
Degrees of Security: Protocol Guarantees
in the Face of Compromising Adversaries

David Basin and Cas Cremers�

Department of Computer Science, ETH Zurich

Abstract. We present a symbolic framework, based on a modular op-
erational semantics, for formalizing different notions of compromise rel-
evant for the analysis of cryptographic protocols. The framework’s rules
can be combined in different ways to specify different adversary capa-
bilities, capturing different practically-relevant notions of key and state
compromise. We have extended an existing security-protocol analysis
tool, Scyther, with our adversary models. This is the first tool that
systematically supports notions such as weak perfect forward secrecy,
key compromise impersonation, and adversaries capable of state-reveal
queries. We also introduce the concept of a protocol-security hierarchy,
which classifies the relative strength of protocols against different forms
of compromise. In case studies, we use Scyther to automatically con-
struct protocol-security hierarchies that refine and correct relationships
between protocols previously reported in the cryptographic literature.

1 Introduction

Compromise is a fact of life! Keys are leaked or broken. Memory and disks may be
read or subject to side-channel attacks. Hardware protection may fail. Security-
protocol designers are well aware of this and many protocols are designed to
work in the face of various forms of corruption. For example, Diffie-Hellman key
agreement, which uses digital signatures to authenticate the exchanged half-keys,
provides perfect-forward secrecy [1,2]: the resulting session key remains secret
even when the long-term signature keys are later compromised by an adversary.

In this paper, we survey and extend recent results of ours [3] on a symbolic
framework for modeling and reasoning about security protocols in the presence
of adversaries with a wide range of compromise capabilities. Our framework
is inspired by the models developed in the computational setting, e. g. [4–8],
where principals may be selectively corrupted during protocol execution. We
reinterpret these computational models in a uniform way, build tool support for
analyzing protocols with respect to these models, and gain new insights on the
relationships between different models and protocols.

Our starting point is an operational semantics for security protocols. We pa-
rameterize this semantics by a set of rules that formalize adversarial capabilities.

� This work was supported by ETH Research Grant ETH-30 09-3 and the Hasler
Foundation, ManCom, Grant 2071.

These rules capture three dimensions of compromise: whose data is compromised,
which kind of data it is, and when the compromise occurs. These dimensions
are fundamental and different rule combinations formalize symbolic analogs of
different practically-relevant notions of key and state compromise from the com-
putational setting. The operational semantics gives rise, in the standard way, to
a notion of correctness with respect to state and trace-based security properties.

Symbolic and computational approaches have addressed the problem of for-
malizing adversary compromise to different degrees. Most symbolic formalisms
are based on the Dolev-Yao model and offer only a limited view of compromise:
either principals are honest from the start and always keep their secrets to them-
selves or they are completely malicious and always under adversarial control. In
contrast, numerous computational models have been proposed that formalize dif-
ferent notions of adversary compromise in the setting of key-exchange protocols,
e.g., the models of Canetti and Krawczyk [4,9], Shoup [6], Bellare et al. [10–12],
Katz and Yung [13], LaMacchia et al. [5], and Bresson and Manulis [7], to name
but a few. These models are usually incomparable due to (often minor) differ-
ences in their adversarial notions, the execution models, and security property
specifics. Moreover, they are generally presented in a monolithic way, where all
parts are intertwined and it is difficult to separate these notions.

Our framework has a number of advantages over alternative approaches, both
symbolic and computational. First, it cleanly separates the basic operational se-
mantics of protocols, the adversary rules, and the security properties. This makes
it simple to tailor a model to the scenario at hand by selecting appropriate rules.
For example, we can reason about the security guarantees provided when cryp-
tographic protocol implementations mix the use of cryptographic co-processors
for the secure storage of long-term secrets with the computation of intermediate
results in less-secure main memory for efficiency reasons. Moreover, as we will
see, it is easy to define new security properties in a modular way.

Second, our framework directly lends itself to protocol analysis and we have
extended the Scyther tool [14] to support our framework. This is the first tool
that systematically supports notions such as weak perfect forward secrecy, key
compromise impersonation, and adversaries that can reveal agents’ local state.

Finally, we introduce the concept of a protocol-security hierarchy, in which
protocols are classified by their relative strength against different forms of adver-
sary compromise. Protocol-security hierarchies can be automatically constructed
by Scyther. As case studies, we construct protocol-security hierarchies that re-
fine and correct relationships reported in the cryptographic literature. This shows
that symbolic methods can be effectively used for analyses that were previously
possible only using a manual computational analysis.

Organization. We present our framework in Section 2. In Section 3, we use
it to construct protocol-security hierarchies. Afterwards, in Section 4, we prove
general results relating models and properties, which aid the construction of such
hierarchies. Finally, we draw conclusions in Section 5.

2 Compromising Adversary Model

We define an operational semantics that is modular with respect to the adver-
sary’s capabilities. Our framework is compatible with the majority of existing
semantics for security protocols, including trace and strand-space semantics. We
have kept our execution model minimal to focus on the adversary rules. However,
it would be straightforward to incorporate a more elaborate execution model,
e. g., with control-flow commands.

Notational preliminaries.
Let f be a function. We write dom(f) and ran(f) to denote f ’s domain

and range. We write f [b ← � a] to denote f ’s update, i. e., the function f
� where

f
�(x) = b when x = a and f

�(x) = f(x) otherwise. We write f : X �→ Y to
denote a partial function from X to Y . For any set S, P(S) denotes the power
set of S and S

∗ denotes the set of finite sequences of elements from S. We write
�s0, . . . , sn� to denote the sequence of elements s0 to sn, and we omit brackets
when no confusion can result. For s a sequence of length |s| and i < |s|, si
denotes the i-th element. We write sˆs� for the concatenation of the sequences s
and s

�. Abusing set notation, we write e ∈ s iff ∃i.si = e. We write union(s) for�
e∈s

e. We define last(��) = ∅ and last(sˆ�e�) = e.
We write [t0, . . . , tn / x0, . . . , xn] ∈ Sub to denote the substitution of ti for

xi, for 0 ≤ i ≤ n. We extend the functions dom and ran to substitutions. We
write σ ∪ σ

� to denote the union of two substitutions, which is defined when
dom(σ) ∩ dom(σ�) = ∅, and write σ(t) for the application of the substitution σ

to t. Finally, for R a binary relation, R∗ denotes its reflexive transitive closure.

2.1 Terms and events

We assume given the infinite sets Agent , Role, Fresh, Var , Func, and TID of
agent names, roles, freshly generated terms (nonces, session keys, coin flips, etc.),
variables, function names, and thread identifiers. We assume that TID contains
two distinguished thread identifiers, Test and tidA. These identifiers single out
a distinguished “point of view” thread of an arbitrary agent and an adversary
thread, respectively.

To bind local terms, such as freshly generated terms or local variables, to a
protocol role instance (thread), we write T �tid. This denotes that the term T is
local to the protocol role instance identified by tid.

Definition 1. Terms

Term ::=Agent | Role | Fresh | Var | Fresh�TID | Var�TID

| (Term,Term) | pk(Term) | sk(Term) | k(Term,Term)

| {|Term |}aTerm | {|Term |}sTerm | Func(Term∗)

For each X,Y ∈ Agent , sk(X) denotes the long-term private key, pk(X) denotes
the long-term public key, and k(X,Y) denotes the long-term symmetric key
shared between X and Y . Moreover, {| t1 |}at2 denotes the asymmetric encryption

(for public keys) or the digital signature (for signing keys) of the term t1 with
the key t2, and {| t1 |}st2 denotes symmetric encryption. The set Func is used to
model other cryptographic functions, such as hash functions. Freshly generated
terms and variables are assumed to be local to a thread (an instance of a role).

Depending on the protocol analyzed, we assume that symmetric or asymmet-
ric long-term keys have been distributed prior to protocol execution. We assume
the existence of an inverse function on terms, where t

−1 denotes the inverse key
of t. We have that pk(X)−1 = sk(X) and sk(X)−1 = pk(X) for all X ∈ Agent ,
and t

−1 = t for all other terms t.
We define a binary relation �, where M � t denotes that the term t can be

inferred from the set of terms M . Let t0, . . . , tn ∈ Term and let f ∈ Func. We
define � as the smallest relation satisfying:

t ∈ M ⇒ M � t M � t1 ∧M � t2 ⇔ M � (t1, t2)

M � {| t1 |}st2 ∧M � t2 ⇒ M � t1 M � t1 ∧M � t2 ⇒ M � {| t1 |}st2
M � {| t1 |}at2 ∧M � (t2)

−1 ⇒ M � t1 M � t1 ∧M � t2 ⇒ M � {| t1 |}at2�

0≤i≤n

M � ti ⇒ M � f(t0, . . . , tn)

Subterms t of a term t
�, written t � t

�, are defined as the syntactic subterms of
t
�, e. g., t1 � {| t1 |}st2 and t2 � {| t1 |}st2 . We write FV (t) for the free variables of
t, where FV (t) = {t� | t� � t} ∩

�
Var ∪ {v�tid | v ∈ Var ∧ tid ∈ TID}

�
.

Definition 2. Events

AgentEvent ::= create(Role,Agent) | send(Term) | recv(Term)

| generate(P(Fresh)) | state(P(Term)) | sessionkeys(P(Term))

AdversaryEvent ::= LKR(Agent) | SKR(TID) | SR(TID) | RNR(TID)

Event ::= AgentEvent | AdversaryEvent

We explain the interpretation of the agent and adversary events shortly. Here
we simply note that the first three agent events are standard: starting a thread,
sending a message, and receiving a message. The message in the send and receive
events does not include explicit sender or recipient fields although, if desired, they
can be given as subterms of the message. The last three agent events tag state
information, which can possibly be compromised by the adversary. The four
adversary events specify which information the adversary compromises. These
events can occur any time during protocol execution and correspond to different
kinds of adversary queries from computational models. All adversary events are
executed in the single adversary thread tidA.

2.2 Protocols and threads

A protocol is a partial function from role names to event sequences, i. e., Protocol :
Role �→ AgentEvent∗. We require that no thread identifiers occur as subterms
of events in a protocol definition.

Example 1 (Simple protocol). Let {Init,Resp} ⊆ Role, key ∈ Fresh, and x ∈
Var . We define the simple protocol SP as follows.

SP(Init) = �generate({key}), state({key, {|Resp, key |}ask(Init)}),
send(Init,Resp, {| {|Resp, key |}ask(Init) |}apk(Resp)), sessionkeys({key})�

SP(Resp) = �recv(Init,Resp, {| {|Resp, x |}ask(Init) |}apk(Resp)),

state({x, {|Resp, x |}ask(Init)}), sessionkeys({x})�
Here, the initiator generates a key and sends it (together with the responder
name) signed and encrypted, along with the initiator and responder names. The
recipient expects to receive a message of this form. The additional events mark
session keys and state information. The state information is implementation-
dependent and marks which parts of the state are stored at a lower protection
level than the long-term private keys. The state information in SP corresponds
to, e. g., implementations that use a hardware security module for encryption
and signing and perform all other computations in ordinary memory.

Protocols are executed by agents who execute roles, thereby instantiating
role names with agent names. Agents may execute each role multiple times.
Each instance of a role is called a thread. We distinguish between the fresh terms
and variables of each thread by assigning them unique names, using the function
localize : TID → Sub, defined as localize(tid) =

�
cv∈Fresh∪Var [cv�tid/ cv]. Using

localize, we define a function thread : (AgentEvent∗×TID×Sub) → AgentEvent∗

that yields the sequence of agent events that may occur in a thread.

Definition 3 (Thread). Let l be a sequence of events, tid ∈ TID, and let σ be
a substitution. Then thread(l, tid,σ) = σ(localize(tid)(l)).

Example 2. Let {A,B} ⊆ Agent . For a thread t1 ∈ TID performing the Init role
from Example 1, we have localize(t1)(key) = key�t1 and

thread(SP(Init), t1, [A,B / Init,Resp]) =

�generate({key�t1}), state({key�t1, {|B, key�t1 |}ask(A)}),
send(A,B, {| {|B, key�t1 |}ask(A) |}apk(B)), sessionkeys({key�t1})� .

Test thread. When verifying security properties, we will focus on a particular
thread. In the computational setting, this is the thread where the adversary
performs a so-called test query. In the same spirit, we call the thread under
consideration the test thread, with the corresponding thread identifier Test . For
the test thread, the substitution of role names by agent names, and all free
variables by terms, is given by σTest and the role is given by RTest . For example,
if the test thread is performed by Alice in the role of the initiator, trying to talk
to Bob, we have that RTest = Init and σTest = [Alice,Bob / Init,Resp].

2.3 Execution model

We define the set Trace as (TID × Event)∗, representing possible execution
histories. The state of our system is a four-tuple (tr, IK , th,σTest) ∈ Trace ×

P(Term)× (TID �→ Event∗)×Sub, whose components are (1) a trace tr, (2) the
adversary’s knowledge IK , (3) a partial function th mapping thread identifiers
of initiated threads to sequences of events, and (4) the role to agent and variable
assignments of the test thread. We include the trace as part of the state to
facilitate defining the partner function later.

Definition 4 (TestSubP). Given a protocol P , we define the set of test substi-
tutions TestSubP as the set of ground substitutions σTest such that dom(σTest) =
dom(P) ∪ {v�Test | v ∈ Var} and ∀r ∈ dom(P). σTest(r) ∈ Agent.

For P a protocol, the set of initial system states IS (P) is defined as

IS (P) =
�

σTest∈TestSubP

�
(��,Agent ∪ {pk(a) | a ∈ Agent}, ∅,σTest)

�
.

In contrast to Dolev-Yao models, the initial adversary knowledge does not in-
clude any long-term secret keys. The adversary may learn these from long-term
key reveal (LKR) events.

The semantics of a protocol P ∈ Protocol is defined by a transition system
that combines the execution-model rules from Fig. 1 with a set of adversary rules
from Fig. 2. We first present the execution-model rules.

The create rule starts a new instance of a protocol role R (a thread). A fresh
thread identifier tid is assigned to the thread, thereby distinguishing it from
existing threads, the adversary thread, and the test thread. The rule takes the
protocol P as a parameter. The role names of P , which can occur in events
associated with the role, are replaced by agent names by the substitution σ.
Similarly, the createTest rule starts the test thread. However, instead of choosing
an arbitrary role, it takes an additional parameter RTest , which represents the
test role and will be instantiated in the definition of the transition relation in
Def. 7. Additionally, instead of choosing an arbitrary σ, the test substitution
σTest is used.

The send rule sends a message m to the network. In contrast, the receive rule
accepts messages from the network that match the pattern pt, where pt is a term
that may contain free variables. The resulting substitution σ is applied to the
remaining protocol steps l.

The last three rules support our adversary rules, given shortly. The generate
rule marks the fresh terms that have been generated,1 the state rule marks the
current local state, and the sessionkeys rule marks a set of terms as session keys.

Auxiliary functions. We define the long-term secret keys of an agent a as

LongTermKeys(a) = {sk(a)} ∪
�

b∈Agent

{k(a, b), k(b, a)} .

1 Note that this rule need not ensure that fresh terms are unique. The function thread
maps freshly generated terms c to c�tid in the thread tid, ensuring uniqueness.

R ∈ dom(P) dom(σ) = Role ran(σ) ⊆ Agent tid �∈ (dom(th) ∪ {tidA,Test})
(tr, IK , th,σTest) −→ (trˆ�(tid, create(R,σ(R)))�, IK , th[thread(P (R), tid,σ) ←� tid],σTest)

[create]

a = σTest(RTest) Test �∈ dom(th)

(tr, IK , th,σTest) −→ (trˆ�(Test , create(RTest , a))�, IK , th[thread(P (RTest),Test ,σTest) ← � Test],σTest)
[createTest]

th(tid) = �send(m)�ˆl
(tr, IK , th,σTest) −→ (trˆ�(tid, send(m))�, IK ∪ {m}, th[l ← � tid],σTest)

[send]

th(tid) = �recv(pt)�ˆl IK � σ(pt) dom(σ) = FV (pt)

(tr, IK , th,σTest) −→ (trˆ�(tid, recv(σ(pt)))�, IK , th[σ(l) ← � tid],σTest)
[recv]

th(tid) = �generate(M)�ˆl
(tr, IK , th,σTest) −→ (trˆ�(tid, generate(M))�, IK , th[l ←� tid],σTest)

[generate]

th(tid) = �state(M)�ˆl
(tr, IK , th,σTest) −→ (trˆ�(tid, state(M))�, IK , th[l ←� tid],σTest)

[state]

th(tid) = �sessionkeys(M)�ˆl
(tr, IK , th,σTest) −→ (trˆ�(tid, sessionkeys(M))�, IK , th[l ←� tid],σTest)

[sessionkeys]

Fig. 1. Execution-model rules

For traces, we define an operator ↓ that projects traces on events belonging to
a particular thread identifier. For all tid, tid�, and tr, we define �� ↓ tid = �� and

(�(tid�, e)�ˆtr) ↓ tid =

�
�e�ˆ(tr ↓ tid) if tid = tid

�, and

tr ↓ tid otherwise.

Similarly, for event sequences, the operator � selects the contents of events of a
particular type. For all evtype ∈ {create, send, recv, generate, state, sessionkeys},
we define �� � evtype = �� and

(�e�ˆl) � evtype =
�
�m�ˆ(l � evtype) if e = evtype(m), and

l � evtype otherwise.

During protocol execution, the test thread may intentionally share some of
its short-term secrets with other threads, such as a session key. Hence some ad-
versary rules require distinguishing between the intended partner threads and
other threads. There exist many notions of partnering in the literature. In gen-
eral, we use partnering based on matching histories for protocols with two roles,
as defined below.

Definition 5 (Matching histories). For sequences of events l and l
�, we de-

fine MH(l, l�) ≡
�
l � recv = l

� � send) ∧ (l � send = l
� � recv

�
.

Our partnering definition is parameterized over the protocol P and the test role
RTest . These parameters are later instantiated in the transition-system defini-
tion.

Definition 6 (Partnering). Let R be the non-test role, i. e., R ∈ dom(P)
and R �= RTest . For tr a trace, Partner(tr,σTest) =

�
tid

�� tid �= Test ∧�
∃a.create(R, a) ∈ tr ↓ tid

�
∧ ∃l . MH(σTest(P (RTest)), (tr ↓ tid)ˆl)

�
.

A thread tid is a partner iff (1) tid is not Test , (2) tid performs the role different
from Test ’s role, and (3) tid’s history matches the Test thread (for l = ��) or
the thread may be completed to a matching one (for l �= ��).

2.4 Adversary-compromise rules

We define the adversary-compromise rules in Fig. 2. They factor the security
definitions from the cryptographic protocol literature along three dimensions of
adversarial compromise: which kind of data is compromised, whose data it is,
and when the compromise occurs.

Compromise of long-term keys. The first four rules model the compromise of an
agent a’s long-term keys, represented by the long-term key reveal event LKR(a).
In traditional Dolev-Yao models, this event occurs implicitly for dishonest agents
before the honest agents start their threads.

The LKRothers rule formalizes the adversary capability used in the symbolic
analysis of security protocols since Lowe’s Needham-Schroeder attack [15]: the
adversary can learn the long-term keys of any agent a that is not an intended
partner of the test thread. Hence, if the test thread is performed by Alice, com-
municating with Bob, the adversary can learn, e. g., Charlie’s long-term key.

The LKRactor rule allows the adversary to learn the long-term key of the agent
executing the test thread (also called the actor). The intuition is that a protocol
may still function as long as the long-term keys of the other partners are not
revealed. This rule allows the adversary to perform so-called Key Compromise
Impersonation attacks [8]. The rule’s second premise is required because our
model allows agents to communicate with themselves.

The LKRafter and LKRaftercorrect rules restrict when the compromise may oc-
cur. In particular, they allow the compromise of long-term keys only after the
test thread has finished, captured by the premise th(Test) = ��. This is the
sole premise of LKRafter. If a protocol satisfies secrecy properties with respect
to an adversary that can use LKRafter, it is said to satisfy Perfect Forward Se-
crecy (PFS) [1,2]. LKRaftercorrect has the additional premise that a finished partner
thread must exist for the test thread. This condition stems from [9] and excludes
the adversary from both inserting fake messages during protocol execution and
learning the key of the involved agents later. If a protocol satisfies secrecy prop-
erties with respect to an adversary that can use LKRaftercorrect, it is said to satisfy
weak Perfect Forward Secrecy (wPFS). This property is motivated by a class of
protocols given in [9] whose members fail to satisfy PFS, although some satisfy
this weaker property.

Compromise of short-term data. The three remaining adversary rules correspond
to the compromise of short-term data, that is, data local to a specific thread.
Whereas we assumed a long-term key compromise reveals all long-term keys of
an agent, we differentiate here between the different kinds of local data. Because
we assume that local data does not exist before or after a session, we can ignore
the temporal dimension. We differentiate between three kinds of local data:
randomness, session keys, and other local data such as the results of intermediate

a �∈ {σTest(R) | R ∈ dom(P)}
(tr, IK , th,σTest) −→ (trˆ�(tidA, LKR(a))�, IK ∪ LongTermKeys(a), th,σTest)

[LKRothers]

a = σTest(RTest) a �∈ {σTest(R) | R ∈ dom(P) \ {RTest}}
(tr, IK , th,σTest) −→ (trˆ�(tidA, LKR(a))�, IK ∪ LongTermKeys(a), th,σTest)

[LKRactor]

th(Test) = ��
(tr, IK , th,σTest) −→ (trˆ�(tidA, LKR(a))�, IK ∪ LongTermKeys(a), th,σTest)

[LKRafter]

th(Test) = �� tid ∈ Partner(tr,σTest) th(tid) = ��
(tr, IK , th,σTest) −→ (trˆ�(tidA, LKR(a))�, IK ∪ LongTermKeys(a), th,σTest)

[LKRaftercorrect]

tid �= Test tid �∈ Partner(tr,σTest)

(tr, IK , th,σTest) −→ (trˆ�(tidA, SKR(tid))�, IK ∪ union((tr ↓ tid) � sessionkeys), th,σTest)
[SKR]

tid �= Test tid �∈ Partner(tr,σTest) th(tid) �= ��
(tr, IK , th,σTest) −→ (trˆ�(tidA, SR(tid))�, IK ∪ last((tr ↓ tid) � state), th,σTest)

[SR]

(tr, IK , th,σTest) −→ (trˆ�(tidA,RNR(tid))�, IK ∪ union((tr ↓ tid) � generate), th,σTest)
[RNR]

Fig. 2. Adversary-compromise rules

computations. The notion that the adversary may learn the randomness used
in a protocol stems from [5]. Considering adversaries that can reveal session
keys, e. g., by cryptanalysis, is found in many works, such as [12]. An adversary
capable of revealing the local state was described in [4].

In our adversary-compromise models, the session-key reveal event SKR(tid)
and state reveal event SR(tid) indicate that the adversary gains access to the
session key or, respectively, the local state of the thread tid. These are marked
respectively by the sessionkeys and state events.

The contents of the state change over time and are erased when the thread
ends. This is reflected in the SR rule by the last state marker for the state
contents and the third premise requiring that the thread tid has not ended. The
random number reveal event RNR(tid) indicates that the adversary learns the
random numbers generated in the thread tid.

The rules SKR and SR allow for the compromise of session keys and the
contents of a thread’s local state. Their premise is that the compromised thread
is not a partner thread. In contrast, the premise of the RNR rule allows for
the compromise of all threads, including the partner threads. This rule stems
from [5], where it is shown that it is possible to construct protocols that are
correct in the presence of an adversary capable of RNR.

For protocols that establish a session key, we assume the session key is shared
by all partners and should be secret: revealing it trivially violates the protocols’
security. Hence the rules disallow the compromise of session keys of the test or
partner threads. Similarly, our basic rule set does not contain a rule for the com-
promise of other local data of the partners. Including such a rule is straightfor-
ward. However it is unclear whether any protocol would be correct with respect
to such an adversary.

We call each subset of the set of adversary rules from Fig. 2 an adversary-
compromise model.

2.5 Transition relation and security properties

Given a protocol and an adversary-compromise model, we define the possible
protocol behaviors as a set of reachable states.

Definition 7 (Transition relation and reachable states). Let P be a pro-
tocol, Adv an adversary-compromise model, and RTest a role. We define a tran-
sition relation →P,Adv ,RTest from the execution-model rules from Fig. 1 and the
rules in Adv. The variables P , Adv, and RTest in the adversary rules are in-
stantiated by the corresponding parameters of the transition relation. For states
s and s

�, s →P,Adv ,RTest s
� iff there exists a rule in either Adv or the execution-

model rules with the premises Q1(s), . . . , Qn(s) and the conclusion s → s
� such

that all of the premises hold. We define the set of reachable states RS as

RS(P,Adv , RTest) =
�
s
�� ∃s0. s0 ∈ IS (P) ∧ s0 →∗

P,Adv ,RTest
s
�
.

We now provide two examples of security property definitions. We give a
symbolic definition of session-key secrecy which, when combined with different
adversary models, gives rise to different notions of secrecy from the literature. We
also define aliveness, which is one of the many forms of authentication [16,17].
Other security properties, such as secrecy of general terms, symbolic indistin-
guishability, or other variants of authentication, can be defined analogously.

Definition 8 (Session-key secrecy). Let (tr, IK , th,σTest) be a state. We de-
fine the secrecy of the session keys in (tr, IK , th,σTest) as

th(Test) = �� ⇒ ∀k ∈ union((tr ↓ Test) � sessionkeys). IK � k .

Definition 9 (Aliveness for two-party protocols). Let (tr, IK , th,σTest) be
a state. We say that (tr, IK , th,σTest) satisfies aliveness if and only if

th(Test) = �� ⇒ ∃RTest , R, tid, a. (Test , create(RTest , a)) ∈ tr

∧R �= RTest ∧ (tid, create(R,σTest(R))) ∈ tr.

We denote the set of all state properties by Φ. For all protocols P , adversary
models Adv , and state properties φ ∈ Φ, we write sat(P,Adv ,φ) iff ∀R. ∀s. s ∈
RS(P,Adv , R) ⇒ φ(s). In the context of a state property φ, we say a protocol is
resilient against an adversary capability AC if and only if sat(P, {AC},φ).

Finally, we define a partial order ≤A on adversary-compromise models based
on inclusion of reachable states. For all adversary models Adv and Adv �:

Adv ≤A Adv � ≡ ∀P,R.RS(P,Adv , R) ⊆ RS(P,Adv �
, R).

We write Adv =A Adv � if and only if Adv ≤A Adv � and Adv � ≤A Adv .

3 Protocol-security hierarchies

We introduce the notion of a protocol-security hierarchy. Such a hierarchy orders
sets of security protocols with respect to the adversary models in which they
satisfy their security properties. Protocol-security hierarchies can be used to
select or design protocols based on implementation requirements and the worst-
case expectations for adversaries in the application domain.

Because each combination of adversary rules from Figure 2 represents an
adversary model, determining for which models a protocol satisfies its properties
involves analyzing the protocol with respect to 27 = 128 models. This is infeasible
to do by hand and we therefore aim to use automatic analysis methods.

Automated analysis methods have the limitation that, in our models, even
simple properties such as secrecy are undecidable. Fortunately, there exist semi-
decision procedures that are successful in practice in establishing the existence
of attacks. Moreover, some of these procedures can also successfully verify some
protocols and properties. When analyzing the security properties of protocols
with respect to an adversary model, we deal with undecidability by allowing the
outcome of the analysis to be undefined, which we denote by ⊥. The two other
possible outcomes are F (falsified) or V (verified).

Definition 10 (Recursive approximation of sat). We say that a function
f ∈ Protocol ×A× Φ → {F,⊥, V } recursively approximates sat if and only if f
is recursive and for all protocols P , adversary models Adv, and state properties
φ, we have f(P,Adv ,φ) �=⊥⇒

�
f(P,Adv ,φ) = V ⇔ sat(P,Adv ,φ)

�
.

Given such a function f , we can define a protocol-security hierarchy.

Definition 11 (Protocol-security hierarchy). Let Π be a set of protocols, φ
a state property, A be a set of adversary models, and let f recursively approximate
sat. The protocol-security hierarchy with respect to Π, A, φ, and f is a directed
graph H = (N,→) that satisfies the following properties:

1. N is a partition of Π, i. e.,
�

π∈N
π = Π and for all π,π� ∈ N we have that

π �= ∅ and π �= π
� ⇒ π ∩ π

� = ∅.
2. The function f respects the partitions N in that for all P, P � ∈ Π we have

�
∃π ∈ N. {P, P �} ⊆ π

�
⇔ ∀Adv ∈ A.f(P,Adv ,φ) = f(P �

,Adv ,φ).

3. π → π
� if and only if

∀P ∈ π. ∀P � ∈ π
�
. ∀Adv ∈ A. f(P,Adv ,φ) = V ⇒ f(P �

,Adv ,φ) = V ∧
f(P �

,Adv ,φ) = F ⇒ f(P,Adv ,φ) = F .

Lemma 1. Let H = (N,→) be a protocol-security hierarchy with respect to Π,
φ, A, and f . Let ≤H be defined as follows: for all π,π� ∈ N , π ≤H π

� iff π → π
�.

Then ≤H is a partial order.

Proof. First, → is reflexive by Property 3 and hence ≤H is also reflexive. Second,
since→ is transitive by Property 3, so is ≤H . Finally, assume π ≤H π

� and π
� ≤H

π. Then π → π
� and π

� → π. Hence, by Property 3, for all adversary models
Adv ∈ A and all protocols P ∈ π, P

� ∈ π
�, we have f(P,Adv ,φ) = f(P �

,Adv ,φ).
By Property 2, this implies that π = π

� and therefore ≤H is antisymmetric.
Hence ≤H is a partial order.

3.1 Examples of protocol-security hierarchies

In Fig. 3, we show the protocol-security hierarchy for the secrecy property of a
set of protocols with respect to all possible sets of adversary rules from Fig. 2.
In Fig. 4, we show a protocol-security hierarchy for authentication properties.
We discuss the protocol sets in detail in Section 3.2.

Each node π in Fig. 3 and 4 corresponds to a set of protocols and is annotated
with a set of adversary models. For each adversary model in the set, we require
that no attacks are found in this or any weaker model, and also that attacks
are found in all stronger models. Formally, each node π is annotated with all
adversary models a ∈ A for which

∀a� ∈ A,P ∈ π.(a <A a
� ⇒ f(P, a�,φ) = F) ∧ (a� ≤A a ⇒ f(P, a�,φ) �= F).

The protocol-security hierarchies in Fig. 3 and 4 are automatically generated.
We extended the symbolic security-protocol verification tool Scyther [14,18] with
our adversary rules from Fig. 2. This tool recursively approximates sat and
enables us to automatically analyze protocols with respect to any combination
of adversary rules. Scyther produces an output from {F,⊥, V }, where F denotes
that an attack was found, thereby falsifying the property, V denotes that the
property was verified, and ⊥ denotes that a timeout occurred. Using Scyther, the
properties of each protocol are analyzed with respect to all adversary models.
The graph is computed automatically by combining this data for each of the
protocols with the order ≤A on the adversary models. The protocol description
files, analysis tools, and graph generation scripts can all be downloaded from [19].

Ideally we would like to establish hierarchies based on sat . However, only the
recursive approximation f is available, which may return ⊥, thereby providing
only partial information about sat . Consequently, some edges in the hierarchies
(involving nodes where f yields ⊥) are also based on this partial information.
Roughly speaking, we say an edge is strict if an edge also occurs between the
protocols when given complete information about sat . More formally:

Definition 12 (strictness of edges in a protocol security hierarchy). We
say an edge π → π

� in a protocol-security hierarchy is strict if the following two
properties hold.

1. The protocols in π
� are at least as strong as those in π.

∀P ∈ π, P
� ∈ π

�
. ∀Adv ∈ A. f(P,Adv ,φ) �= F ⇒ f(P �

,Adv ,φ) = V

{DH-ISO}�
{LKRothers, LKRactor, LKRafter, SKR, SR}

�

{BCNP-2}�
{LKRothers, LKRactor, LKRaftercorrect, SKR, SR}

�

����������������������� {DHKE-1}�
{LKRothers, LKRactor, LKRafter, SR},
{LKRothers, LKRafter, SKR, SR}

�

��

{NAXOS}�
{LKRothers, SKR,RNR},

{LKRothers, LKRactor, LKRaftercorrect, SKR}
�

{BCNP-1}�
{LKRothers, LKRactor, SKR, SR}

�

��

{JKL-TS3}�
{LKRothers, LKRafter, SKR}

�

��

{JKL-TS2}�
{LKRothers,RNR},

{LKRothers, LKRaftercorrect}
�

��

{BKE}�
{LKRothers, SKR}

�

������������������������

��

�����������������������������������
{JKL-TS1}�

{LKRothers,RNR}
�

��

Fig. 3. Protocol-security hierarchy for secrecy

2. The protocols in π are not equally strong as those in π
�.

∀P ∈ π, P
� ∈ π

�
. ∃Adv ∈ A. f(P,Adv ,φ) = F ∧ f(P �

,Adv ,φ) = V

All edges in the authentication hierarchy in Fig. 4 are strict. This reflects Scyther’s
success in either verifying or falsifying these protocols. In contrast, for the se-
crecy hierarchy in Fig. 3, most protocols contain Diffie-Hellman exponentiation,
for which Scyther currently cannot provide verification. Therefore, the edges in
Fig. 3 are only based on attacks. Because they are not strict, they might not
occur in the corresponding hierarchy based on sat .

3.2 Analyzing protocols using protocol-security hierarchies

Protocol-security hierarchies provide a novel way for choosing an optimal proto-
col for a given application domain, for example, exchanging a secret as illustrated
here. We discuss below the protocols included in our two protocol-security hi-
erarchies. We show how the resulting hierarchies facilitate fine-grained protocol
comparisons that often refine or even contradict comparisons made in the liter-
ature. We start by discussing the hierarchy for secrecy in Fig. 3.

DH-ISO and DHKE-1. The original Diffie-Hellman protocol is only secure in the
presence of a passive adversary since the messages sent are not authenticated. A
simple fix is for agents to sign each message sent, along with the intended recip-
ient, using the sender’s long-term signature key. The resulting protocol family is
referred to as signed Diffie-Hellman. We have analyzed the ISO variant of signed
Diffie-Hellman as well as the DHKE-1 variant by Gupta and Shmatikov [20].
Scyther finds attacks on the Diffie-Hellman signed protocols for all models con-
taining the RNR rule. This is consistent with the proof in [20], which does not
consider this rule, as well as with the observation in [5] that RNR allows an
attack on a signed Diffie-Hellman protocol.

JKL-TS1, JKL-TS2, and JKL-TS3. Jeong, Katz and Lee propose the protocols
TS1, TS2, and TS3 [21]. TS1 is designed to satisfy key independence (keys of non-
matching sessions may be revealed), whereas TS2 and TS3 should additionally

satisfy forward secrecy (long-term keys of the agents may be revealed after the
test session ends). They prove TS1 and TS2 correct in the random oracle model
and TS3 in the standard model.

Our protocol-security hierarchy reveals the following. First, the TS3 protocol
is incomparable to the other two. In contrast to TS2, TS3 additionally achieves
resilience against LKRafter and SKR, but it is not resilient against RNR. Second,
the TS1 protocol is not resilient against SKR, which implies that the protocol
does not satisfy key independence. Indeed, the missing identities in the session
identifier of the protocol cause the protocol to be vulnerable to SKR. This is
a flaw in the proof in [21]. Third, [21] suggests that the TS2 protocol satisfies
forward secrecy. Our analysis shows that it only satisfies weak perfect forward
secrecy, i. e., resilience against LKRaftercorrect. The security model [21] requires
the adversary to be passive when corrupting agents. This is in contrast to TS3,
which does satisfy perfect forward secrecy. In this case, the authors have proven
a weaker claim (weak perfect forward secrecy) whereas they might have been
able to prove that TS3 satisfies a stronger property.

BKE. For the bilateral key-exchange (BKE) protocol [22], we find attacks in all
models in our hierarchy except for adversaries capable of LKRothers or SKR. BKE
is therefore among the weakest protocols in our hierarchy. However, because it
is resilient against SKR, it is not weaker than TS1 or TS2.

BCNP-1 and BCNP-2. Boyd, Cliff, Nieto, and Paterson propose two proto-
cols [23], which we refer to as BCNP-1 and BCNP-2. When comparing their
protocols to others, they focus on two properties, KCI resistance (resilience
against LKRactor) and weak forward secrecy (resilience against LKRaftercorrect).
Additionally, they claim that BCNP-2 provides more security that TS3 [21].
Our analysis allows for a more fine-grained comparison of the different proto-
cols, confirming many remarks made in [23] but established by automatic instead
of manual analysis. The hierarchy also explains why BCNP-2 does not provide
more security than TS3. BCNP-2 is incomparable to TS3 because, unlike TS3, it
is KCI-resilient (resilience against LKRactor) but does not satisfy perfect forward
secrecy (resilience against LKRafter). This disproves the claim in their paper.

NAXOS. LaMacchia, Lauter, and Mityagin propose the Naxos protocol [5] along
with a new security model, claiming that this model is the strongest security
model for AKE protocols. However, our hierarchy clearly reveals that NAXOS is
not stronger than most other protocols in our set because it is vulnerable against
SR and LKRafter. However, it is unique among the protocols we considered because
it provides resilience against adversaries that are capable of both RNR and SKR.

Next, we discuss the hierarchy for authentication presented in Fig. 4. We
verify the protocols with respect to a strong form of authentication called syn-
chronisation [16]. Protocols that satisfy synchronisation also satisfy aliveness.

Needham-Schroeder. The Needham-Schroeder protocol [24] is resilient to adver-
saries capable of LKRafter and SKR. As we will show in Theorem 1, all authen-
tication properties of any protocol are resilient against LKRafter. The fact that
the protocol is resilient against SKR is not surprising as the protocol does not
contain any session keys.

{CCITT X.509-1}�
{LKRothers, LKRactor, LKRafter, SKR, SR,RNR}

�

{CCITT X.509-3}�
{LKRafter, SKR, SR,RNR}

�

������������������
{Needham-Schroeder-Lowe}�
{LKRothers, LKRafter, SKR, SR}

�

�������������������

{Needham-Schroeder}�
{LKRafter, SKR}

�

������������������

�������������������

Fig. 4. Protocol-security hierarchy for authentication

Needham-Schroeder-Lowe. The original Needham-Schroeder protocol is vulner-
able against a man-in-the-middle attack, which motivated Lowe’s fix [15]. This
attack requires precisely the LKRothers capability. Our hierarchy reveals that the
Needham-Schroeder-Lowe protocol is resilient to adversaries capable of LKRothers

and SR. The original Needham-Schroeder is not resilient against SR because the
missing identity in the second message allows the adversary to exploit a non-
matching session to decrypt this message, in which he uses SR to reveal the
nonce of the first message.

CCITT X.509-1 and X.509-3. The CCITT X.509 standard [25] contains sev-
eral protocol recommendations. Here we consider X.509-1 and X.509-3. X.509-1
satisfies its authentication properties with respect to the strongest possible ad-
versary model, i. e., the adversary with all capabilities from Fig 2. The X.509-3
protocol is not resilient against LKRothers or LKRactor. However, unlike Needham-
Schroeder(-Lowe), it is resilient against RNR.

4 Relations between Models and Properties

As previously noted, by classifying different basic adversarial capabilities from
the literature, one quickly arrives at a large number of adversary models. Here
we provide general results that aid in relating and reasoning with these models.

To begin with, our partial order on adversary models ≤A has implica-
tions for security protocol verification. Given a state property φ like those from
Section 2.5, a protocol that satisfies φ in a model also satisfies φ in all weaker
models. Equivalently, falsification in a model entails falsification in all stronger
models. Formally, if Adv ≤A Adv �, then for all protocols P and state prop-
erties φ, sat(P,Adv �

,φ) ⇒ sat(P,Adv ,φ) and, equivalently, ¬sat(P,Adv ,φ) ⇒
¬sat(P,Adv �

,φ).
Since adding adversary rules only results in a larger transition relation and

hence more reachable states, we have:

Lemma 2 (Adding rules only strengthens the adversary). Let r be an
adversary rule from Fig. 2 and Adv be an adversary model, i. e., a set of adver-
sary rules. Then Adv ≤A Adv ∪ {r}.

Most of our rules are independent in that they provide adversary capabilities
not given by other rules. The following lemma formalizes this.

Lemma 3 (Rule independence). Let Adv be an adversary model. Then we
have for all adversary rules r from Fig. 2

�
r = LKRaftercorrect ∧ LKRafter ∈ Adv

�
⇔

�
Adv \ {r} =A Adv ∪ {r}

�
.

Proof of (⇒): Let r = LKRaftercorrect and LKRafter ∈ Adv . Each transition using
LKRaftercorrect can be simulated using LKRafter. Hence the sets of reachable states
on both sides of the above equality are equal and thus Adv \ {r} =A Adv ∪ {r}.
Proof of (⇐): Let Adv \{r} =A Adv∪{r}. Suppose r �= LKRaftercorrect. Then there
are transitions enabled by r that are not enabled by the other rules. In particular,
even if LKRaftercorrect ∈ Adv , there are protocols with roles that can be completed
without matching sessions, whereby LKRafter enables transitions not enabled by
LKRaftercorrect. Hence we have a contradiction and therefore r = LKRaftercorrect.
Now suppose LKRafter �∈ Adv . Then some transitions enabled by r are not enabled
by Adv \ {r}, contradicting Adv \ {r} =A Adv ∪ {r}. Hence r = LKRaftercorrect

and LKRafter ∈ Adv .

Corollary 1. The rules in Fig. 2 give rise to 25 × 3 = 96 models with distinct
sets of reachable states.

This corollary follows from Lemmas 2 and 3.
Interestingly, to evaluate some properties it is only necessary to consider

traces up to the end of the test session.

Definition 13 (post-test invariant properties). We define the set ΦPTI of
post-test invariant properties as all state properties φ ∈ Φ that satisfy

∀P,R,Adv . ∀(tr, IK , th,σTest) ∈ RS(P,Adv , R). th(Test) = �� ⇒
∀s.(tr, IK , th,σTest) →∗

P,Adv ,RTest
s ⇒

�
φ((tr, IK , th,σTest)) ⇔ φ(s)

�
.

Aliveness, as defined earlier, is a post-test invariant property. Other authenti-
cation goals such as various forms of agreement [17] or synchronisation [16] are
also post-test invariant properties. Secrecy however is not such a property.

Theorem 1 (post-test invariant properties are resilient against future
capabilities). Let r be an adversary rule from Fig. 2 and φ ∈ ΦPTI be a post-test
invariant property. Then for all protocols P and adversary models Adv,

r ∈ {LKRaftercorrect, LKRafter} ∧ sat(P,Adv ,φ) ⇒ sat(P,Adv ∪ {r},φ)

This theorem follows as LKRaftercorrect and LKRafter only enable new transitions in
those states where the test thread has ended. By definition, post-test invariant
properties are invariant with respect to such transitions. As a result, we need
only consider 32 (out of 96) models when analyzing a protocol with respect to
post-test invariant properties.

5 Conclusions

We see our work as a first step in providing models and tool support for system-
atically modeling and analyzing security protocols with respect to adversaries
endowed with different compromise capabilities. We presented applications to
protocol analysis and constructing protocol-security hierarchies.

Our adversary capabilities generalize those from the computational setting
and combine them with a symbolic model. In doing so, we unify and generalize a
wide range of models from both settings. Exploring the exact nature of this gen-
eralization as well as mappings between the two settings remains as future work.
Also interesting would be to develop methods for designing protocols optimized
for different adversarial scenarios or strengthening existing protocols.

Finally, the concept of a protocol-security hierarchy can be naturally ex-
tended to any domain where security properties of systems can be evaluated
with respect to a set of adversary models. This leads to the more general notion
of a security hierarchy. For example, in the domain of access control, attackers
could have different capabilities with respect to how policies are enforced. A
hierarchy in this setting could help distinguish the degrees of security provided
by different access-control mechanisms.

References

1. Günther, C.: An identity-based key-exchange protocol. In: EUROCRYPT’89.
Volume 434 of LNCS., Springer (1990) 29–37

2. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (October 1996)

3. Basin, D., Cremers, C.: From Dolev-Yao to strong adaptive corruption: Analyzing
security in the presence of compromising adversaries. Cryptology ePrint Archive,
Report 2009/079 (2009) http://eprint.iacr.org/.

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: EUROCRYPT. Volume 2045 of LNCS., Springer
(2001) 453–474

5. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: ProvSec. Volume 4784 of LNCS., Springer (2007) 1–16

6. Shoup, V.: On formal models for secure key exchange (version 4) (November 1999)
revision of IBM Research Report RZ 3120 (April 1999).

7. Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions.
In: ASIACCS, ACM (2008) 249–260

8. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: ASI-
ACRYPT 1996. Volume 1163 of LNCS. (1996) 36–49

9. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryp-
tology ePrint Archive, Report 2005/176 (2005) http://eprint.iacr.org/, re-
trieved on April 14, 2009.

10. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: Proc. STOC ’95, ACM (1995) 57–66

11. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: EUROCRYPT. LNCS, Springer (2000) 139–155

http://eprint.iacr.org/
http://eprint.iacr.org/

12. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: CRYPTO,
Springer (1993) 232–249

13. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
CRYPTO. Volume 2729 of LNCS., Springer (2003) 110–125

14. Cremers, C.: The Scyther Tool: Verification, falsification, and analysis of security
protocols. In: Proc. CAV. Volume 5123 of LNCS., Springer (2008) 414–418

15. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: TACAS’96. Volume 1055 of LNCS. Springer (1996) 147–166

16. Cremers, C., Mauw, S., de Vink, E.: Injective synchronisation: an extension of the
authentication hierarchy. Theoretical Computer Science (2006) 139–161

17. Lowe, G.: A hierarchy of authentication specifications. In: Proc. 10th IEEE Com-
puter Security Foundations Workshop (CSFW), IEEE (1997) 31–44

18. Cremers, C.: Unbounded verification, falsification, and characterization of security
protocols by pattern refinement. In: CCS ’08: Proc. of the 15th ACM conference
on Computer and communications security, ACM (2008) 119–128

19. Cremers, C.: Scyther tool with compromising adversaries extension Includes pro-
tocol description files and test scripts. Available online at http://people.inf.
ethz.ch/cremersc/scyther/.

20. Gupta, P., Shmatikov, V.: Towards computationally sound symbolic analysis of
key exchange protocols. In: Proc. FMSE 2005, ACM (2005) 23–32

21. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Applied Cryptography and Network Security, Second Interna-
tional Conference, ACNS 2004, Yellow Mountain, China, June 8-11, 2004, Pro-
ceedings. Volume 3089 of LNCS., Springer (2004) 220–232

22. Clark, J., Jacob, J.: A survey of authentication protocol literature (1997) http:
//citeseer.ist.psu.edu/clark97survey.html.

23. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3) (2009) 181–199

24. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21(12) (1978) 993–999

25. CCITT: The directory authentification framework (1987) Draft Recommendation
X.509, Version 7.

http://people.inf.ethz.ch/cremersc/scyther/
http://people.inf.ethz.ch/cremersc/scyther/
http://citeseer.ist.psu.edu/clark97survey.html
http://citeseer.ist.psu.edu/clark97survey.html

	Degrees of Security: Protocol Guarantees in the Face of Compromising Adversaries

