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Abstract—We present a general approach for the symbolic
analysis of security protocols that use Diffie-Hellman expo-
nentiation to achieve advanced security properties. We model
protocols as multiset rewriting systems and security proper-
ties as first-order formulas. We analyze them using a novel
constraint-solving algorithm that supports both falsification
and verification, even in the presence of an unbounded number
of protocol sessions. The algorithm exploits the finite variant
property and builds on ideas from strand spaces and proof
normal forms. We demonstrate the scope and the effectiveness
of our algorithm on non-trivial case studies. For example,
the algorithm successfully verifies the NAXOS protocol with
respect to a symbolic version of the eCK security model.

I. INTRODUCTION

Authenticated Key Exchange (AKE) protocols are widely
used components in modern network infrastructures. They
assume a Public-Key Infrastructure and use the public keys to
establish shared session keys over an untrusted channel. Re-
cent AKE protocols use Diffie-Hellman (DH) exponentiation
to achieve advanced security properties, namely secrecy and
authentication properties in the presence of adversaries who
are significantly more powerful than the classical Dolev-Yao
adversary. For example, in the eCK model [1], the adversary
may corrupt random number generators and dynamically
compromise long-term keys and session keys.

As witnessed by the numerous attacks on published
protocols, e.g. [2]–[5], designing AKE protocols is error-
prone. It is therefore desirable to formally verify them before
deployment, ideally automatically and with respect to an
unbounded number of sessions. In this paper, we use a
symbolic model of DH exponentiation to enable automatic
verification. Our model supports DH exponentiation and an
abelian group of exponents. This allows the adversary to
cancel out DH exponents using exponentiation with their
inverse. Similar to previous work on automatic symbolic
analysis [6]–[8], we do not model multiplication in the
DH group and addition of exponents.

There are no existing approaches capable of automati-
cally verifying recent AKE protocols in models combining
advanced security properties, unbounded sessions, and DH ex-
ponentiation. Existing approaches either bound the number
of sessions [7], [8], fail to model the required adversary
capabilities [6], [9]–[11], do not consider inverses in the
group of DH exponents [12]–[14], or faithfully model the
adversary, but do not support DH exponentiation [15], [16].
In this paper, we give a general approach to security protocol

verification, which is capable of automatically verifying AKE
protocols in models as described above.

Contributions: First, we give an expressive and general
security protocol model, which uses multiset rewriting to
specify protocols and adversary capabilities, a guarded frag-
ment [17] of first-order logic to specify security properties,
and equational theories to model the algebraic properties of
cryptographic operators.

Second, we give a novel constraint-solving algorithm for
the falsification and verification of security protocols specified
in our model for an unbounded number of sessions. We give a
full proof of its correctness along with proofs of all theorems
and assertions in this paper in the extended version [18].

Third, we implemented our algorithm in a tool, the
TAMARIN prover [19], and validated its effectiveness on a
number of non-trivial case studies. Despite the undecidability
of the verification problem, our algorithm performs well: it
terminates in the vast majority of cases, and the times for
falsification and verification are in the range of a few seconds.
This makes TAMARIN well-suited for the automated analysis
of security protocols that use DH exponentiation to achieve
advanced security properties.

Organization: We introduce notation in Section II and
provide background on the security properties of AKE
protocols in Section III. In Section IV, we define our
protocol model. We present the theory underlying our
constraint-solving algorithm in Section V and the algorithm in
Section VI. We perform case studies in Section VII, compare
with related work in Section VIII, and conclude in Section IX.

II. NOTATIONAL PRELIMINARIES

S∗ denotes the set of sequences over S. For a sequence s,
we write si for the i-th element, ∣s∣ for the length of s, and
idx(s) = {1, . . . , ∣s∣} for the set of indices of s. We write
s⃗ to emphasize that s is a sequence. We use [] to denote
the empty sequence, [s1, . . . , sk] to denote the sequence s
where ∣s∣ = k, and s ⋅ s′ to denote the concatenation of the
sequences s and s′. S♯ denotes the set of finite multisets with
elements from S. We also use the superscript ♯ to denote the
usual operations on multisets such as ∪♯. For a sequence s,
mset(s) denotes the corresponding multiset and set(s) the
corresponding set. We also use set(m) for multisets m.

We write vars(t) for the set of all variables in t, and
fvars(F ) for the set of all variables that have free occurrences
in a formula F . For a function f , we write f[a↦ b] to denote
the function that maps a to b and c to f(c), for all c ≠ a.
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Figure 1. The NAXOS protocol.

III. AUTHENTICATED KEY EXCHANGE PROTOCOLS

We use the NAXOS protocol [1] as an example to illustrate
the constructions and goals underlying recent AKE protocols.
Figure 1 depicts the protocol. Each party x has a long-term
private key lkx and a corresponding public key pkx = glkx ,
where g is a generator of the DH group. To start a session,
the initiator I first creates a fresh nonce eskI , also known as
I’s ephemeral (private) key. He then concatenates eskI with
I’s long-term private key lkI , hashes the result using h1, and
sends gh1(eskI ,lkI) to the responder. The responder R stores
the received value in a variable X , computes a similar value
based on his own nonce eskR and long-term private key lkR,
and sends the result to the initiator, who stores the received
value in the variable Y . Finally, both parties compute a
session key (kI and kR, respectively) whose computation
includes their own long-term private keys, such that only the
intended partner can compute the same key.

Note that the messages exchanged are not authenticated,
as the recipients cannot verify that the expected long-
term key was used in the construction of the message.
The authentication is implicit and only guaranteed through
ownership of the correct key. Explicit authentication (e.g.,
the intended partner was recently alive or agrees on some
values) is commonly achieved in AKE protocols by adding
a key-confirmation step, where the parties exchange a MAC
of the exchanged messages that is keyed with (a variant of)
the computed session key.

The key motivation behind recent AKE protocols is that
they should achieve their security goals even in the presence
of very strong adversaries. For example, the NAXOS protocol
is designed to be secure in the eCK security model [1]. In this
model, as in the standard Dolev-Yao model, the adversary
has complete control over the network and can learn the long-
term private keys of all dishonest agents. However, unlike
in the Dolev-Yao model, he can additionally, under some
restrictions, learn the long-term private key of any agent.
This models (weak) Perfect Forward Secrecy (wPFS/PFS):
even if the adversary learns the long-term private keys of
all the agents, the keys of previous sessions should remain
secret [20]. Additionally, this models resilience against Key
Compromise Impersonation (KCI): even if the adversary
learns the long-term private key of an agent, he should

be unable to impersonate as anybody to this agent [5].
Moreover, the adversary can learn the session keys of certain
sessions. This models both Key Independence (KI), where
compromising one session key should not compromise other
keys, and resilience against unknown-key share attacks (UKS),
where the adversary should not be able to trick other sessions
into computing the same key. Finally, the adversary can learn
any agent’s ephemeral keys. This models resilience against
corrupted random-number generators. All these attack types
are modeled in the eCK security model.

We call security properties that consider such strong
adversaries advanced security properties. We give an example
of such a property by formalizing the security of the NAXOS
protocol in the eCK model in Section IV-C.

IV. SECURITY PROTOCOL MODEL

We model the execution of a security protocol in the
context of an adversary as a labeled transition system, whose
state consists of the adversary’s knowledge, the messages on
the network, information about freshly generated values, and
the protocol’s state. The adversary and the protocol interact
by updating network messages and freshness information.
Adversary capabilities and protocols are specified jointly as
a set of (labeled) multiset rewriting rules. Security properties
are modeled as trace properties of the transition system.

In the following, we first describe how protocols are speci-
fied and executed. Then, we define our property specification
language and illustrate our protocol model with an example.

A. Protocol Specification and Execution

To model cryptographic messages, we use an order-sorted
term algebra with the sort msg and two incomparable subsorts
fresh and pub for fresh and public names. We assume there
are two countably infinite sets FN and PN of fresh and public
names and a countably infinite set Vs of variables for each
sort s. We denote the union of these Vs by V . We write
x∶s to denote that x ∈ Vs. Our approach supports a user-
defined signature for modeling cryptographic operators other
than DH exponentiation. To simplify its presentation, we use
however a fixed signature with the function symbols

ΣDH = {enc( , ), dec( , ), h( ), ⟨ , ⟩, fst( ), snd( ),
ˆ , −1, ∗ , 1} ,

which are all of sort msg × . . . × msg → msg. The symbols
in the first line model symmetric encryption, hashing, and
pairing. Those in the second line model DH exponentiation
and inversion, multiplication, and the unit in the group of
exponents.

We abbreviate the set of well-sorted terms built over ΣDH,
PN, FN, and V as T . Cryptographic messages are modeled
by the ground terms in T , which we abbreviate as M. In
the remainder of the paper, we use g to denote a public
name that is used as a fixed generator of the DH group and
a,b,c,k to denote fresh names.



(1 ) dec(enc(m,k), k) ≃m (6 ) x ∗ 1 ≃ x
(2 ) fst(⟨x, y⟩) ≃ x (7 ) x ∗ x−1 ≃ 1

(3 ) snd(⟨x, y⟩) ≃ y (8 ) (x−1)−1 ≃ x
(4 ) x ∗ (y ∗ z) ≃ (x ∗ y) ∗ z (9 ) (x ˆ y) ˆ z ≃ x ˆ (y ∗ z)
(5 ) x ∗ y ≃ y ∗ x (10 ) x ˆ 1 ≃ x

Figure 2. Equations that constitute EDH .

The equational theory EDH generated by the equations in
Figure 2 formalizes the semantics of the function symbols in
ΣDH. It consists of equations for decryption and projection
(1–3), exponentiation (9–10), and the theory of abelian groups
for the exponents (4–8). Equation (9) states that repeated
exponentiation in a DH group corresponds to multiplication
of the exponents.

As an example, consider the term ((g ˆ a) ˆ b) ˆ a−1, which
results from exponentiating g with a, followed by b, followed
by a inverse. This is equal to g ˆ ((a ∗ b) ∗ a−1) because
of (9) and can be further simplified to g ˆ b using (4–7).

Note that our approach supports the combination of
Equations (2–10) modeling DH exponentiation and pairing
with an arbitrary subterm-convergent rewriting theory for the
user-defined cryptographic operators (see [18]). A rewriting
theory R is subterm-convergent if it is convergent and for
each rule l → r ∈ R, r is either a proper subterm of l or
is ground and in normal form with respect to R. One can
therefore extend ΣDH and EDH with asymmetric encryption,
signatures, and similar operators.

Note that our equational theory does not support protocols
that perform multiplication in the DH group G. To define
such protocols, an additional function symbol × denoting
multiplication in G is required. The function symbol ∗
denotes multiplication in the group of exponents, which is a
different operation. For example, the equality (gˆa×gˆb)ˆc =
(gˆa)ˆc×(gˆb)ˆc holds in all DH groups, but does usually not
hold if we replace × by ∗. Moreover, addition of exponents
must be modeled for such protocols to avoid missing attacks.
Consider the example protocol that randomly choses two
exponents a and b, sends these exponents, receives some
exponent x, and checks if g ˆ a × g ˆ b = g ˆ x. This check
succeeds if and only if x = a + b.

1) Transition System State: We model the states of our
transition system as finite multisets of facts. We use a fixed
set of fact symbols to encode the adversary’s knowledge,
freshness information, and the messages on the network. The
remaining fact symbols are used to represent the protocol
state. Formally, we assume an unsorted signature ΣFact

partitioned into linear and persistent fact symbols. We define
the set of facts as the set F consisting of all facts F (t1, .., tk)
such that ti ∈ T and F ∈ ΣkFact. We denote the set of ground
facts by G. We say that a fact F (t1, .., tk) is linear if F is
linear and persistent if F is persistent.

Linear facts model resources that can only be consumed

once, whereas persistent facts model inexhaustible resources
that can be consumed arbitrarily often. In the rest of the
paper, we assume that ΣFact consists of an arbitrary number
of protocol-specific fact symbols to describe the protocol
state and the following special fact symbols. A persistent fact
K(m) denotes that m is known to the adversary. A linear fact
Out(m) denotes that the protocol has sent the message m,
which can be received by the adversary. A linear fact In(m)
denotes that the adversary has sent the message m, which
can be received by the protocol. A linear fact Fr(n) denotes
that the fresh name n was freshly generated.

2) Adversary, Protocol, and Freshness Rules: To specify
the possible transitions by the adversary and the honest
participants, we use labeled multiset rewriting. A labeled
multiset rewriting rule is a triple (l, a, r) with l, a, r ∈ F∗,
denoted l−−[ a ]→r. We often suppress the brackets around the
sequences l, a, and r when writing rules. For ri = l−−[ a ]→r,
we define the premises as prems(ri ) = l, the actions as
acts(ri ) = a, and the conclusions as concs(ri ) = r. We use
ginsts(R) to denote the set of ground instances of a set of
labeled multiset rewriting rules R.

There are three types of rules. A rule for fresh name gen-
eration, the message deduction rules, and the rules specifying
the protocol and the adversary’s capabilities. All fresh names
are created with the rule FRESH = ([]−−[]→Fr(x∶fresh)). This
is the only rule that produces Fr facts and we consider only
runs with unique instances of this rule, i.e., the same fresh
name is never generated twice.

We use the following set of message deduction rules.

MD = { Out(x)−−[]→K(x), K(x)−−[ K(x) ]→In(x) }
∪ { −−[]→K(x∶pub), Fr(x∶fresh)−−[]→K(x∶fresh) }
∪ { K(x1),. . . ,K(xk)−−[]→K(f(x1, . . . , xk)) ∣ f ∈ ΣkDH }

The rules in the first line allow the adversary to receive
messages from the protocol and send messages to the protocol.
The K(x) action in the second rule makes the messages sent
by the adversary observable in a protocol’s trace. We exploit
this to specify secrecy properties. The rules in the second
line allow the adversary to learn public names and freshly
generated names. The remaining rules allow the adversary
to apply functions from ΣDH to known messages.

A protocol rule is a multiset rewriting rule l−−[ a ]→r such
that (P1) it does not contain fresh names, (P2) K and Out
facts do not occur in l, (P3) K, In, and Fr facts do not occur
in r, and (P4) vars(r) ⊆ vars(l) ∪ Vpub. A protocol is a
finite set of protocol rules. Note that our formal notion of a
protocol encompasses both the rules executed by the honest
participants and the adversary’s capabilities, like revealing
long-term keys. Condition P1 and the restriction on the
usage of Fr facts from P3, which also hold for the message
deduction rules, ensure that all fresh names originate from
instances of the FRESH rule.



3) Transition Relation: The labeled transition relation
Ð→P ⊆ G♯ × P(G) × G♯ for a protocol P is defined by the
transition rule

l−−[ a ]→r ∈EDH
ginsts(P ∪MD ∪ {FRESH})

lfacts(l) ⊆♯ S pfacts(l) ⊆ set(S)

S
set(a)
ÐÐÐ→P ((S ∖♯ lfacts(l)) ∪♯ mset(r))

,

where lfacts(l) is the multiset of all linear facts in l and
pfacts(l) is the set of all persistent facts in l. This transition
rule models rewriting the state with a ground instance of a
protocol rule, a message deduction rule, or the FRESH rule.
Since we perform multiset rewriting modulo EDH , we use
∈EDH

for the rule instance. As linear facts are consumed upon
rewriting, we use multiset inclusion to check that all facts in
lfacts(l) occur sufficiently many times in S. For persistent
facts, we only check that every fact in pfacts(l) occurs in S.
To obtain the successor state, we remove the consumed linear
facts and add the generated facts. The action associated to
the transition is the set of actions of the rule instance.

A trace is a sequence of sets of ground facts denoting
the sequence of actions that happened during a protocol’s
execution. We model the executions of a security protocol P
by its set of traces defined as

traces(P ) = {[A1, . . . ,An]
∣ ∃S1, . . . , Sn ∈ G♯. ∅♯

A1Ð→P . . .
AnÐÐ→P Sn

∧ ∀i ≠ j. ∀x. (Si+1 ∖♯ Si) = {Fr(x)}♯ ⇒
(Sj+1 ∖♯ Sj) ≠ {Fr(x)}♯ } .

The second conjunct ensures that each instance of the FRESH
rule is used at most once in a trace. Each consumer of a Fr(n)
fact therefore obtains a different fresh name. Transitions
labeled with ∅ are silent. We therefore define the observable
trace tr of a trace tr as the subsequence of all non-silent
actions in tr .

B. Security Properties

We use two-sorted first-order-logic to specify security
properties. This logic supports quantification over both
messages and timepoints. We thus introduce the sort temp for
timepoints and write Vtemp for the set of temporal variables.

A trace atom is either false �, a term equality t1 ≈ t2, a
timepoint ordering i ⋖ j, a timepoint equality i ≐ j, or an
action f@i for a fact f and a timepoint i. A trace formula
is a first-order formula over trace atoms.

To define the semantics of trace formulas, we associate
a domain Ds with each sort s. The domain for temporal
variables is Dtemp = Q and the domains for messages are
Dmsg =M, Dfresh = FN, and Dpub = PN. We say a function
θ from V to Q ∪M is a valuation if it respects sorts, i.e.,
θ(Vs) ⊆ Ds for all sorts s. For a term t, we write tθ for the
application of the homomorphic extension of θ to t.

For an equational theory E, the satisfaction relation
(tr , θ) ⊧E ϕ between traces tr , valuations θ, and trace
formulas ϕ is defined as follows.

(tr , θ) ⊧E f@i iff θ(i) ∈ idx(tr) and fθ ∈E trθ(i)
(tr , θ) ⊧E i ⋖ j iff θ(i) < θ(j)
(tr , θ) ⊧E i ≐ j iff θ(i) = θ(j)
(tr , θ) ⊧E t1 ≈ t2 iff t1θ =E t2θ
(tr , θ) ⊧E ¬ϕ iff not (tr , θ) ⊧E ϕ

(tr , θ) ⊧E ϕ ∧ ψ iff (tr , θ) ⊧E ϕ and (tr , θ) ⊧E ψ

(tr , θ) ⊧E ∃x∶s.ϕ iff there is u ∈ Ds such that
(tr , θ[x↦ u]) ⊧E ϕ

The semantics of the remaining logical connectives and
quantifiers are defined by translation to the given fragment
as usual. Overloading notation, we write tr ⊧E ϕ if
(tr , θ) ⊧E ϕ for all θ. For a set of traces TR, we write
TR ⊧E ϕ if tr ⊧E ϕ for all tr ∈ TR. We say that a protocol
P satisfies ϕ, written P ⊧EDH

ϕ, if traces(P ) ⊧EDH
ϕ.

C. Example: Security of NAXOS in the eCK Model

We formalize the NAXOS protocol for the eCK model
using the rules in Figure 3. We include two free function
symbols h1 and h2 in ΣDH. The first rule models the
generation and registration of long-term asymmetric keys.
An exponent lkA is randomly chosen and stored as the long-
term key of an agent A. The persistent facts !Ltk(A, lkA)
and !Pk(A,g ˆ lkA) denote the association between A and
his long-term private and public keys. The public key is
additionally sent to the adversary.

In the rules modeling the initiator and responder, each
protocol thread chooses a unique ephemeral key eskx, which
we also use to identify the thread. The first initiator rule
chooses the actor I and the intended partner R, looks up
I’s long-term key, and sends the half-key hkI . The fact
Init1(eskI , I,R, lkI ,hkI) then stores the state of thread eskI
and the fact !Ephk(eskI , eskI) is added to allow the adversary
to reveal the ephemeral key eskI (the second argument) of
the thread eskI (the first argument). The second initiator
rule reads the thread’s state, looks up the public key of the
intended partner, and receives the half-key Y . The key kI is
then computed. The action Accept(eskI , I,R, kI) denotes
that the thread eskI finished with the given parameters.

To specify when two threads are intended communication
partners (“matching sessions”), we include Sid(eskI , sid)
and Match(eskI , sid′) actions. A thread s′ matches a thread s
if there exists a sid such that Sid(s′, sid) and Match(s, sid)
occur in the trace. By appropriately defining the Match
actions and session identifier sid, various definitions of
matching can be modeled [21].

Finally, the fact !Sessk(eskI , kI) is added to the second
initiator rule to allow revealing the session key kI . The
responder rule works analogously. The final three rules model



Generate long-term keypair:
Fr(lkA)−−[]→!Ltk(A∶pub, lkA), !Pk(A,g ˆ lkA),Out(g ˆ lkA)

Initiator step 1:
Fr(eskI), !Ltk(I, lkI)
−−[]→Init1(eskI , I,R∶pub, lkI , hkI), !Ephk(eskI , eskI),Out(hkI)

where hkI = g ˆ h1(eskI , lkI)

Initiator step 2:
Init1(eskI , I,R, lkI , hkI), !Pk(R, pkR), In(Y )

−−[ Accept(eskI , I,R, kI),Sid(eskI , ⟨Init, I,R, hkI , Y ⟩)

, Match(eskI , ⟨Resp,R, I, hkI , Y ⟩) ]→ !Sessk(eskI , kI)
where kI = h2(Y ˆ lkI , pkR ˆ h1(eskI , lkI), Y ˆ h1(eskI , lkI), I,R)

Responder:
Fr(eskR), !Ltk(R, lkR), !Pk(I, pkI), In(X)

−−[ Accept(eskR,R, I, kR),Sid(eskR, ⟨Resp,R, I,X, hkR⟩)

, Match(eskR, ⟨Init, I,R,X, hkR⟩) ]→

!Sessk(eskR, kR), !Ephk(eskR, eskR),Out(g ˆ h1(eskR, lkR))

where hkR = g ˆ h1(eskR, lkR), and
kR = h2(pkI ˆ h1(eskR, lkR),X ˆ lkR,X ˆ h1(eskR, lkR), I,R)

Key Reveals for the eCK model:
!Sessk(tid, k) −−[ SesskRev(tid) ]→ Out(k)
!Ltk(A, lkA) −−[ LtkRev(A) ]→ Out(lkA)

!Ephk(tid, eskA) −−[ EphkRev(tid) ]→ Out(eskA)

Figure 3. Multiset rewriting rules formalizing NAXOS.

that, in the eCK model, the adversary can reveal any session,
long-term, or ephemeral key. We model the restrictions on
key reveals as part of the security property and thus record
all key reveals in the trace.

We formalize security in the eCK model by the formula
in Figure 4, which is a one-to-one mapping of the original
definition of eCK security given in [1]. Intuitively, the formula
states that if the adversary knows the session key of a thread
eskI , then he must have performed forbidden key reveals.
The left-hand side of the implication states that the key
k is known and the right-hand side disjunction states the
restrictions on key reveals. We describe each disjunct in the
comment above it. Further motivation and variants of these
restrictions can be found in [1], [21]. Note that the eCK
model formalizes weak Perfect Forward Secrecy (weak PFS),
as it only allows for a long-term key reveal of the intended
partner if there is a matching session. To obtain a variant of
eCK formalizing PFS, we can replace the last line with

∨ (∃i5.LtkRev(B)@i5 ∧ i5⋖i1))) ).

This allows the adversary to reveal the long-term key of the
intended partner after the test thread is finished or if there is
a matching session. The NAXOS protocol does not satisfy
this property, as reported in Table I in SectionVII.

Note that some protocols require modeling inequality
conditions, e.g., the TS1-2004 [22] protocol, which assumes
that an agent never executes a session with himself. We

∀i1 i2 sAB k. (Accept(s,A,B, k)@i1 ∧ K(k)@i2) ⇒

// If the session key of the test thread s is known, then
// s must be ”not clean”. Hence either there is a
// session key reveal for s,

((∃i3.SesskRev(s)@i3)

// or a session key reveal for a matching session,
∨ (∃s′i3 i4 sid . (Sid(s′, sid)@i3 ∧Match(s, sid)@i4)

∧ (∃i5.SesskRev(s′)@i5))

// or if a matching session exists,

∨ (∃s′i3 i4 sid . (Sid(s′, sid)@i3 ∧Match(s, sid)@i4)

// both lkA and eskA, or both lkB and eskB are revealed,
∧ ((∃i5 i6.LtkRev(A)@i5 ∧ EphkRev(s)@i6)

∨ (∃i5 i6.LtkRev(B)@i5 ∧ EphkRev(s′)@i6)))

// or if no matching session exists,

∨ (¬(∃s′i3 i4 sid . (Sid(s′, sid)@i3 ∧Match(s, sid)@i4))

// either both lkA and eskA, or lkB are revealed.
∧ ((∃i5 i6.LtkRev(A)@i5 ∧ EphkRev(s)@i6)

∨ (∃i5.LtkRev(B)@i5))) )

Figure 4. eCK security definition.

model inequality conditions in two steps. First, we include
Neq(s, t) facts in the actions of rules that require the terms
s and t to be unequal. Second, we replace the considered
security property ϕ with (¬(∃i x.Neq(x,x)@i)) ⇒ ϕ to
restrict the analysis to traces where all inequality conditions
hold. This filtering construction also works for enforcing other
restrictions on traces, e.g., the uniqueness of certain actions.

V. NORMAL DEPENDENCY GRAPHS

For symbolic attack-search algorithms, there are several
drawbacks to the multiset rewriting semantics given in the
previous section. First, incrementally constructing attacks
is difficult with (action-)traces, as they contain neither the
history of past states nor the causal dependencies between
steps. Second, symbolic reasoning modulo EDH is difficult
because EDH contains cancellation equations. For example,
if the adversary knows t = na ∗ x for a nonce na, we cannot
conclude that na has been used in the construction of t, as x
could be equal to na−1. Third, the message deduction rules
allow for redundant steps such as first encrypting a cleartext
and then decrypting the resulting ciphertext. For search
algorithms, it is useful to impose normal-form conditions on
message deduction to avoid exploring such redundant steps.

We take the following approach. First, we define depen-
dency graphs. They consist of the sequence of rewriting
rule instances corresponding to a protocol execution and
their causal dependencies, similar to strand spaces [23].
Afterwards, we show that we can use dependency graphs
modulo AC , an equational theory without cancellation
equations, instead of dependency graphs modulo EDH .



Finally, we define normal message deductions and the
corresponding normal dependency graphs. We also show
that normal dependency graphs are weakly trace equivalent
to the multiset rewriting semantics.

A. Dependency Graphs

We use dependency graphs to represent protocol executions
together with their causal dependencies. A dependency
graph consists of nodes labeled with rule instances and
dependencies between the nodes. We first present an example
of a dependency graph and then give its formal definition.

Example 1 (Dependency Graph). Consider the protocol

P = { [Fr(x),Fr(k)]−−[]→[St(x,k),Out(enc(x,k)),Key(k)]
, [St(x, k), In(⟨x,x⟩)]−−[ Fin(x, k) ]→[]
, [Key(k)]−−[ Rev(k) ]→[Out(k)] } .

Figure 5 shows a dependency graph for an execution of
P . We use inference rule notation with the actions on the
right for rule instances. Nodes 1 and 2 are rule instances that
create fresh names. Node 3 is an instance of the first protocol
rule. Node 4 is an instance of the key reveal rule. Nodes 5–9
are instances of message deduction rules and denote that
the adversary receives a ciphertext and its key, decrypts
the ciphertext, pairs the resulting cleartext with itself, and
sends the result to an instance of the second protocol rule,
Node 10. The edges denote causal dependencies: an edge
from a conclusion of node i to a premise of node j denotes
that the corresponding fact is generated by i and consumed
by j. Since this is a dependency graph modulo EDH , it is
sufficient that each pair of generated and consumed facts is
equal modulo EDH .

Formally, let E be an equational theory and R be a set of
multiset rewriting rules. We say that dg = (I,D) is a depen-
dency graph modulo E for R if I ∈ (ginsts(R∪{FRESH}))∗,
D ⊆ N2 ×N2, and dg satisfies the conditions DG1–4 listed
below. To state these conditions, we introduce the following
definitions. We call idx(I) the nodes and D the edges of
dg. We write (i, u) ↣ (j, v) for the edge ((i, u), (j, v)).
Let I = [l1−−[ a1 ]→r1, . . . , ln−−[ an ]→rn]. The trace of dg is
trace(dg) = [set(a1), . . . , set(an)]. A conclusion of dg is a
pair (i, u) such that i is a node of dg and u ∈ idx(ri). The
corresponding conclusion fact is (ri)u. A premise of dg is
a pair (i, u) such that i is a node of dg and u ∈ idx(li). The
corresponding premise fact is (li)u. A conclusion or premise
is linear if its fact is linear.
DG1 For every edge (i, u) ↣ (j, v) ∈D, it holds that i < j

and the conclusion fact of (i, u) is equal modulo E to
the premise fact of (j, v).

DG2 Every premise of dg has exactly one incoming edge.
DG3 Every linear conclusion of dg has at most one outgoing

edge.
DG4 The FRESH rule instances in I are unique.

3 :
Fr(a) Fr(k)

St(a, k) Out(enc(a, k))) Key(k)

7 :
K(enc(a, k)) K(k)

K(dec(enc(a, k), k))

5 :
Out(enc(a, k))

K(enc(a, k))
6 :

Out(k)

K(k)

1 :
Fr(a)

2 :
Fr(k)

9 :
K(ha, ai)
In(ha, ai) [K(ha, ai)]

10 :
St(a, k) In(ha, ai)

[Fin(a, k)]

8 :
K(a) K(a)

K(ha, ai)

4 :
Key(k)

Out(k)
[Rev(k)]]

Figure 5. Dependency graph modulo EDH .

We denote the set of all dependency graphs modulo E for
R by dgraphsE(R).

Note that, for all protocols P , the multiset rewriting
semantics given in Section IV and the dependency graphs
modulo EDH for P ∪MD have the same set of traces, i.e.,
traces(P ) =EDH

{trace(dg) ∣dg ∈ dgraphsEDH
(P ∪MD)}.

B. Dependency Graphs modulo AC

We now switch to a semantics based on dependency graphs
modulo AC . We use standard notions from order-sorted
rewriting [24] and proceed in two steps.

First, we define AC as the equational theory generated
by Equations (4–5) from Figure 2 and DH as the rewriting
system obtained by orienting Equations (1–3,9–10) from
Figure 2 and all equations from Figure 6 from left to right.
DH ⊎AC is an equational presentation of EDH and DH is
AC -convergent and AC -coherent. We can therefore define
t↓DH as the normal form of t with respect to DH,AC -
rewriting and have t =EDH

s iff t↓DH =AC s↓DH . We say
that t is ↓DH -normal if t =AC t↓DH . We say a dependency
graph dg = (I,D) is ↓DH -normal if all rule instances in I
are ↓DH -normal.

Second, EDH has the finite variant property [25] for this
presentation, which allows us to perform symbolic reasoning
about normalization. More precisely, for all terms t, there
is a finite set of substitutions {τ1, . . . , τk} such that for all
substitutions σ, there is an i ∈ {1, . . . , k} and a substitution σ′

with (tσ)↓DH =AC ((tτi)↓DH )σ′ and (xσ)↓DH =AC xτiσ
′

for all x ∈ vars(t). We call {( tτi↓DH , τi) ∣ 1 ≤ i ≤ k} a
complete set of DH,AC -variants of t. For a given term t,
we use folding variant narrowing [24] to compute such a set,



(1 ) (x−1∗y)−1 ≃ x∗y−1 (6 ) 1−1 ≃ 1

(2 ) x−1∗y−1 ≃ (x∗y)−1 (7 ) x∗1 ≃ x
(3 ) x∗(x∗y)−1 ≃ y−1 (8 ) (x−1)−1 ≃ x
(4 ) x−1∗(y−1∗z) ≃ (x∗y)−1∗z (9 ) x∗(x−1∗y) ≃ y
(5 ) (x∗y)−1∗(y∗z) ≃ x−1∗z (10 ) x∗x−1 ≃ 1

Figure 6. Lankford’s presentation of the abelian group axioms

which we denote by ⌈t⌉DH . Overloading notation, we also
denote {s ∣ (s, τ) ∈ ⌈t⌉DH } by ⌈t⌉DH .

It is straightforward to extend these notions to multiset
rewriting rules by considering rules as terms and the required
new function symbols as free. We can then show that
dgraphsEDH

(R)↓DH ⊆AC dgraphsAC (⌈R⌉DH ) for all sets
of multiset rewriting rules R. If we restrict the right hand
side to ↓DH -normal dependency graphs, then the two sets
are equal modulo AC .

Example 2. To normalize the graph dg = (I,D) in
Figure 5 with respect to ↓DH , it suffices to replace I7
with ri = K(enc(a,k)),K(k)−−[]→K(a), calling the result
dg′. Since ri is not an instance of the decryption rule
rdec = K(x),K(y)−−[]→K(dec(x, y)) or any other rule in
P ∪ MD, dg′ is not in dgraphsAC (P ∪ MD). However, ri
is an instance of K(enc(x, y)),K(y)−−[]→K(x), which is a
DH,AC -variant of rdec and therefore in ⌈MD⌉DH . Hence,
dg′ ∈ dgraphsAC (⌈P ∪MD⌉DH ).

C. Normal Dependency Graphs

We first define the class of ∗-restricted protocols, which
do not multiply exponents. We then define rules for normal
message deduction and the corresponding normal dependency
graphs, which are weakly trace equivalent to the multiset
rewriting semantics for ∗-restricted protocols.

1) ∗-restricted Protocols: The following restriction en-
sures that protocols do not multiply exponents and do
not introduce products by other means. A protocol P is
∗-restricted if, for each of its rules l−−[ a ]→r, (a) l does not
contain the function symbols ∗, ˆ, −1, fst, snd, and dec, and
(b) r does not contain the function symbol ∗.

In general, condition (a) prevents protocol rules from
pattern matching on reducible function symbols. Condition (b)
prevents protocols from directly using multiplication, al-
though repeated exponentiation is still allowed. Note that
these restrictions are similar to those of previous work such
as [6], [7] and are not a restriction in practice. Protocols
that use multiplication in the group of exponents can usually
be specified by using repeated exponentiation. Moreover,
protocols that use multiplication in the DH group, such as
MQV [26], cannot be specified anyway since ∗ denotes
multiplication in the group of exponents.

For ∗-restricted protocols, products that occur in positions
that can be extracted by the adversary can always be

constructed by the adversary himself from their components.
2) Normal Message Deduction: Message deduction steps

in dependency graphs modulo AC use rules from ⌈MD⌉DH .
These rules still allow redundant steps. We now eliminate
some of them by tagging the rules to limit their applicability.

We first partition ⌈MD⌉DH into five subsets: communica-
tion rules for sending and receiving messages, multiplication
rules consisting of all DH,AC -variants of the rule for
multiplication, construction rules that apply a function symbol
to arguments, deconstruction rules that extract a subterm from
an argument, and the remaining exponentiation rules, which
are all DH,AC -variants of the rule for exponentiation and
are neither construction nor deconstruction rules.

We use tags to forbid two types of redundancies. First,
we forbid using a deconstruction rule to deconstruct the
result of a construction rule. This is analogous to restrictions
for normal natural deduction proofs, adapted to the setting
of message deduction [27]. Second, we forbid repeated
exponentiation, which can always be replaced by a single
exponentiation with the product of all exponents. In particular,
we use the deconstruction tags ↓ and ↑ and the exponentiation
tags exp and noexp. We use ↓ to tag K-facts where
deconstruction is allowed and ↑ where deconstruction is
forbidden. We use exp to tag K-facts that can be used as the
base of an exponentiation and noexp where this is forbidden.

We obtain the normal message deduction rules ND
shown in Figure 9 as follows. First, we add the COERCE
rule to switch from message deconstruction to message
construction, preserving the exponentiation tag. Second,
we replace the multiplication rules by l-ary construction
rules for multiplication. For ∗-restricted protocols, these
rules are sufficient to reason about products. Third, we use
exponentiation tags as follows. The construction rule for
exponentiation, the deconstruction rules for exponentiation,
and the exponentiation rules use exp for the first premise
(the base), a variable for the second premise, and noexp
for the conclusion. The remaining rules use variables for
the premises and exp for the conclusion. Finally, we use
deconstruction tags as follows. We use ↑ for the conclusion of
construction rules and ↓ for the first premise of deconstruction
and exponentiation rules. This ensures that a deconstruction
or exponentiation rule can never use the conclusion of a
construction rule as its first premise. For the remaining
premises of rules, we use ↑. For the remaining conclusions of
rules, we use ↓. Note that all conclusions of exponentiation
rules, including the ones that we do not show, are of the form
K↓noexp(t ˆ s) and can therefore only be used by COERCE.

Example 3. Figure 7 shows five message deduction sub-
graphs. In (a), the adversary decrypts a message that he earlier
encrypted himself. Instead of performing these deductions,
the adversary can directly use the conclusion K(a) that is
used by the encryption. The deduction from (a) is not possible
with the normal message deduction rules ND because the



i :
K(g ˆ a) K(a�1 ⇤ b)

K(g ˆ b)

j :
K(g ˆ b) K(b�1 ⇤ c)

K(g ˆ c)

i :
K#

exp(g ˆ a) K"
e1

(a�1 ⇤ b)

K#
noexp(g ˆ b)

j :
K#

exp(g ˆ b) K"
e2

(b�1 ⇤ c)

K#
noexp(g ˆ c)

noexp-conclusion
to exp-premise

j :
K#

exp(g ˆ a) K"
exp(a

�1 ⇤ c)

K#
noexp(g ˆ c)

k :
K"

e1
(a�1 ⇤ b) K"

e2
(b�1 ⇤ c)

K"
exp(a

�1 ⇤ c)

(c) (d)

(e)

i :
K(a) K(k)

K(enc(a, k))

j :
K(enc(a, k)) K(k)

K(a)

i :
K"

e1
(a) K"

e2
(k)

K"
exp(enc(a, k))

j :
K#

exp(enc(a, k)) K"
e3

(k)

K#
exp(a)

"-conclusion
to #-premise

(b)(a)

Figure 7. Message deduction subgraphs for encryption. We use ↛ for
edges that are invalid because the source and target are not equal. We use
i, j, k ∈ N and the exponentiation tags e1, e2, and e3.

↑-tags and ↓-tags prevent applying a deconstruction rule to
the conclusion of a construction rule, as depicted in (b). In
(c), the adversary performs a redundant step that involves
repeated exponentiation. Note that an unbounded number of
steps that add a new exponent and remove the previously
added exponent can be inserted inbetween the two rules. This
deduction is impossible with the normal message deduction
rules because a conclusion with a noexp-tag cannot be
used with a premise that requires an exp-tag, as depicted
in (e). We can replace the repeated exponentiation with one
multiplication and one exponentiation as depicted in (d).

3) Normal Dependency Graphs: We now define normal
dependency graphs. They use the normal message deduction
rules and enforce further normal-form conditions. To state
the conditions, we define the input components of a term t
as inp(t), such that inp(t−1) = inp(t), inp(⟨t1, t2⟩) =
inp(t1) ∪ inp(t2), inp(t1 ∗ t2) = inp(t1) ∪ inp(t2), and
inp(t) = {t} otherwise. Intuitively, inp(t) consists of the
maximal subterms of t that are not products, pairs, or inverses.

Formally, a normal dependency graph for a protocol P is
a dependency graph dg such that dg ∈ dgraphsAC (⌈P ⌉DH ∪
ND) and the following conditions are satisfied.

N1 The dependency graph dg is ↓DH -normal.
N2 No instance of COERCE deduces a pair or an inverse.
N3 There is no multiplication rule that has a premise fact

of the form K↑e(t ∗ s).
N4 All conclusion facts Kde(t ∗ s) are conclusions of a

multiplication rule.
N5 If there are two conclusions c and c′ with conclusion facts

Kde(m) and Kde′(m′) such that m =AC m′, then c = c′.

6 :
Out(k)

K#
exp(k)

8 :
K#

exp(enc(a, k)) K"
exp(k)

K#
exp(a)

11 :
K"

exp(ha, ai)
In(ha, ai) [K(ha, ai)]

5 :
Out(enc(a, k))

K#
exp(enc(a, k))

10 :
K"

exp(a) K"
exp(a)

K"
exp(ha, ai)

9 :
K#

exp(a)

K"
exp(a)

5 :
Out(enc(a, k))

K(enc(a, k))

6 :
Out(k)

K(k)

(a)

9 :
K(ha, ai)
In(ha, ai) [K(ha, ai)]

7 :
K(enc(a, k)) K(k)

K(a)

8 :
K(a) K(a)

K(ha, ai)

7 :
K#

exp(k)

K"
exp(k)

(b)

Figure 8. Examples of message deduction subgraphs of (a) a dependency
graph modulo AC and (b) a normal dependency graph.

N6 If there is a conclusion (i,1) with fact K↓e(m) and a
conclusion (j,1) with fact K↑e′(m′) such that m =AC

m′, then i < j and j is an instance of COERCE or the
construction rule for pairing or the one for inversion.

N7 For all nodes K↓exp(s1),K↑e(t1)−−[]→K↓noexp(s2 ˆ t2) such
that s2 is of sort pub, inp(t2) /⊆ inp(t1).

We denote the set of all normal dependency graphs of P by
ndgraphs(P ).

N1 ensures that all rule instances are ↓DH -normal. N2 en-
sures that pairs and inverses are always completely decon-
structed. N3 and N4 formalize that the adversary constructs
all products directly by multiplying their components. This
does not restrict the adversary since we limit ourselves to
∗-restricted protocols. N5 and N6 ensure a restricted form of
message uniqueness. N7 forbids instances of exponentiation
rules that can be replaced by instances of the construction
rule for exponentiation where the base is a public name.

Note that normal dependency graphs allow exactly the
same executions as our multiset rewriting semantics.

Lemma 1. For all ∗-restricted protocols P ,

traces(P )×ÖDH =AC {trace(dg) ∣dg ∈ ndgraphs(P )} .

Example 4. Figure 8 shows two message deduction sub-
graphs. Subfigure (a) shows the message deduction subgraph
of a dependency graph modulo AC and (b) shows the
message deduction subgraph of the corresponding normal
dependency graph. We obtain (b) from (a) by renumbering
the nodes and adding the required tags and COERCE nodes.

Example 5. Consider the exponentiation-construction node
i ∶ K↓exp(gˆa),K↑exp(a−1∗b)−−[]→K↓noexp(gˆb). The conclusion
of i either has no outgoing edge or a single edge to a
COERCE node j. In the first case, the node i can be removed.



Coerce rule: COERCE
K↓e(x)
K↑e(x)

Communication rules: IRECV
Out(x)
K↓exp(x)

ISEND
K↑e(x)
In(x)

[K(x)]

Construction rules:

K↑exp(x) K↑e(y)
K↑noexp(x ˆ y) K↑exp(x∶pub)

Fr(x∶fresh)
K↑exp(x∶fresh)

K↑e(x)
K↑exp(x−1) K↑exp(1)

K↑e1(x) K↑e2(y)
K↑exp(enc(x, y))

K↑e1(x) K↑e2(y)
K↑exp(dec(x, y))

K↑e(x)
K↑exp(h(x))

K↑e(x)
K↑exp(fst(x))

K↑e(x)
K↑exp(snd(x))

K↑e1(x) K↑e2(y)
K↑exp(⟨x, y⟩)

K↑e1(x1) . . . K↑en(xn) K↑en+1(xn+1) . . . K↑el(xl)
K↑exp((x1 ∗ . . . ∗ xn) ∗ (xn+1 ∗ . . . ∗ xl)−1)

Deconstruction rules:

K↓exp(x ˆ y) K↑e(y−1)
K↓noexp(x)

K↓exp(x ˆ y−1) K↑e(y)
K↓noexp(x)

K↓exp(x ˆ (y ∗ z−1)) K↑e(y−1 ∗ z)
K↓noexp(x)

K↓e(⟨x, y⟩)
K↓exp(x)

K↓e(⟨x, y⟩)
K↓exp(y)

K↓e(x−1)
K↓exp(x)

K↓e1(enc(x, y)) K↑e2(y)
K↓exp(x)

Exponentiation rules: K↓exp(x ˆ y) K↑e(z)
K↓noexp(x ˆ (y ∗ z))

K↓exp(x ˆ y) K↑e(y−1 ∗ z)
K↓noexp(x ˆ z)

⋯

K↓exp(x ˆ (y ∗ z−1)) K↑e(a ∗ b−1)
K↓noexp(x ˆ (y ∗ a ∗ (z ∗ b)−1))

Figure 9. Normal message deduction rules ND. Rules containing variables e or ei denote all variants where these are replaced by noexp or exp. Rules
containing n and l denote all variants for n ≥ 1 and l ≥ 2. There are 42 exponentiation rules computed from the DH,AC -variants of the exponentiation rule.

In the second case, the nodes i and j can be replaced
by j ∶ K↑exp(g),K

↑

exp(b)−−[]→K↑noexp(g ˆ b), keeping all the
outgoing edges of j. This replacement is possible because
g is deducible and conditions N4 and N3 ensure that b is
deducible whenever a−1 ∗ b is.

4) Properties of Normal Dependency Graphs: We prove
two properties of normal dependency graphs that are crucial
for our search algorithm. The first property states that every
K↓e(t)-premise is deduced using a chain of deconstruction
rules from a received message. We use here the extended
set of deconstruction rules NDdestr that consists of the
deconstruction and exponentiation rules from Figure 9. To
define the second property, we partition the construction
rules into the implicit construction rules NDc-impl consisting
of the pair, inversion, and multiplication construction rules
and the explicit construction rules NDc-expl consisting of the
remaining construction rules and the COERCE rule. Since
all messages that are products, pairs, and inverses must be
constructed with implicit construction rules, we can show
that if a K↑e(t) conclusion was deduced, then every message
in inp(t) must have been previously deduced.

Let dg = (I,D) be a normal dependency graph for P . Its
deconstruction chain relation⇢dg is the smallest relation such
that c⇢dg p if c is a K↓-conclusion in dg and (a) c↣ p ∈D
or (b) there is a premise (j, u) such that c↣ (j, u) ∈D and
(j,1) ⇢dg p. Our search algorithm exploits the following
lemma to reason about the possible origins of K↓-premises.

Lemma 2 (Deconstruction Chain). For every premise p with

fact K↓e(t) of dg, there is a node i in dg such that Ii ∈
ginsts(IRECV) and (i,1) ⇢dg p.

The implicit construction dependency relation ↠dg of dg
is the smallest relation such that c↠dg p if there is a premise
(j, u) with Ij ∈ ginsts(NDc-impl) such that (a) c↣(j, u) ∈D
and (j,1)↣p ∈D or (b) c↠dg (j, u) and (j,1)↣p ∈D. Our
algorithm uses the following lemma to keep the construction
of pairs, inverses, and products implicit in the search.

Lemma 3 (Implicit Construction). For every premise p in
dg with fact K↑e(t) and every message m ∈AC inp(t) with
m ≠AC t, there is a conclusion (i,1) in dg with fact K↑e′(m′)
such that Ii ∈ ginsts(NDc-expl), m′ =AC m, and (i,1) ↠dg p.

Example 6. For the normal message deduction subgraph
dg in Figure 8b, (5,1) ⇢dg (9,1), (8,1) ⇢dg (9,1), and
(6,1) ⇢dg (7,1), but not (6,1) ⇢dg (9,1) because (8,2)
is not a K↓-premise. We have (9,1) ↠dg (11,1), but not
(10,1) ↠dg (11,1) because ↠dg requires at least one inner
implicit construction node.

VI. AUTOMATED PROTOCOL ANALYSIS

In this section, we give an algorithm for determining
whether P ⊧EDH

ϕ for a ∗-restricted protocol P and a
guarded trace property ϕ. Guarded trace properties are an
expressive subset of trace formulas. Our algorithm uses
constraint solving to perform a complete search for counter-
examples to P ⊧EDH

ϕ, i.e., it attempts a proof by contra-
diction. This problem is undecidable and our algorithm does



Trace formula reduction rules:

S≈ ∶ Γ ↝P ∥σ∈unifyAC (t1,t2)
(Γσ) if (t1 ≈ t2) ∈ Γ and t1 ≠AC t2

S≐ ∶ Γ ↝P Γ{i/j} if (i ≐ j) ∈ Γ and i ≠ j
S@ ∶ Γ ↝P ∥ri ∈⌈P ⌉DH∪{ISEND} ∥f ′∈acts(ri )(i ∶ ri , f ≈ f ′, Γ) if (f@i) ∈ Γ and (f@i) ∉AC as(Γ)

S� ∶ Γ ↝P � if � ∈ Γ

S¬,≈ ∶ Γ ↝P � if ¬(t ≈ t) ∈AC Γ

S¬,≐ ∶ Γ ↝P � if ¬(i ≐ i) ∈ Γ

S¬,@ ∶ Γ ↝P � if ¬(f@i) ∈ Γ and (f@i) ∈ as(Γ)
S¬,⋖ ∶ Γ ↝P (i ⋖ j, Γ) ∥ (Γ{i/j}) if ¬(j ⋖ i) ∈ Γ and neither i ⋖Γ j nor i = j
S∨ ∶ Γ ↝P (φ1, Γ) ∥ (φ2, Γ) if (φ1 ∨ φ2) ∈AC Γ and {φ1, φ2} ∩AC Γ = ∅
S∧ ∶ Γ ↝P (φ1, φ2, Γ) if (φ1 ∧ φ2) ∈AC Γ and not {φ1, φ2} ⊆AC Γ

S∃ ∶ Γ ↝P (φ{y/x}, Γ) if (∃x∶s. φ) ∈ Γ, φ{w/x} ∉AC Γ for every term w of sort s, and y∶s fresh

S∀ ∶ Γ ↝P (ψσ, Γ) if (∀x⃗.¬(f@i) ∨ ψ) ∈ Γ, dom(σ) = set(x⃗), (f@i)σ ∈AC as(Γ), and ψσ ∉AC Γ

Graph constraint reduction rules:

Ulbl ∶ Γ ↝P (ri ≈ ri ′, Γ) if {i ∶ ri , i ∶ ri ′} ⊆ Γ and ri ≠AC ri ′

DG11 ∶ Γ ↝P � if i ⋖Γ i

DG12 ∶ Γ ↝P (f ≈ f ′, Γ) if c↣ p ∈ Γ, (c, f) ∈ cs(Γ), (p, f ′) ∈ ps(Γ), and f ≠AC f ′

DG21 ∶ Γ ↝P (if u = v then Γ{i/j} else �) if {(i, v) ↣ p, (j, u) ↣ p} ⊆ Γ and i ≠ j
DG22,P ∶ Γ ↝P ∥ri ∈⌈P ⌉DH∪{ISEND,FRESH} ∥u∈idx(concs(ri ))(i ∶ ri , (i, u) ↣ p, Γ)

if p is an open f -premise in Γ, f is not a K↑- or K↓-fact, and i fresh

DG3 ∶ Γ ↝P (if u = v then Γ{i/j} else �) if {c↣ (i, v), c↣ (j, u)} ⊆ Γ, c linear in Γ, and i ≠ j,
DG4 ∶ Γ ↝P Γ{i/j} if {i ∶ −−[]→Fr(m), j ∶ −−[]→Fr(m)} ⊆AC Γ and i ≠ j
N1 ∶ Γ ↝P � if (i ∶ ri ) ∈ Γ and ri not ↓DH -normal

N5,6 ∶ Γ ↝P Γ{i/j} if {((i,1),Kde(t)), ((j,1),K
d′

e′ (t))} ⊆AC cs(Γ), i ≠ j, and

d = d′ or {i, j} ∩ {k ∣ ∃ri ∈ insts({PAIR↑, INV↑,COERCE}). (k ∶ ri ) ∈ Γ} = ∅

N6 ∶ Γ ↝P (i ⋖ j, Γ) if ((j, v),K↑e′(t)) ∈ ps(Γ), m ∈AC inp(t), ((i, u),K↓e(m)) ∈ cs(Γ), and not i ⋖Γ j

N7 ∶ Γ ↝P � if (i ∶ K↓exp(s1),K↑e(t1)−−[]→K↓noexp(s2 ˆ t2)) ∈ Γ, s2 is of sort pub, and inp(t2) ⊆ inp(t1)
Message deduction constraint reduction rules:

DG22,↑i ∶ Γ ↝P ∥
(l−[]→K↑e(t))∈NDc-expl (i ∶ (l−−[]→K↑e(t)), t ≈m, (i,1) ↠ p, Γ)

if p is an open implicit m-construction in Γ, m non-trivial, and i fresh

DG22,↑e ∶ Γ ↝P ∥ri ∈NDc-expl (i ∶ ri , (i,1) ↣ p, Γ)
if p is an open K↑e(m)-premise in Γ, {m} = inp(m), m non-trivial, and i fresh

DG22,↓ ∶ Γ ↝P (i ∶ Out(y)−−[]→K↓exp(y), (i,1) ⇢ p, Γ) if p is an open K↓e(m)-premise in Γ and y, i fresh

DG2⇢ ∶ (c⇢p,Γ) ↝P (c↣p,Γ) ∥ ∥ri ∈NDdestr (i ∶ ri , c↣(i,1), (i,1)⇢p, Γ)
if (c,K↓e(m)) ∈ cs(Γ), m ∉ Vmsg, and i fresh

We assume that the multiset rewriting rules in ⌈P ⌉DH , NDc-expl, and NDdestr are renamed apart from Γ. We write Γ{a/b} for
the substitution of all occurrences of b with a in Γ. We write Γ↝P Γ1 ∥ . . . ∥ Γn for Γ↝P {Γ1, . . . ,Γn}, which denotes an
n-fold case distinction. We overload notation and write � for the empty set of constraint systems.

Figure 10. Rules defining the constraint-reduction relation ↝P , explained in Sections VI-C and VI-D.



j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

j5 :
Fr(x)

K"(x)

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j6 :
Fr(x : fresh)

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

j7 :
Fr(x0) Fr(k0)

St(x0, k0) Out(enc(x0, k0)) Key(k0)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j9 :
Fr(k0 : fresh)

j8 :
Fr(x0 : fresh)

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j6 :
. . .

K#(enc(x, k0))

j7 :
Fr(x) Fr(k0)

St(x, k0) Out(enc(x, k0)) Key(k0)

j8 :
Fr(x : fresh)

j9 :
Fr(k0 : fresh)

j10 :
K#(enc(x, k0)) K"

e(k
0)

K#(x)

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j10 :
K#(enc(x, k)) K"

e(k)

K#(x)

j6 :
. . .

K#(enc(x, k))

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)
In(hx, xi) [K(hx, xi)]

j6 :
. . .

K#(enc(x0, k0))

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j6 :
Out(y)

K#(y)

) j2 = j6
) j1 = j5
) contradiction

) j2 = j8
) j1 = j7
) k = k0, j2 = j9

(solved
an

alogou
sly

to
1
.1

.2
.1

)

1.1.2.1.1.1.1 (in Figure 13)

case 1 case 1

ca
se

2

ca
se

2

1.1.2.1.1

1.1.2.1.1.1

1.1.1 1.1.2.1

1.1.2

1.1

1

Figure 11. Constraint systems constructed by our algorithm, as explained in Example 7, when verifying ∀x k i.Fin(x, k)@i⇒ ∃j.Rev(k)@j for the
protocol from Example 1. The large gray arrows denote constraint-reduction steps and “. . .” at either end of an edge refers to the fact at the other end. In
every constraint system, variables with the same name are of the same sort and variables that have no sort annotation are of sort msg.



not always terminate. Nevertheless, it often finds a counter-
example (an attack) or succeeds in unbounded verification.

In the following, we define guarded trace properties
and constraints. Afterwards we give our constraint-solving
algorithm and several examples.

A. Guarded Trace Properties

In the remainder of this section, let f range over facts
and i, j over temporal variables. A trace formula ϕ is in
negation normal form if it is built such that negation is only
applied to trace atoms and all other logical connectives are
∧, ∨, ∀, or ∃. Such a trace formula ϕ is a guarded trace
formula if all its quantifiers are of the form ∃x⃗.(f@i)∧ψ or
∀x⃗.¬(f@i) ∨ ψ for an action f@i, a guarded trace formula
ψ, and x ∈ vars(f@i) ∩ (Vmsg ∪ Vtemp) for every x ∈ x⃗. A
guarded trace formula ϕ is a guarded trace property if it is
closed and t ∈ V ∪ PN holds for all terms t occurring in ϕ.

Note that we restrict both universal and existential quan-
tification and, as a result, the set of guarded trace properties
is closed under negation. This, together with the support
for quantifier alternations and the explicit comparison of
timepoints, makes guarded trace properties well-suited for
specifying advanced security properties. In our case studies,
it was possible to automatically convert the specified security
properties, including the eCK model from Figure 4, to
guarded trace properties. The conversion first rewrites the
given formula to negation normal form and pushes quantifiers
inward. Then, it replaces each body ϕ of a universal quantifier
that is not a disjunction with ϕ ∨ �. The rewriting for
existential quantifiers is analogous.

All terms in a guarded trace property must be either
variables or public names. This is not a limitation in practice
since the terms required to express a security property can be
added to the actions of a protocol’s rewriting rules. Together
with the requirement of guarding all quantified variables,
this ensures that guarded trace properties are invariant under
↓DH -normalization of traces. Combined with Lemma 1, this
allows us to switch from verification in a multiset rewriting
semantics modulo EDH to verification in a dependency graph
semantics modulo AC .

Theorem 1. For every ∗-restricted protocol P and every
guarded trace property ϕ,

P ⊧EDH
ϕ iff {trace(dg) ∣ dg ∈ ndgraphs(P )} ⊧AC ϕ .

B. Syntax and Semantics of Constraints

In the remainder of this section, let ri range over multiset
rewriting rule instances, u and v over natural numbers, and
ϕ over guarded trace formulas. A graph constraint is either
a node i ∶ ri , an edge (i, u) ↣ (j, v), a deconstruction chain
(i, u) ⇢ (j, v), or an implicit construction (i, u) ↠ (j, v).
A constraint is a graph constraint or a guarded trace formula.

A structure is a tuple (dg, θ) of a dependency graph dg =
(I,D) and a valuation θ. We denote the application of the

homomorphic extension of θ to a rule instance ri by ri θ.
We define when the structure (dg, θ) satisfies a constraint γ,
written (dg, θ) ⊫ γ, as follows.

(dg, θ) ⊫ i ∶ ri iff θ(i) ∈ idx(I) and ri θ =AC Iθ(i)

(dg, θ) ⊫ (i, u)↣(j, v) iff (θ(i), u) ↣ (θ(j), v) ∈D
(dg, θ) ⊫ (i, u)⇢(j, v) iff (θ(i), u) ⇢dg (θ(j), v)
(dg, θ) ⊫ (i, u)↠(j, v) iff (θ(i), u) ↠dg (θ(j), v)
(dg, θ) ⊫ ϕ iff (trace(dg), θ) ⊧AC ϕ

A constraint system Γ is a finite set of constraints.
The structure (dg, θ) satisfies Γ, written (dg, θ) ⊫ Γ, if
(dg, θ) satisfies each constraint in Γ. We say that (dg, θ)
is a P -model of Γ, if dg is a normal dependency graph
for P and (dg, θ) ⊫ Γ. A P -solution of Γ is a normal
dependency graph dg for P such that there is a valuation θ
with (dg, θ) ⊫ Γ. Note that the free variables of a constraint
system are therefore existentially quantified.

C. Constraint-Solving Algorithm

Let P be a ∗-restricted protocol and ϕ a guarded trace
property. Exploiting Theorem 1, our algorithm searches for
a counter-example to P ⊧EDH

ϕ by trying to construct a P -
solution to the constraint system {ϕ̂}, where ϕ̂ is ¬ϕ rewritten
into negation normal form. Our algorithm is based on the
constraint-reduction relation ↝P between constraint systems
and sets of constraint systems. We use sets of constraint
systems to represent case distinctions.

Intuitively, ↝P refines constraint systems and our algo-
rithm works by refining the initial constraint system {ϕ̂} until
it either encounters a solved system or all systems contain
(trivially) contradictory constraints. In the following, we first
define ↝P and then state our algorithm. Afterwards, we
give examples that explain and illustrate both the constraint-
reduction rules defining ↝P and our algorithm.

The rules defining the constraint-reduction relation ↝P
are given in Figure 10. There are two types of constraint-
reduction rules: (1) simplification rules that remove contra-
dictory constraint systems or refine constraint systems by
simplifying constraints and (2) case distinction rules that
refine constraint systems by adding further constraints. The
design choices underlying our rules are motivated by their use
in our algorithm. It requires them to be sound and complete
and we must be able to extract a P -solution from every
solved constraint system, i.e., every system that is irreducible
with respect to ↝P . The rule names refer to the form of
guarded trace formulas that they solve or the property of
normal dependency graphs that they ensure. There are no
rules for ensuring the properties N2–4, as they are maintained
as invariants by our algorithm.

The formal definition of our constraint-reduction rules in
Figure 10 relies on the following additional conventions and
definitions. We extend the equality ≈ over terms to facts and
rule instances by interpreting the constructors for facts and



rule instances as free function symbols. We write PAIR↑ for
the construction rule for pairs and INV↑ for the construction
rule for inverses. Moreover, for a constraint system Γ, its
actions as(Γ), premises ps(Γ), and conclusions cs(Γ) are
defined as follows.

as(Γ) = {f@i ∣ ∃r a. (i ∶ l−−[ a ]→r) ∈ Γ ∧ f ∈ a}
ps(Γ) = {((i, u), lu) ∣ ∃r a. (i ∶ l−−[ a ]→r) ∈ Γ ∧ u ∈ idx(l)}
cs(Γ) = {((i, v), rv) ∣ ∃l a. (i ∶ l−−[ a ]→r) ∈ Γ ∧ v ∈ idx(r)}

A conclusion c is linear in Γ if there is a linear fact f such
that (c, f) ∈ cs(Γ). We say that p is an open f -premise
in Γ if (p, f) ∈ ps(Γ) and p has no incoming edges or
deconstruction chains in Γ. We say that p is an open implicit
m-construction in Γ if there is a premise (p,K↑e(t)) of Γ
with m ∈ inp(t) ∖ {t} and there is no implicit construction
c ↠ p in Γ that starts from a K↑e′(m)-conclusion. A term
m is trivial if m ∈ Vmsg ∪ Vpub ∪ PN ∪ {1}, where the term 1
denotes the unit in the group of exponents. The temporal
order of Γ is

(⋖Γ) = {(i, j) ∣ (i ⋖ j) ∈ Γ ∨ ∃u v. ((i, u) ↣ (j, v)) ∈ Γ

∨ ((i, u) ↠ (j, v)) ∈ Γ

∨ ((i, u) ⇢ (j, v)) ∈ Γ}+ .

We call K↑- and K↓-premises message deduction constraints.
We give our constraint-solving algorithm in Figure 12.

It uses a set of constraint systems as its state Ω. It starts
with the state {{ϕ̂}}. Afterwards, in lines 4–6, it repeatedly
applies constraint-reduction steps as long as the state is
non-empty and does not contain a solved constraint system.
To formalize the loop condition, we use solved(Ω) to
denote the set of solved constraint systems in Ω. For
automated protocol analysis, we use a heuristic (explained
in [18]) to make the choice in line 5. Upon termination
of the while-loop, the algorithm has either found a solved
constraint system (an attack) or it proved that {{ϕ̂}} has
no P -solution and therefore P ⊧EDH

ϕ holds. The following
two theorems justify the correctness of our algorithm.

Theorem 2. The constraint-reduction relation ↝P is sound
and complete; i.e., for every Γ ↝P {Γ1, . . . ,Γn}, the set
of P -solutions of Γ is equal to the union of the sets of
P -solutions of all Γi, with 1 ≤ i ≤ n.

Theorem 3. We can construct a P -solution from every solved
system in the state Ω of our constraint-solving algorithm.

The correctness of Theorem 3 relies on the properties of
solved constraint systems as well as invariants maintained
by our constraint-solving algorithm, as explained in [18].

D. Extended Examples

We now give two examples that illustrate our constraint-
reduction rules. Our emphasis is on the rules and their
application, rather than the heuristics used in our algorithm.

1: function SOLVE(P ⊧EDH
ϕ)

2: ϕ̂← ¬ϕ rewritten into negation normal form
3: Ω← {{ϕ̂}}
4: while Ω ≠ ∅ and solved(Ω) = ∅ do
5: choose Γ↝P {Γ1, . . . ,Γk} such that Γ ∈ Ω
6: Ω← (Ω ∖ {Γ}) ∪ {Γ1, . . . ,Γk}
7: if solved(Ω) ≠ ∅
8: then return “attack(s) found: ”, solved(Ω)
9: else return “verification successful”

Figure 12. Pseudocode of our constraint solving algorithm.

Example 7. Consider the protocol P from Example 1
and the formula ∀x k i. Fin(x, k)@i ⇒ ∃j. Rev(k)@j,
which can be rewritten to the guarded trace property
ϕ = ∀x k i. ¬(Fin(x, k)@i) ∨ (∃j. Rev(k)@j ∧ ¬(�)). We
explain how to use our constraint-reduction rules to show that
P ⊧EDH

ϕ, i.e., to show that {∃x k i. ψ} has no P -solutions,
for ψ = Fin(x, k)@i ∧ (∀j. ¬(Rev(k)@j) ∨ �).

By repeated application of the rules S∃ and S∧, we replace
the existentially quantified variables x, k, and i with fresh
free variables and split the conjunction in ψ. The resulting
constraint system is

{∃x k i. ψ, ∃k i. ψ, ∃i. ψ, ψ,
Fin(x, k)@i, ∀j. ¬(Rev(k)@j) ∨ �} .

Its P -solutions are the normal dependency graphs for P that
contain a node with a Fin(x, k) action, but no node with
a Rev(k) action. Note that the formulas ∃x k i. ψ, ∃k i. ψ,
∃i. ψ, and ψ are solved in the sense that no reduction rule
applies to them anymore.

The only rule applicable to the constraint system in the
above state is S@, which enumerates all rewriting rules that
could give rise to an action. We therefore apply S@ to the
Fin(x, k) action of node i and solve the introduced equalities
using S≈. There is only one resulting constraint system,
depicted in Figure 11 as System 1. Here we interpret a
constraint system as a partial, symbolic dependency graph
annotated with restrictions on its trace, stated as guarded
trace formulas. We do not depict the trace restriction
∀j. ¬(Rev(k)@j) ∨ �, as it is included in all constraint
systems. We also omit the exp tags of K-facts because the
protocol does not use exponentiation.

The large gray arrows in Figure 11 denote the constraint-
reduction steps performed. Multiple successors result from
case distinctions. Constraint systems with no successors are
contradictory for the reason given in the figure. In some cases,
we contract multiple reduction steps for ease of presentation.

System 1 has multiple open non-K-premises. We solve
these by repeatedly applying DG22,P until no more open
non-K-premises remain. Intuitively, rule DG22,P solves open
non-K-premises by enumerating all possible rewriting rules
that have a unifying conclusion. The unification is entailed by
the constraint (i, u) ↣ p and the rules DG12 and S≈, which
ensure the equality of facts connected by an edge. After
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solving all non-K-premises, the only resulting constraint
system is System 1.1.

There is only one remaining open premise in System 1.1:
K↑(⟨x,x⟩). It is solved using rule DG22,↑i, which exploits
Lemma 3 to search directly for the possible origin of the
required input component x∶fresh. This rule improves the
efficiency of our algorithm as it allows reasoning modulo
pairing, inversion, and multiplication. Note that the rules
DG22,↑e and DG22,↑i exclude solving K↑(x) premises where
x is a variable of sort msg or pub, as such facts can always
be constructed by the adversary. These rules may however
become applicable once x is instantiated with another term
in a later step. There are two multiset rewriting rules in ND
whose conclusions are possible origins of x∶fresh.

The case for the rule (Fr(x∶fresh)−−[]→K↑exp(x∶fresh)) is
shown in System 1.1.1. Note that FRESH instances must be
unique and linear facts have at most one outgoing edge. This
is ensured by the rules DG4 and DG3, which together with
the rule Ulbl give rise to the chain of implications depicted in
System 1.1.1. The contradiction follows because the rewriting
rule instances of nodes j1 and j5 are not unifiable.

The case for the COERCE rule is shown in System 1.1.2.
Note that solving K↓-premises by enumerating the rules
with unifying conclusions leads to non-termination, as the
K↓-premises of deconstruction rules are larger than their
conclusions. This justifies the existence of rule DG22,↓, which
solves the K↓(x)-premise by exploiting Lemma 2 to introduce
a deconstruction chain starting from an IRECV instance. Rule
DG22,P then solves the open premise Out(y) of j6, i.e., it
enumerates all protocol rules that send messages. There are
two such rules in protocol P .

System 1.1.2.1 shows the case for the first protocol rule,
which is renamed apart from System 1.1.2 since node j7

might be a different rewriting rule instance than node j1. The
deconstruction chain from j6 to j5 is refined by rule DG2⇢ .
This rule embodies the case distinction that a deconstruction
chain is either just an edge or an edge to an instance of
a rule from NDdestr and another chain starting from the
conclusion of this instance. We disallow refining chains
that start from a message variable, as this would lead to
non-termination. Constraint systems containing such a chain
are often pruned using rule N6, as explained in Example 8.
After using rule DG2⇢ to refine the deconstruction chain
in System 1.1.2.1 twice, we obtain System 1.1.2.1.1 where x
and x′ are identified and the deconstruction chain has been
replaced with the edges to and from the decryption j10.
This is the only way to refine this chain starting from
K↓(enc(x′, k′)), as all other deconstruction rules lead to cases
with edges between non-unifiable facts. Again the uniqueness
of FRESH instances leads to a chain of implications and
results in System 1.1.2.1.1.1.

The only remaining open premise in this system is
the K↑(k)-premise of the decryption j10. The constraint-
reduction steps required to solve this premise are similar to
the ones used to solve the K↑(x)-premise in System 1.1.
System 1.1.2.1.1.1.1 in Figure 13 is the only one of the
resulting constraint systems that is not trivially contradictory
due to the uniqueness of FRESH instances. In fact, this system
could be instantiated to a normal dependency graph, if it
were not for the trace restriction ∀j. ¬(Rev(k)@j) ∨ �.
Since System 1.1.2.1.1.1.1 contains node j13 with a Rev(k)
action, we can use S¬,@ and S� to derive a contradiction.
We first derive � by applying S¬,@ to the trace restriction
∀j. ¬(Rev(k)@j) ∨ �, instantiating j with j13. Then, we
apply rule S�. In general, we can always saturate constraint
systems under universally quantified guarded trace formulas.
This works because all trace formulas in a constraint system
are guarded and the number of trace formulas derivable from
a constraint system using just S¬,@ is finite.

System 1.1.2.2 is also contradictory, which we show in [18].
Thus, we terminate without finding an attack and, as our
search is complete, we therefore have a proof that P ⊧EDH

ϕ.

The above example provides intuition for all rules except
N1, N5,6, N6, and N7, which enforce normal-form message
deduction. We explain them in the following paragraphs.

Rule N1 ensures that all rule instances in node constraints
are in ↓DH -normal form, i.e., it allows us to prune constraint
systems containing DH -reducible terms. Intuitively, this rule
prevents inconsistent instantiations of variables occuring in
the variants of a multiset rewriting rule. Consider for example
the multiset rewriting rule In(x)−−[]→Out(fst(x)). The cor-
responding DH,AC -variants are In(x)−−[]→Out(fst(x)) and
In(⟨y, z⟩)−−[]→Out(y). The rule N1 allows pruning constraint
systems where a node is labeled with the first variant and x is
instantiated with a pair, as such constraint systems contradict
the implicit assumption of the first rule variant, i.e., fst(x)
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Figure 14. A contradictory constraint system where the adversary uses an
instance of the protocol rule In(⟨x, y, )⟩−−[]→Out(x) to forward to himself
the message x, which he deduced himself.

is not DH -reducible. Pruning constraint systems with DH -
reducible terms is crucial when reasoning about the variants
of DH exponentiations. Rule N7 provides further support for
reasoning about DH exponentatiations, as it prunes constraint
systems containing instances of deconstruction rules that
can be replaced by instances of the construction rule for
exponentiation.

Rule N5,6 ensures that each K↑- and K↓-fact is derived,
and therefore solved, at most once. Moreover, it ensures
that every K↑-premise deriving the same message as a K↓-
conclusion occurs after the K↓-conclusion. This is required
for Theorem 3 and allows pruning some constraint systems.

Rule N6 prunes constraint systems where the adversary
forwards a message via the protocol to himself. Such
constraint systems occur when unfolding a deconstruction
chain until it starts from a message variable whose content is
received from the adversary. This is best seen in an example.

Example 8. Consider solving the premise K↑(k∶fresh) in
the context of a protocol that contains the multiset rewriting
rule In(⟨x, y, )⟩−−[]→Out(x). One of the cases that we must
consider is captured by the constraint system depicted in
Figure 14. It states that the adversary might deduce k using
a deconstruction chain starting from the message x sent by
node j. Note that we suppress the exponentiation tags, as
they are irrelevant for this example. This constraint system
is contradictory because, in all its solutions, the adversary
must deduce K↑(x) before K↑(⟨x, y⟩), which implies that he
cannot deduce K↓(x) afterwards, as required by node i3. We
show that this constraint system is contradictory using rule
DG11 after we used rule N6 to derive i3 ⋖ i1.

VII. CASE STUDIES

We implemented our constraint-solving algorithm in a tool,
called the TAMARIN prover. It provides both a command-
line interface and a graphical user interface, which allows
to interactively inspect and construct attacks and proofs. We
evaluated our algorithm on numerous protocols. Table I lists
the results, run on a laptop with an Intel i7 Quad-Core
processor. The tool and all models are available at [19].

We modeled the Signed Diffie-Hellman (SIG-DH) protocol,
the STS protocol and two fixes [2], the UM [28], KEA+ [4],

Protocol Security Model Result Time [s]

1. DH2 [31] weakened eCK [31] proof 6.7
2. KAS1 [30] KI+KCI [31] proof 0.3
3. KAS2 [30] weakened eCK [31] proof 2.9
4. KAS2 [30] eCK attack 0.4
5. KEA+ [4] KI+KCI proof 0.5
6. KEA+ [4] KI+KCI+wPFS attack 0.6
7. NAXOS [1] eCK proof 5.2
8. NAXOS [1] eCK+PFS attack on PFS 4.8
9. SIG-DH PFS proof 0.4
10. SIG-DH eCK attack 0.6
11. STS-MAC [2] KI, reg-PK UKS-attack 2.7
12. STS-MAC-fix1 [2] KI, reg-PK (with PoP) proof 8.6
13. STS-MAC-fix2 [2] KI, reg-PK proof 1.9
14. TS1-2004 [22] KI UKS-attack 0.2
15. TS1-2008 [29] KI proof 0.2
16. TS2-2004 [22] KI+wPFS attack on wPFS 0.4
17. TS2-2008 [29] KI+wPFS proof 0.7
18. TS3-2004/08 [22], [29] KI+wPFS non-termination -
19. UM [28] wPFS proof 0.7
20. UM [28] PFS attack 0.4

Table I
RESULTS OF CASE STUDIES

and NAXOS [1] protocols, and the TS1, TS2, and TS3
protocols [22] and their updated versions [29]. We also
modeled NIST’s KAS1 and KAS2 protocols [30] and the
related DH2 protocol by Chatterjee et. al. [31]. For each
protocol, we formalized its intended and related security
models and analyzed them using TAMARIN. For example, to
verify Key Independence (KI) for STS, we model that the
adversary can reveal certain session keys. Additionally, the
adversary can register public keys for himself, even if those
keys have been previously registered for another identity. In
this example, we find the UKS attack reported in [2]. The
first fix from [2] requires a Proof-of-Possession (PoP) of
the private key for registering a public key. The second fix
includes the identities of the participants in the signatures.
We model and successfully verify both fixes. For NIST’s
KAS1 and KAS2 protocols [30], our analysis confirms both
the security proof and the informal statements made in [31].

Our results indicate that, in general, TAMARIN is effective
and efficient. For example, it requires 5.2 seconds to verify
NAXOS in the eCK model (see Figure 3).

In general, there are two sources of non-termination of our
algorithm. First, if the protocol contains loops (e.g., a rule like
A(x)−−[]→A(h(x))), then the reduction rule DG22,P can be
applied infinitely often during backwards search. Reasoning
about such protocols requires support for loop invariants, as
used in program verification. Second, if the protocol can serve
as a generic message deduction oracle, then our normal-form
conditions may fail to eliminate sufficiently many redundant
steps. This explains the non-termination for the TS3-2004/08
protocols. It remains future work to develop normal-form
conditions that improve reasoning about such protocols.

VIII. RELATED WORK

Corin et. al. [32] and Armando et. al. [33] use linear
temporal logics and constraint solving for security protocol



verification for a bounded number of sessions. Cheva-
lier et. al. [7] and Shmatikov [8] prove that secrecy is
decidable for a bounded number of sessions for DH theories
similar to ours. Meadows et. al. [34] and Kapur et. al. [35]
present unification algorithms for a DH theory similar to ours.
In [35], Kapur et. al. show the undecidability of unification
modulo a DH theory that also allows addition of exponents.

[12]–[14] support verification for an unbounded num-
ber of sessions, but do not consider inverses. Blanchet
et. al. [12] extend ProVerif [36] to handle the property that
(xˆy)ˆz ≃ (xˆz)ˆy. Goubault-Larrecq [13] accounts for this
property using a Horn-theory approach and resolution modulo
AC . Escobar et. al. [14] use Maude-NPAand equational
unification to analyze secrecy properties of DH protocols.
Since Maude-NPA supports user-specified equational theories,
the verification problem with respect to our DH theory can
be specified. It is however unclear if Maude-NPA can achieve
unbounded verification for such a theory. In the free term
algebra, Basin and Cremers [15] present models and tool
support for compromising adversaries, based on Scyther [37].

Küsters and Truderung [6] give a transformation that, given
a Horn theory modeling secrecy and simple authentication
properties modulo a DH theory with inverses, produces a
Horn theory in the free algebra, which they analyze using
ProVerif. Their reduction is similar to our reduction from
EDH to AC , but works only for Horn clauses with ground
exponents. As stated in [6], stronger security properties
often violate this restriction. Since our approach allows for
non-ground exponents, we can also find attacks where the
adversary sends products, e.g., a protocol that receives a
message x and leaks a secret if g ˆ (a ∗ b ∗ x−1) = g.

Lynch and Meadows [9] and Mödersheim [10] give
reductions for DH reasoning without inverses to reasoning
modulo a simpler equational theory for a restricted class of
protocols. Both require that all exponents used by a protocol
remain secret forever. This excludes modeling ephemeral
key reveals and thus verifying recent AKE protocols. Ngo
et. al. [11] propose a method for the automated construction
of computational proofs for a restricted class of DH-based
protocols.

IX. CONCLUSION

We gave a novel constraint-solving algorithm and demon-
strated its effectiveness in non-trivial case studies. Our algo-
rithm exploits a special representation of message deduction
that satisfies a “deconstruction chain” property, inspired by
the theory underlying Athena [38] and Scyther [37], [39].
This property is key for achieving unbounded verification.
It enables a backwards exploration of the interleavings of
protocol steps guided by the solving of message deduction
constraints. We constructed this representation by imposing
normal-form conditions on the use of the (finite) variants
of the message deduction rules. This construction and our

algorithm should also work for other theories with the finite
variant property, e.g., theories for XOR and blind-signatures.

Although we were motivated by the verification of AKE
protocols, neither our protocol model nor our constraint-
solving algorithm are tailored to them. We expect both our
model and algorithm to be applicable to a wide range of
security protocol verification problems. Due to our multiset-
rewriting model, our approach is especially promising for
verifying protocols that exploit internal state, which are often
hard to analyze using the Horn-theory approach. We plan
to investigate such stateful protocols in future work together
with support for loop invariants.

REFERENCES

[1] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security
of authenticated key exchange,” in Provable Security, ser.
LNCS, vol. 4784. Springer, 2007, pp. 1–16.

[2] S. Blake-Wilson and A. Menezes, “Unknown Key-Share At-
tacks on the Station-to-Station (STS) Protocol,” in Proceedings
of the 2nd International Workshop on Practice and Theory in
Public Key Cryptography. Springer, 1999, pp. 154–170.

[3] C. Cremers, “Session-StateReveal is stronger than eCK’s
EphemeralKeyReveal: Using automatic analysis to attack
the NAXOS protocol,” International Journal of Applied
Cryptography (IJACT), vol. 2, pp. 83–99, 2010.

[4] K. Lauter and A. Mityagin, “Security analysis of KEA
authenticated key exchange protocol,” in PKC 2006, ser. LNCS,
vol. 3958. Springer, 2006, pp. 378–394.

[5] M. Just and S. Vaudenay, “Authenticated multi-party key
agreement,” in ASIACRYPT 1996, ser. LNCS, vol. 1163.
Springer, 1996, pp. 36–49.
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