

(
−βEf 7→b′[L (Auth,X;φ)]

) , (12)

where b ∈ Range (f) and Ef 7→b[L (Auth,X;φ)] is the expectation of
L (Auth,X;φ) after replacing every occurrence of the random fact f
with b [9]. This expectation is computed using the distribution q.
Therefore,

Ef 7→b[L (Auth,X;φ)]

=
∑
I

∏
g∈F(φ )
g,f

q̂g
(
g
I
)
(L (Auth,I;φ) {f 7→ b}) . (13)

Here, L (Auth,I;φ) {f 7→ b} is obtained from L (Auth,I;φ) by re-
placing f with b.

Using Lemma 1 and the distribution q, we can approximate
arg maxI P (I | Auth) by maximizing q.

Observation 2. maxI P (I | Auth) = maxI h (I) ≈ maxI q (I) .

The desired miner is then an algorithm that computes q, while
letting β → ∞, and then computes the policy I∗ that maximizes q.

7 BUILDING THE POLICY MINER

To compute q, as given by Equation 11, the desired policy miner
could use Equation 12 to compute q̂f , for each f ∈ F (φ). Observe,
however, that Equation 12 is recursive, since the computation of
the expectations on the right hand side requires

{
q̂f | f ∈ F (φ)

}
, as

indicated by Equation 13. This recursive dependency is handled
by iteratively computing, for each f ∈ F (φ), a function q̃f that
approximates q̂f [9]. We illustrate this in the step 2a below.

Algorithm 1 gives the pseudocode for computing andmaximizing
q, which is the essence of the desired policy miner. We give next
an overview.

(1) Initialization (lines 2–3). Each distribution q̃f is randomly
set to an arbitrary function such that ∑b q̃f (b) = 1.

(2) Update loop (lines 4–8). We perform a sequence of itera-
tions that update

{
q̃f | f ∈ F (φ)

}
and β . The number T of

iterations is fixed before execution.
(a) Parameter update (line 5–7). At each iteration, we com-

pute a random ordering RS(F (φ)) of all the random facts.
Then, for each f in that order, q̃f is updated to the right-
hand side of Equation 12 (lines 6–7), but instead of using{
q̂f | f ∈ F (φ)

}
, we use

{
q̃f | f ∈ F (φ)

}
to compute the

expectations.
(b) Hyper-parameter update (line 8). After each iteration,

we increase β by a factor of α , defined before execution.
This approach, originally defined for deterministic anneal-
ing, avoids that the algorithm is trapped in a bad local
maximum in the early iterations [61, 62].

(3) Policy computation (line 9). Finally, we compute the pol-
icy I∗ = arg maxI q (I). By looking at Equation 11, we
see that to maximize q, it suffices to maximize qf , for ev-
ery f ∈ F (φ). Hence, we let I∗ be the policy that satisfies
fI
∗
= arg maxb∈Range(f) q̃f (b).

Algorithm 1: The policy miner.
1 PolicyMiner(L,Auth,φ,α , β ,T ):
2 for f ∈ F (φ):
3 Randomly initialize q̃f .
4 for i = 1 . . .T :
5 for f ∈ RS (F (φ)):
6 for b ∈ Range (f):

7 q̃f (b) ←
exp
(
−βEf 7→b[L (Auth,X;φ)]

)
∑
b′ exp

(
−βEf 7→b′[L (Auth,X;φ)]

) .
8 β ← α × β .
9 Define I∗ by letting fI∗ = arg maxb q̃f (b), for f ∈ F (φ).

10 return I∗.

Observe that the policy miner requires values for the hyper-
parameters α , β , and T as input. Adequate values can be computed
using machine-learning methods like grid search [64].
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7.1 Simplifying the computation of

expectations

One need not be knowledgeable about deterministic annealing or
mean-field approximations to implement Algorithm 1 in a stan-
dard programming language. The only part requiring knowledge in
probability theory is the computation of the expectations in line 7.
We now define the notion of diverse random variables and show
that expectations of some diverse random variables can easily be
computed recursively using some basic equalities.

Definition 10. A random variable X is diverse if (i) it can be con-
structed from constant values and random facts using only arith-
metic and Boolean operations and (ii) any random fact is used in
the construction at most once. □

Example 4. Let (u, p) ∈ U × P and let V , W , and Y be flexi-
ble relation symbols. Then VX (u, p) +W X (u, p) is diverse, but
VX (u, p)W X (u, p)+W X (u, p) YX (u, p)+VX (u, p) YX (u, p) is not,
since each random fact there occurs more than once. □

Corollary 1. Letφ ∈ L and (u, p) ∈ U ×P , thenφX (u, p) is diverse
iff every atomic formula that occurs in φ occurs exactly once.

This corollary is a direct consequence of Definition 10. Observe
that, for φ ∈ L, one can check in time linear in φ’s length that
every atomic formula occurring in φ occurs exactly once.

Example 5. Recall the formula φRBACN defined in Section 4.5. Ob-
serve that each atomic formula occurs exactly once. Hence, for
(u, p) ∈ U × P , the random variable

(
φRBACN

)X
(u, p) is diverse. □

The following lemma, proved in Appendix A, shows how to
recursively compute Ef 7→b[L (Auth,X;φ)] when φX (u, p) is diverse.

Lemma 2. Let f and g be facts, φ be a formula in L, (u, p) ∈
U ×P , and {ψi }i ⊆ L. Assume that φX (u, p) and (

∧
i ψi )

X (u, p) are
diverse. Then the following equalities hold.

Ef 7→b[g] =



b if f = g and∑
b∈Range(g) q̃g (b) b otherwise.

Ef 7→b
[
(¬φ)X (u, p)

]
= 1 − Ef 7→b

[
φX (u, p)

]
.

Ef 7→b


*
,

∧
i
ψi+
-

X

(u, p)


=
∏
i
Ef 7→b

[
ψXi (u, p)

]
.

Ef 7→b[L (Auth,X;φ)] =
∑

(u,p)∈U×P
���Auth(u, p) − Ef 7→b

[
φX (u, p)

] ��� .

Recall that ∧ and ¬ form a complete set of Boolean operators.
So one can also use this lemma to compute expectations of diverse
random variables of the form (φ → ψ )X (u, p) and (φ ∨ψ )X (u, p).

8 RBAC MININGWITH UNICORN

We explain next how to use Unicorn to build an RBAC miner.

8.1 RBAC policies

We already explained how the formula φRBACN ∈ L is a template
formula for the language of all RBAC policies with at most N
roles. To implement Algorithm 1, we only need a procedure to

compute Ef 7→b
[
L
(
Auth,X;φRBACN

)]
. Since, as noted in Example 5,(

φRBACN

)X
(u, p) is diverse, we can apply Lemma 2 to show that

Ef 7→b
[
L
(
Auth,X;φRBACN

)]
=∑

(u,p)∈U×P

����Auth(u, p) − Ef 7→b

[(
φRBACN

)X
(u, p)

] ���� .

Ef 7→b

[(
φRBACN

)X
(u, p)

]
=

1 −
∏
i≤N

(
1 − Ef 7→b

[
UA
X (u, ri )

]
Ef 7→b

[
PA
X (ri , p)

] )
,

where,

Ef 7→b
[
UA
X (u, ri )

]
=



b if UAX (u, ri ) = f∑
b q̃UAX (u,ri )

(b) b otherwise.

Ef 7→b
[
PA
X (ri , p)

]
is computed analogously.

Observe how the computations of expectations is reduced to
a simple rewriting procedure by applying Lemma 2. We can now
implement an RBAC miner by implementing Algorithm 1 in a
standard programming language and using the results above to
compute the needed expectations.

8.2 Simple RBAC policies

The objective function used above has a limitation. When the num-
ber of role constants N used by φRBACN (u, p) is very large, we might
obtain a policy Ĩ that assigns each role to exactly one user. The role
assigned to a user would be assigned all permissions that the user
needs. As a result, L(Auth, Ĩ;φRBACN ) = 0, but Ĩ is not a desirable
policy. We can avoid mining such policies by introducing in the ob-
jective function a regularization term that measures the complexity
of the mined policy I. A candidate regularization term is:

∥I∥ =
∑
i≤N

*.
,

∑
u∈U

UA
I (u, ri ) +

∑
p∈P

PA
I (ri , p)

+/
-
.

Observe that ∥I∥ measures the sizes of the relations UAI and PAI ,
for i ≤ N , thereby providing a measure of I’s complexity. We now
define the following loss function:

Lr
RBAC

(Auth,I) = λ ∥I∥ + L(Auth,I;φ).
Here λ > 0 is a trade-off hyper-parameter, which again must be
fixed before executing the policy miner and can be estimated using
grid search. Note that Lr

RBAC
penalizes not only policies that sub-

stantially disagree with Auth, but also policies that are too complex.
The computation of Ef 7→b

[
Lr
RBAC

(Auth,X)
]
now also requires

computing Ef 7→b[∥X∥], where ∥X∥ is the random variable obtained
by replacing each occurrence of I in ∥I∥ with X. Fortunately, one
can see that ∥X∥ is diverse. Hence, we can use the linearity of
expectation and Lemma 2 to compute all needed expectations.

9 MINING SPATIO-TEMPORAL RBAC

POLICIES

We now use Unicorn to build the first policy miner for RBAC
extensions with spatio-temporal constraints [1, 4, 5, 8, 19, 41]. In
policies in these extensions, users are assigned permissions not only
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according to their roles, but also based on constraints depending
on the current time and the user’s and the permission’s locations.
The syntax for specifying these constraints allows for policies like
“a user is assigned the role Engineer from Monday through Friday
and from 8:00 AM until 5:00 PM” or “the role Engineer is granted
permission to access any object within a radius of three miles from
the main building.”

We present a template formula φst (t, u, p) ∈ L for a policy lan-
guage that we call spatio-temporal RBAC. This is an extension of
RBAC with a syntax for spatial constraints based on [4, 5] and a
syntax for temporal constraints based on temporal RBAC [6].

φst (t, u, p) =
∨
i≤N

(
ψUA (t, u, ri ) ∧ψPA (t, ri , p)

)
.

Here, we assume the existence of a sort TIME and that t is a vari-
able of this sort representing the time when u exercises p. We
also assume the existence of a sort SPACE that we use to specify
spatial constraints. The formulas ψUA (t, u, ri ) and ψPA (t, ri , p) de-
scribe when a user is assigned the role ri and when a permission
is assigned to the role ri , respectively. We use the rigid constants
r1, . . . , rN to denote roles.

The grammar Γst below defines the syntax ofψUA andψPA.

⟨cstr_list⟩ ::= ⟨cstr⟩ ( ∧ ⟨cstr⟩ )∗
⟨cstr⟩ ::= ⟨sp_cstr⟩ ( ∨ ⟨sp_cstr⟩ )∗ |

⟨tmp_cstr⟩ ( ∨ ⟨tmp_cstr⟩ )∗
⟨sp_cstr⟩ ::= (¬?) isWithin

(
Loc (o) , d, b

)
⟨tmp_cstr⟩ ::= ψ

cal
(t)

An expression in this grammar is a conjunction of constraints,
each of which is either a disjunction of temporal constraints or a
disjunction of spatial constraints.

9.1 Modeling spatial constraints

A spatial constraint is a (possibly negated) formula of the form
isWithin

(
Loc (o) , d, b

)
, where o is a variable of sort USERS or

PERMS, Loc (o) denotes o’s location, d is a flexible constant sym-
bol of a sort whose carrier set is N≤M = {0, 1, . . . ,M} (where
M is a value fixed in advance), and b is a flexible constant sym-
bol of a sort describing the organization’s physical facilities. For
example, isWithin

(
Loc (u) , 4,MainBuilding

)
holds when the user

represented by u is within 4 space units of the main building.
Intuitively, the formula isWithin

(
Loc (o) , d, b

)
evaluateswhether

the entity represented by o is located within d spatial units from b.
Observe that a policy miner does not need to compute interpreta-
tions for rigid function symbols like Loc or rigid relation symbols
like isWithin, since they already have a fixed interpretation.

9.2 Modeling temporal constraints

A temporal constraint is a formulaψ
cal

(t) that represents a periodic
expression [6], which describes a set of time intervals. We give here
a simplified overview and refer to the literature for details [6].

Definition 11. A periodic expression is a tuple (yearSet,monthSet,
daySet, hourSet, hourDuration) ∈

(
2N
)4 × N. A time instant is a

tuple (y,m,d,h) ∈ N4. The time instant satisfies the periodic ex-
pression if y ∈ yearSet,m ∈ monthSet, d ∈ daySet, and there is an
h′ ∈ hourSet such that h′ ≤ h ≤ h′ + hourDuration. □

Previousworks on analyzing temporal RBACwith SMT solvers [40]
show that temporal constraints can be expressed as formulas in L.
Furthermore, one can verify that any expression in Γst and, there-
fore, φst is in L.

As an objective function, we use λ ∥I∥ + L
(
Auth,I;φst

)
. Here,

∥I∥ counts the number of spatial constraints plus the sum of the
weighted structural complexities of all temporal constraints [66]. For
computing expectations, one can show that ∥X∥ is diverse and that
every atomic formula in φst occurs exactly once. Hence, one can
compute all necessary expectations using the linearity of expecta-
tion and Lemma 2.

10 EXPERIMENTS

In this section, we experimentally validate two hypotheses. First,
using Unicorn, we can build policy miners for a wide variety of
policy languages. Second, the policies mined by these miners have
as low complexity and high generalization ability as those mined
by the state of the art.

10.1 Datasets

Our experiments are divided into the following categories.

Mine RBAC policies from access control matrices. We use three ac-
cess control matrices from three real organizations, named “health-
care”, “firewall”, and “americas” [25]. For healthcare, there are 46
users and 46 permissions, for firewall, there are 720 users and 587
permissions, and for americas, there are more than 10,000 users and
around 3,500 permissions. We refer to these access control matrices
as RBAC1, RBAC2, and RBAC3.

Mine ABAC policies from logs. We use four logs of access requests
provided by Amazon for a Kaggle competition in 2013 [43], where
participants had to develop mining algorithms that predicted from
the logs which permissions must be assigned to which users. We
refer to these logs as ABAC1, ABAC2, ABAC3, and ABAC4.

Mine business-meaningful RBAC policies from access control ma-

trices. We use the access control matrix provided by Amazon for
the IEEE MLSP 2012 competition [38], available at the UCI ma-
chine learning repository [50]. It assigns three types of permissions,
named “HOST”, “PERM_GROUP”, and “SYSTEM_GROUP” to 30,000
users. The number of permissions for each type are approximately
1,700, 6,000, and 20,000, respectively. For each type of permission,
we sampled 5,000 users from all 30,000 users and used all permis-
sions of that type to build an access control matrix. We explain in
detail how we create these matrices in Appendix D.1. We refer to
these matrices as BM-RBAC1, BM-RBAC2, and BM-RBAC3.

Mine XACML policies from access control matrices. We use Con-
tinue [27, 47], the most complex set of XACML policies in the
literature. We use seven of the largest policies in the set. For each
of them, we compute the set of all possible requests and decide
which of them are authorized by the policy. We then mine a policy
from this set of decided requests. For the simplest policy, there are
around 60 requests and for the most complex policy, there are more
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than 30,000 requests. We call these seven sets of requests XACML1,
XACML2, ..., XACML7.

Mine spatio-temporal RBAC policies from logs. There are no pub-
licly available datasets for mining spatio-temporal RBAC policies.
Based on policies provided as examples in recent works [4, 5], we
created a synthetic policy and a synthetic log by creating 1,000
access requests uniformly at random and evaluating them against
the policy. We refer to this log as STARBAC. The synthetic policy
is described in Appendix D.2.

10.2 Methodology

For RBAC and ABAC, we mine two policies in the corresponding
policy language’s syntax. The first one using a miner built using
Unicorn and the second one using a state-of-the-art miner. Details
on the miners built using Unicorn are given in Sections 8 and 9,
and Appendices B and C. For RBAC, we use for comparison the
miner presented in [30] and, for ABAC, we use for comparison
the miner from [18]. For XACML and spatio-temporal RBAC, there
are no other known miners. For business meaningful RBAC, we
contacted the authors of miners for this RBAC extension [30, 56],
but implementations of their algorithms were not available.

As an objective function we use λ ∥I∥ + L (Auth,I;φ), where
λ is a trade-off hyper-parameter, ∥I∥ is the complexity measure
defined for I in the policy language, and φ is the template formula
for the corresponding policy language. The values for the hyper-
parameters were computed using grid search.

To evaluate miners for RBAC, BM-RBAC, and XACML, we use
5-fold cross-validation [21, 22, 79]. To measure the mined policy’s
generalizability, we measure its true positive rate (TPR) and its false
positive rate (FPR) [59]. To measure a mined policy’s complexity,
we use ∥I∥. To evaluate miners for ABAC and STARBAC, which
receive a log instead of an access control matrix as input, we use
universal cross-validation [18]. Wemeasure the mined policy’s TPR,
FPR, precision, and complexity. We considered only those mined
policies whose FPR was below 5%.

All policy miners, except the one for BM-RBAC, were developed
in Python 3.6 and were executed on machines with 2,8 GHz 8-core
CPUs and 32 GB of RAM. The miner for BM-RBAC was developed
in Pytorch version 0.4 [58] and executed on an NVIDIAGTXTitan X
GPU with 12 GB of RAM. For all policy languages except STARBAC,
our experiments finished within 4 hours. For STARBAC, they took
7 hours. We remark that organizations do not need to mine policies
on a regular basis, so policies need not be mined in real time [18].

10.3 Results

Figures 2–4 compare, respectively, the TPRs, complexities, and
precisions of the policies we mined with those mined by the state
of the art across the different datasets with respect to the different
policy languages. We make the following observations.
• We mine policies whose TPR is within 5% of the state-of-the-
art policies’ TPR. For the XACML and STARBAC scenarios,
where no other miners exist, we mine policies with a TPR
above 75% in all cases.
• In most cases, we mine policies with a complexity lower than
the complexity of policies mined by the state of the art.
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across different policy languages. Policies with higher TPRs
are better at granting permissions to the correct users.
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art policy miner across different policy languages. Policies

with higher precision are better as they avoid incorrect au-

thorizations. We only compare the precision of mined poli-

cies when mining from logs, as discussed in [18].

• When mining from logs, we mine policies that have a similar
or greater precision than those mined by the state of the art,
sometimes substantially greater.
• In all cases, we mine policies with an FPR ≤ 5% (not shown
in the figures).
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10.4 Discussion

Our experimental results show that, with the exception of ABAC, all
policies we mined attain a TPR of at least 80% in most of the cases.
The low TPR in ABAC is due to the fact that the logs contain only
7% of all possible requests [18]. But even in that case, the ABAC
miner we built attains a TPR that is within 5% of the TPR attained by
the state of the art [18]. Moreover, our ABAC miner mines policies
with substantially lower complexity and higher precision. These
results support our hypothesis that by using Unicorn we can build
competitive policy miners for a wide variety of policy languages.

These results also suggest that the miners built are well-suited
for practical use. In this regard, note that policy miners are tools
that facilitate the specification and maintenance of policies. They
are not intended to replace human policy administrators, especially
when the miners work on logs. This is because logs contain just an
incomplete view of how permissions should be assigned to users.
Very sparse logs, like those used for the experiments on ABAC,
contain barely 7% of all possible authorization requests. Hence,
we cannot expect policy miners to deduce how all permissions
should be assigned from such logs. The policy administrator must
review the mined policy and specify how it should decide groups
of requests that are not well represented in the log. For this reason,
mined policies must also be simple. The main application of policy
miners is to reduce the cumbersome effort of manually analyzing
logs (or, more generally, permission assignments) and mine policies
that generalize well (see Section 2.2).

Observe that the mined policies correctly authorize at least 40%
of future requests in all cases for ABAC and that in some cases
they correctly authorize 80% of all requests. All this with a false
positive rate below 5%. This means that themined policy has already
reduced the policy administrator’s work by at least 40% and in most
of the cases by at least 80%. The administrator now only needs to
decide how the policy should decide groups of requests that are
not represented in the log.

11 RELATEDWORK

11.1 Policy mining

11.1.1 RBAC mining. Early research on policy mining focused on
RBAC [25, 48, 73]. The approaches developed used combinatorial
algorithms to find, for an assignment of permissions to users, an
approximately minimal set of role assignments, e.g., [51, 63, 72,
74, 80]. A major step forward was the use of machine-learning
techniques like latent Dirichlet allocation [56] and deterministic
annealing [30, 67] to compute models that maximize the likelihood
of the given assignment of permission to users. More recent works
mine RBAC policies with time constraints [53, 54] and role hierar-
chies [35, 66], using combinatorial techniques that are specific to
the RBAC extension.

Despite the plethora of RBAC miners, there are still many RBAC
extensions for which no miner has been developed. A recent survey
in role mining [55], covering over a dozen RBAC miners, reports
not a single RBAC miner that can mine spatio-temporal constraints,
even though there have been several spatio-temporal extensions
of RBAC since 2000, e.g., [1, 13, 15, 20, 49, 60, 69], and additional

extensions are under way [4, 5]. Unicorn offers a practical solu-
tion to mining RBAC policies for these extensions. As illustrated
in Section 9, we can now mine spatio-temporal RBAC policies.

11.1.2 Other miners. Miners have recently been proposed for other
policy languages like ABAC [18, 76] and ReBAC (Relationship-
Based Access Control) [12]. These algorithms use dedicated combi-
natorial and machine-learning methods to mine policies tailored
to the given policy language. Unicorn has the advantage of being
applicable to a much broader class of policy languages.

11.2 Interpretable machine learning

Machine-learning algorithms have been proposed that train an
interpretable model [2, 17, 42, 44, 65] consisting of a set of human-
readable rules that describe how an instance is classified. Such algo-
rithms are attractive for policy mining, as policies must not only cor-
rectly grant and deny access, they should also be easy to understand.

The main limitation of the rules mined by these models is that
they often do not comply with the underlying policy language’s
syntax. State-of-the-art algorithms in this field [2, 17, 65] produce
rules that are simply conjunctions of constraints on the instances’
features. This is insufficient formany policy languages, like XACML,
where policies can consist of nested subpolicies that are composed
with XACML’s policy combination algorithms [34].

The main advantage of Unicorn is that it can mine policies that
not only correctly grant and deny access in most cases, but are
also compliant with a given policy language’s syntax, like XACML.
Moreover, as illustrated in Section 8.2, one can tailor the objective
function so that the policy miner searches for a simple policy.

12 CONCLUSION

The difficulty of specifying and maintaining access control policies
has spawned a large and growing number of policy languages with
associated policy miners. However, developing such miners is chal-
lenging and substantially more difficult than creating a new policy
language. This problem is exacerbated by the fact that existing min-
ing algorithms are inflexible in that they cannot be easily modified
to mine policies for other policy languages with different features.
In this paper, we demonstrated that it is in fact possible to create a
universal method for building policy miners that works very well
for a wide variety of policy languages.

We validated Unicorn’s effectiveness experimentally, including
a comparison against state-of-the-art policy miners for different
policy languages. In all cases, the miners built using Unicorn are
competitive with the state of the art.

As future work, we plan to automate completely the workflow in
Figure 1. We envision a universal policy mining algorithm based on
Algorithm 1 that, given as input the policy language, the permission
assignment, and the objective function, automatically computes
the probabilistic model and the most likely policy constrained by
the given permission assignment.
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A SIMPLIFYING THE COMPUTATION OF

EXPECTATIONS

We prove here Lemma 2. We start with some auxiliary lemmas and
definitions.

Lemma 3. Let f and g be facts, φ be a formula in L, (u, p) ∈ U ×P ,
and {ψi }i ⊆ L such that {ψXi (u, p)}i is a set ofmutually independent
random variables under the distribution q.

Ef 7→b[g] =



b if f = g∑
b∈Range(g) q̃g (b) b otherwise.

Ef 7→b
[
(¬φ)X (u, p)

]
= 1 − Ef 7→b

[
φX (u, p)

]
.

Ef 7→b


*
,

∧
i
ψi+
-

X

(u, p)


=
∏
i
Ef 7→b

[
ψXi (u, p)

]
.

Proof. Observe that, for a Bernoulli random variableX , E [X ] =
P (X = 1). Recall also that E [XY ] = E [X ]E [Y ], whenever X and
Y are mutually independent. With these observations and using
standard probability laws, one can derive the equations above. □

Lemma 4. Let φ ∈ L and let (u, p) ∈ U × P . If φX (u, p) is diverse,
then Ef 7→b

[
φX (u, p)

]
can be computed using only the equations

from Lemma 2.

This lemma is proved by induction on φ and by recalling that any
two different random facts are independent under the distribution
q, which follows from the way that the distribution q is factorized.

Corollary 2.

Ef 7→b[L (Auth,X;φ)] =
∑

(u,p)∈U×P
���Auth(u, p) − Ef 7→b

[
φX (u, p)

] ��� .

Proof. L (Auth,X;φ) can be rewritten as follows:∑
(u,p)∈Auth

(
1 − φX (u, p)

)
+

∑
(u,p)∈U×P\Auth

φX (u, p).

The result follows from the linearity of expectation. □

Lemma 2 follows from Lemma 4 and Corollary 2.

B POLICY MINERS BUILT USING UNICORN

We present here technical details on how we built policy miners
for different policy languages using Unicorn.

B.1 ABAC policies

ABAC is an access control paradigmwhere permissions are assigned
to users depending on the users’ and the permission’s attribute
values. An ABAC policy is a set of rules. A rule is a set of attribute
values. Recall that a request (u,p) is a pair consisting of a user
u ∈ U and a permission p ∈ P . A rule assigns a permission p to a
user u if u and p’s permission attribute values contain all of the
rule’s attribute values. A policy assigns p to u if some rule in the
policy assigns p to u.
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When mining ABAC policies, we are not only given a permission
assignment Auth ⊆ U × P , but also attribute assignment relations

UAtt ⊆ U × AttVals and PAtt ⊆ P × AttVals that describe what
attribute values each user and each permission has. Here, AttVals
denotes the set of possible attribute values. We refer to previous
work for a discussion on how to obtain these attribute assignment
relations [18, 77].

The objective in mining ABAC policies is to find a set of rules
that assigns permissions to users based on the users’ and the per-
missions’ attribute values. We explain next how to build a policy
miner for ABAC using Unicorn. Let Rules and AttVals be sorts for
rules and attribute values, respectively. Let RUA and RPA be flexible
binary relation symbols of type Rules × AttVals. ForM,N ∈ N, the
formula φABACM,N (u, p) below is a template formula for ABAC:

∨
i≤N

∧
j≤M

*
,

(
RUA

(
si , aj

)
→ UAtt (u, aj )

)
∧(

RPA

(
si , aj

)
→ PAtt (p, aj )

) +
-
. (14)

In this formula, si , for i ≤ N , is a rigid constant symbol of sort
Rules denoting a rule. The symbol aj , for j ≤ M , is a rigid constant
denoting an attribute value. The formula RUA

(
si , aj

)
describes

whether rule si requires the user to have the attribute value aj . The
formula RPA

(
si , aj

)
describes an analogous requirement. We use

two rigid relation symbols UAtt and PAtt to represent the attribute
assignment relations. The formulas UAtt

(
u, aj
)
and PAtt

(
p, aj
)
de-

scribe whether u and p, respectively, are assigned the attribute value
aj . Intuitively, the formula φABACM,N (u, p) is satisfied by (u, p) ∈ U ×P
if, for some rule si , (u, p) possesses all user and permission attribute
values required by si under RUA and RPA.

Observe that a policy miner does not need to find an interpreta-
tion for the symbols UAtt and PAtt because the organization already
has interpretations for those symbols. When mining ABAC policies,
the organization already knows what attribute values each user
and each permission has and wants to mine from them an ABAC
policy. The miner only needs to specify which attribute values
must be required by each rule. This is why we specify the attribute
assignment relations with rigid symbols.

We use L(Auth,I;φABACM,N ) as the objective function. Observe that
every atomic formula occurs at most once in φABACM,N , so, by Corol-
lary 1, we can use Lemma 2 to compute all relevant expectations.

Finally, we can also add a regularization term toL(Auth,I;φABACM,N )

to avoid mining policies with too many rules or unnecessarily large
rules. One such regularization term is

∥I∥ =
∑
i≤N

∑
j≤M

RUA
I
(
si , aj

)
+ RPAI

(
si , aj

)
.

The expression ∥I∥ counts the number of attribute values required
by each rule, which is a common way to measure an ABAC pol-
icy’s complexity [18, 77]. If we instead use the objective function
λ ∥I∥ + L(Auth,I;φABACM,N ), then the objective function penalizes
not only policies that differ substantially from Auth, but also poli-
cies that are too complex. Observe that ∥X∥ is diverse. Hence, we
can use the linearity of expectation and Lemma 2 to compute all
expectations needed to implement Algorithm 1.

B.2 ABAC policies from logs

Some miners are geared towards mining policies from logs of access
requests [18, 56, 76]. We now present an objective function that can
be used to mine ABAC policies from access logs, instead of permis-
sion assignments. We let φ := φABACM,N for the rest of this subsection.

A logG is a disjoint union of two subsetsA andD ofU ×P , denot-
ing the requests that have been authorized and denied, respectively.

In the case of ABAC, a policy mined from a log should aim to
fulfill three requirements. The policy should be succinct, generalize
well, and be precise [18]. Therefore, we define an objective function
L′
ABAC

(G,I) as the sum

L′
ABAC

(G,I) = λ0 ∥I∥ + L1 (G,I) + L2 (G,I) . (15)

The term ∥I∥ is as defined in Section B.1 and aims to make the
policy succinct by penalizing complex policies. The term L1 (G,I)
aims to make the mined policy generalize well and is defined as

L1 (G,I) = λ1,1
∑

(u,p)∈A

(
1 − φI (u, p)

)
+

λ1,2
∑

(u,p)∈D
φI (u, p).

Finally, the function L2 (G,I) aims to make the mined policy
precise by penalizing policies that authorize too many requests that
are not in the log.

L2 (G,I) = λ2
∑

(u,p)∈U×P\G
φI (u, p).

One can show that φX (u, p) is diverse, for any (u, p) ∈ U × P .
Therefore, we can compute Ef 7→b

[
L′
ABAC

(G,X)
]
using only the

linearity of expectation and Lemma 2.

B.3 Business-meaningful RBAC policies

Frank et. al. [30] developed a probabilistic policy miner for RBAC
policies that incorporated business information. Aside from a per-
mission assignment, theminer takes as input an attribute-assignment

relation AA ⊆ U × AVal, where AVal denotes all possible combi-
nation of attribute values. It is assumed that each user is assigned
exactly one combination of attribute values.

This miner grants similar sets of roles to users that have similar
attribute values. For this, it uses the following formula ∆(u, u′,I)
that measures the disagreement between the roles that a policy I
assigns to two users u and u′:

∆(u, u′,I) =∑
i≤N

UA
I (u, ri )

(
1 − 2UAI (u, ri )UA

I (u′, ri )
)
.

The formula ∥I∥ below shows how Frank et al.’s miner measures
an RBAC policy’s complexity. The complexity increases whenever
two users with the same combination of attribute values get as-
signed significantly different sets of roles.

∥I ∥ = 1
N

∑
u,u′∈U

∑
a∈AVal

AA(u, a)AA(u′, a)∆(u, u′, I).

Here, N denotes the total of users. Note that AA is a rigid relation
symbol representing AA. Its interpretation is therefore fixed and
not computed by the policy miner.
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To mine business-meaningful RBAC policies, we use the objec-
tive function λ ∥I∥ +L

(
Auth,I;φRBACN

)
, where λ > 0 is a trade-off

hyper-parameter. Observe that this objective function penalizes the
following types of policies.
• Policies that assign significantly different sets of roles to
users with the same attribute values.
• Policies whose assignment of permissions to users substan-
tially differs from the assignment given by Auth.

The randomvariable ∥X∥ is, however, not diverse. This is because,
for i ≤ N , the random fact UAX (u, ri ) occurs more than once in
∆(u, u′,X). Nonetheless, observe that

∆(u, u′,X) =∑
i≤N

UA
X (u, ri ) − 2

(
UA
X (u, ri )

)2
UA
X (u′, ri ).

One can then compute Ef→b[∆(u, u′,X)] by using the linearity of
expectation and the fact that E [Xn] = (E [X ])n , for n ∈ N and X a
Bernoulli random variable. Hence,

Ef→b
[
∆(u, u′,X)] =∑

i≤N
*
,

Ef→b
[
UA
X (u, ri )

]
−

2
(
Ef→b

[
UA
X (u, ri )

] )2
Ef→b

[
UA
X (u′, ri )

] +
-
.

One can check that this observation and Lemma 2 suffice to compute
the expectations necessary for Algorithm 1.

C MINING XACML POLICIES

Although XACML is the de facto standard for access control spec-
ification, no algorithm has previously been proposed for mining
XACML policies. We now illustrate how, using Unicorn, we have
built the first XACML policy miner.

C.1 Background

XACML syntax. To simplify the presentation, we use a reduced
version of XACML, given as a BNF grammar below. However, our ap-
proach extends to the core XACML. Moreover, our reduced XACML
is still powerful enough to express Continue [27, 47], a benchmark
XACML policy used for policy analysis.

⟨Dec⟩ ::= allow | deny
⟨Rule⟩ ::= (⟨Dec⟩,α )
⟨Comb⟩ ::= FirstApp | AllowOv | DenyOv
⟨Pol⟩ ::= (⟨Comb⟩, (⟨Pol⟩∗ | ⟨Rule⟩∗))

Fix a set AVals of attribute values. An XACML rule is a pair
(δ ,α ), where δ ∈ {allow, deny} is the rule’s decision and α is a
subset of AVals. An XACML policy is a pair (κ, π̄ ), where κ ∈
{FirstApp,AllowOv,DenyOv} is a combination algorithm and π̄ is
either a list of policies or a list of XACML rules. FirstApp, AllowOv,
DenyOv denote XACML’s standard policy combination algorithms.
We explain later how they work. For a policy π , we denote its com-
bination algorithm by Comb (π ) and, for a rule r , we denote its
decision by Dec(r ).

XACML semantics.We now recall XACML’s semantics. A re-

quest is a subset ofAVals denoting the attribute values that a subject
s, an action a, and an object o satisfy when s attempts to execute

a on o. We denote by 2AVals the set of requests. A request satis-
fies a rule (δ ,α ) if the request contains all attributes in α . In this
case, if δ = allow, then we say that the rule authorizes the request;
otherwise, we say that the rule denies the request.

A policy π of the form (AllowOv,
(
π ′1, . . . ,π

′
ℓ

)
) authorizes a re-

quest z if there is an i ≤ ℓ such that π ′i authorizes z. The policy
π denies z if no π ′i , for i ≤ ℓ, authorizes z, but some π ′j , for j ≤ ℓ,
denies it.

A policy π of the form (DenyOv,
(
π ′1, . . . ,π

′
ℓ

)
) denies a request

if some π ′i denies it. The policy authorizes the request if no π ′i
denies it, but some π ′i authorizes it.

A policy π of the form (FirstApp,
(
π ′1, . . . ,π

′
ℓ

)
) authorizes a re-

quest if there is an i ≤ ℓ such that π ′i authorizes it and π ′j , for
j < i , neither authorizes it nor denies it. The policy denies a request
if there is i ≤ ℓ such that π ′i denies it and π ′j , for j < i , neither
authorizes it nor denies it.

C.2 Auxiliary definitions

For a policy π =
(
κ,
(
π ′1, . . . ,π

′
ℓ

))
, we call π ′i a child of π . A policy is

a descendant of π if it is a child of π or is a descendant of a child of π .
A policy π has breadth N ∈ N if ℓ ≤ N and each of π ’s children

is either a rule or has breadth N . A policy π has depth isM ∈ N (i)
ifM = 1 and each of its children is a rule, or (ii) ifM > 1 and some
child of π has depthM − 1 and the rest have depth at mostM − 1.

Two formulasψ1,ψ2 ∈ L are mutually exclusive if there is no I
and no z ∈ 2AVals such that bothψI1 (z) andψI2 (z) hold. Whenψ1
andψ2 are mutually exclusive, we writeψ1 ⊕ψ2 instead ofψ1 ∨ψ2.

C.3 A template formula for XACML

For M,N ∈ N, we present a template formula for the language
of all XACML policies of depth and breadth at most M and N ,
respectively.

Let S be the set of all N -ary sequences of length at mostM and
let ϵ ∈ S be the empty sequence. For j ∈ {0, . . . ,N − 1}, we denote
by σ ▷ j the result of appending j to σ and by j ◁ σ the result of
prepending j to σ .

Let REQS be a sort representing all requests, AVALS be a sort
representing all attribute values, and POLS a sort representing
policies and rules. For each σ ∈ S, define a rigid constant y

σ
symbol of sort POLS such that y

σ
, y

σ ′
, whenever σ , σ ′.

The set of rigid constants {y
σ
| σ ∈ S} are intended to represent

a tree of XACML policies and rules. The constant y
ϵ
is the root

policy. For σ ∈ S with length less than M and j ∈ {0, . . . ,N − 1},
the constant y

σ ▷j
represents one of y

σ
’s children.

Let z be a variable of sortREQS. Formula C.1 presents a template
formula for the XACML fragment introduced above. We explain its
main parts.

We define signature symbols that represent all terminal symbols
in the BNF grammar above. For example, we define two rigid con-
stant symbols XAllows and XDenies that represent the decisions
allow and deny. We define two flexible function symbols XDec and
XComb. For a rigid constant y

σ
, XDec

(
y
σ

)
denotes the decision
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φXACML
M,N

(
y
ϵ
, z
)

:= allows
(
y
ϵ
, z
)
.

allows
(
y
σ
, z
)

:=
(
XIsRule

(
y
σ

)
→ allowsRule

(
y
σ
, z
))
∧(

¬XIsRule
(
y
σ

)
→ allowsPol

(
y
σ
, z
))
.

allowsRule
(
y
σ
, z
)

:= XActive

(
y
σ

)
∧ XDec

(
y
σ

)
= allow ∧ z ⊨ y

σ
.

allowsPol
(
y
σ
, z
)

:= XActive

(
y
σ

)
∧



*..
,

XComb

(
y
σ

)
= AllowOv ∧∨

j≤N allows
(
y
σ ▷j
, z
) +//

-
⊕

*......
,

XComb

(
y
σ

)
= FirstApp∧

⊕
j≤N

*..
,

∧
i<j NA

(
y
σ ▷i
, z
)
∧

allows
(
y
σ ▷j
, z
) +//

-

+//////
-

⊕

*..........
,

XComb

(
y
σ

)
= DenyOv ∧

⊕
j≤N

*.....
,

∧
i<j NA

(
y
σ ▷i
, z
)
∧

allows
(
y
σ ▷j
, z
)
∧∧

i<k ¬denies
(
y
σ ▷k
, z
)

+/////
-

+//////////
-



.

Formula C.1: A template formula for XACML

of the rule represented by y
σ
. Similarly, XComb

(
y
σ

)
denotes the

combination algorithm of the policy represented by y
σ
.

The formula allows
(
y
σ
, z
)
holds if y

σ
authorizes the request

represented by z. The formula denies
(
y
σ
, z
)
holds if y

σ
denies

the request represented by z and is defined analogously. Observe
that allows

(
y
σ
, z
)
and denies

(
y
σ
, z
)
denote formulas. Hence,

allows and denies are not symbols in the signature we use to
specify φXACML

M,N .

XActive is a flexible relation symbol and XActive

(
y
σ

)
holds if

y
σ
is a descendant of y

ϵ
.

The formula NA
(
y
σ
, z
)
holds if y

σ
neither authorizes nor denies

the request represented by z. It can be expressed in L as follows:

NA
(
y
σ
, z
)

:= ¬XActive
(
y
σ

)
∨
∧
j≤N

NA
(
y
σ ▷j
, z
)
.

The formula z ⊨ y
σ
holds if all attributes required by y

σ
are

contained by the request represented by z. This formula can be
expressed in L as follows:∧

a∈AVals

(
XRequiresAVal

(
y
σ
, a
)
→ hasAttVal

(
z, a
))
,

whereXRequiresAVal is a flexible relation symbol and hasAttVal and
a, for a ∈ AVals, are rigid symbols. For a policyI,XRequiresAValI

(
y
σ
, a
)

holds if y
σ
is a rule and requires attribute a to be satisfied. The

formula hasAttVal
(
z, a
)
checks if the request contains attribute a.

In the full version, we show that the formula φXACML
M,N is a tem-

plate formula for the language of all XACML policies of depth and
breadth at mostM and N , respectively.

Having a template formula for this XACML fragment, we now
define an objective function. An example of an objective function is
λ ∥I∥+L

(
Auth,I;φXACML

M,N

)
, where λ > 0 is a hyper-parameter and

∥I∥ defines I’s complexity. We inductively define the complexity
compl (π ) of a XACML policy π as follows.

• If π = (δ ,α ), then compl (π ) = |α |.
• If π = (κ, (π1, . . . ,πk )), then compl (π ) = |α |.

Finally, we define ∥I∥ as compl (M (I)).

C.4 Computing expectations

For a formula φ ∈ L and a request z ∈ 2AVals , we define the random
variable φX (z) in a way similar to the one given in Section 6.1.
We now give some auxiliary definitions and lemmas that help to
compute Ef→b

[(
φXACML
M,N

)X
(z)

]
. Proofs are in the full version.

Lemma5. Let z ∈ 2AVals andψ1,ψ2 bemutually exclusive formulas,
then

Ef 7→b
[
(ψ1 ⊕ψ2)

X (z)
]
= Ef 7→b

[
ψX1 (z)

]
+ Ef 7→b

[
ψX2 (z)

]
.

Definition 12. A set Φ ⊆ L of formulas is unrelated if for every
φ ∈ Φ and every atomic formula α occurring in φ, there is no
ψ ∈ Φ \ {φ} such that α occurs in φ. □

Lemma 6. If z ∈ 2AVals and Φ is a set of unrelated formulas, then{
φX (z) | φ ∈ Φ

}
, under the distribution q, is mutually independent.

Lemma 7. We can compute Ef→b

[(
φXACML
M,N

)X
(z)

]
using only the

equations given in Lemmas 3 and 5.

Proof. Observe that every atomic formula in allowsRule
(
y
σ
, z
)

occurs exactly once, so allowsRuleX
(
y
σ
, z
)
is diverse. Hence, by

Corollary 1, we can use Lemma 2 to compute the expectation
Ef→b

[
allowsRuleX

(
y
σ
, z
)]
.

The formula allowsPol
(
y
σ
, z
)
can be rewritten as

(
XActive

(
y
σ

)
∧ψ1

(
y
σ
, z
))
⊕
(
XActive

(
y
σ

)
∧ψ2

(
y
σ
, z
))
⊕(

XActive

(
y
σ

)
∧ψ3

(
y
σ
, z
))
.

Each formula ψi
(
y
σ
, z
)
is built from a set of unrelated formulas.

Hence, by Lemma 6, we can use Lemma 3 to computeEf→b

[
ψi

(
y
σ
, z
)]
.
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Using Lemmas 5 and 3, we can show that

Ef→b

[
allowsPolX

(
y
σ
, z
)]
=

Ef→b

[
XActive

X
(
y
σ
, z
)]
×
*.....
,

Ef→b

[
ψX1

(
y
σ
, z
)]
+

Ef→b

[
ψX2

(
y
σ
, z
)]
+

Ef→b

[
ψX3

(
y
σ
, z
)]

+/////
-

.

Therefore, Ef→b

[
allowsPolX

(
y
σ
, z
)]

can be computed using only
Lemmas 5 and 3.

Finally, recall that φXACML
M,N

(
y
ϵ
, z
)
= allows

(
y
ϵ
, z
)
. Observe

now that allows
(
y
ϵ
, z
)
is built from the following unrelated set:{

XIsRule

(
y
σ

)
, allowsRule

(
y
σ
, z
)
, allowsPol

(
y
σ
, z
)}
.

By Lemma 6, the corresponding set of random variables is indepen-
dent. Hence, we can use Lemma 3 to reduce the computation of
Ef→b

[(
φXACML
M,N

)X
(z)

]
to the computation ofEf→b

[
XIsRule

X
(
y
σ

)]
,

Ef→b

[
allowsRuleX

(
y
σ
, z
)]
, andEf→b

[
allowsPolX

(
y
σ
, z
)]
. How-

ever, as observed above, all these expectations can be computed us-
ing Lemmas 3 and 5. Hence, we can computeEf→b

[(
φXACML
M,N

)X
(z)

]

using only those two lemmas. □

Having proven the previous lemmas, we can now implement
Algorithm 1 to produce a policy miner for XACML policies.

D DATASETS AND SYNTHETIC POLICIES

USED FOR EXPERIMENTS

D.1 Datasets for BM-RBAC

We use the access control matrix provided by Amazon for the IEEE
MLSP 2012 competition [38]. They assign three types of permis-
sions, named “HOST”, “PERM_GROUP”, and “SYSTEM_GROUP”.
For each type of permission, we created an access control matrix
by collecting all users and all permissions belonging to that type.
There are approximately 30,000 users, 1,700 permissions of type
“HOST”, 6,000 of type “PERM_GROUP”, and 20,000 of type “SYS-
TEM_GROUP”.

The resulting access control matrices are far too large to be han-
dled efficiently by the policy miner we developed. To address this,
during 5-fold cross-validation, we worked instead with an access
control submatrix induced by a sample of 30% of all users. Each
fold used a different sample of users. To see why this is enough,
we remark that, in RBAC policies, the number R of roles is usually
much smaller than the number N of users. Moreover, the number
K of possible subsets of permissions that users are assigned by
RBAC policies is small in comparison to the whole set of possible
subsets of permissions. If N is much larger than K , then, by the
pidgeonhole principle, many users have the same subset of per-
missions. Therefore, it is not necessary to use all N users to mine
an adequate RBAC policy, as only a fraction of them has all the
necessary information. The high TPR (above 80%) of the policy that
we mined supports the fact that using a submatrix is still enough
to mine policies that generalize well.

D.2 Synthetic policy for spatio-temporal RBAC

We present here the synthetic spatio-temporal RBAC policy that
we used for our experiments. We assume the existence of five
rectangular buildings, described in Table 10. The left column in-
dicates the building’s name and the right column describes the
two-dimensional coordinates of the building’s corners. There are
five roles, which we describe next. We regard a permission as an
action executed on an object.

Name Corners
Main building (1, 3), (1, 4), (4, 4), (4, 3)

Library (1, 1), (1, 2), (2, 2), (2, 1)
Station (8, 1), (8, 9), (9, 9), (9, 1)

Laboratory (2, 6), (2, 8), (4, 8), (4, 6)
Computer room (6, 6), (6, 7), (7, 7), (7, 6)

Table 10

The first role assigns a permission to a user if all of the following
hold:
• The user is at most 1 meter away from the computer room.
• The object is in the computer room or in the laboratory.
• The current day is an odd day of the month.
• The current time is between 8AM and 5PM.

The second role assigns a permission to a user if all of the fol-
lowing hold:
• The user is outside the library.
• The object is at most 1 meter away from the library.
• Either
– the current day is before the 10th day of the month and
the current time is between 2PM and 8PM or

– the current day is after the 15th day of the month and the
current time is between 8AM and 12PM.

The third role assigns a permission to a user if all of the following
hold:
• The user is at most 3 meters away from the main building.
• The object is at most 3 meters away from the main building.

The fourth role assigns a permission to a user if all of the follow-
ing hold:
• The user is inside the library.
• The object is outside the library.
• The current day is before the 15th day of the month.
• The current time is between 12AM and 12PM.

The fifth role assigns a permission to a user if all of the following
hold:
• The user is inside the main building, at most 1 meter away
from the library, inside the laboratory, at most 2 meters away
from the computer room, or inside the station.
• The object satisfies the same spatial constraint.
• The current day is before the 15th day of the month.
• The current time is between 12AM and 12PM.
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