
Real-Time Policy Enforcement with Metric
First-Order Temporal Logic

François Hublet(B) , David Basin , and Srd̄an Krstić

Institute of Information Security, Department of Computer Science, ETH Zürich,
Zurich, Switzerland

{francois.hublet,basin,srdan.krstic}@inf.ethz.ch

Abstract. Correctness and regulatory compliance of today’s software systems
are crucial for our safety and security. This can be achieved with policy enforce-
ment: the process of monitoring and possibly modifying system behavior to
satisfy a given policy. The enforcer’s capabilities determine which policies are
enforceable.

We study the enforceability of policies specified in metric first-order tempo-
ral logic (MFOTL) with enforcers that can cause and suppress different system
actions in real time. We consider an expressive safety fragment of MFOTL and
show that a policy from that fragment is enforceable if and only if it is equivalent
to a policy in a simpler, syntactically defined MFOTL fragment. We then propose
an enforcement algorithm for all monitorable policies from the latter fragment,
and show that our EnfPoly enforcer outperforms state-of-the-art tools.

1 Introduction

Modern software systems are increasingly complex, ubiquitous and intransparent. In
this context, allowing individuals to scrutinize and control the systems that affect their
daily lives is an important technical and societal challenge. To achieve this goal it is cru-
cial to develop systems that can monitor and control other target systems, by enforcing
policies that describe the acceptable target system’s behaviors.

Policy enforcement [54], depicted in Fig. 1, is a form of execution monitoring where
a system, called an enforcer, observes a target system’s actions, detects attempted pol-
icy violations, and reacts to prevent them. In contrast, policy monitoring (or runtime
verification) [7,26] provides monitors that only passively detect policy violations by
the target system. Both problems have offline and online variants: the former considers
a trace of recorded target system actions, while the latter observes the target system in
real time.

X S E

actions

reactions
policy

inputs

outputs

An enforcer E observes actions in a target system S and reacts (e.g., causes or suppresses some ac-
tions in S ) to ensure policy compliance. S interacts with an environment X, which E cannot control.

Fig. 1. Policy enforcement

The original version of this chapter was revised: figure-1 was corrected. The correction to this
chapter is available at https://doi.org/10.1007/978-3-031-17146-8_36
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022, corrected publication 2022

V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13555, pp. 211–232, 2022.
https://doi.org/10.1007/978-3-031-17146-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17146-8_11&domain=pdf
http://orcid.org/0000-0001-5419-3125
http://orcid.org/0000-0003-2952-939X
http://orcid.org/0000-0001-8314-2589
https://doi.org/10.1007/978-3-031-17146-8_36
https://doi.org/10.1007/978-3-031-17146-8_11


212 F. Hublet et al.

Policy enforcement has been studied in different communities (Sect. 2) like con-
troller synthesis [1,46,47], security [4,54], and operating systems [51,52], each defin-
ing and solving the problem in a different, specialized context.

Schneider [54] studied the general form of the policy enforcement problem in the
context of security. He proposed security automata as enforcers that, when composed
with the target system, prevent policy violations by simply terminating it. Schneider,
and later others [11], identified classes of policies that were enforceable using such
an enforcer. As policy enforceability depends on the enforcer’s powers over the target
system (e.g., its ability to suppress, cause, or delay system’s actions), other enforceable
policy classes have been suggested [9].

Automata and temporal logic are popular formalisms for policy specification. Exist-
ing security policy enforcers typically focus on propositional policies expressed as vari-
ants of (security, edit, or timed) automata [27]. In contrast, controller synthesis tools [6]
also enforce specifications expressed in LTL [16] or in (fragments of) metric temporal
logics [17,19,32,40]. However, automata and propositional temporal logic are limited
in their expressiveness: they regard system actions as atomic and thus cannot formulate
dependencies between the data values coming from an infinite domain that the actions
may carry as parameters. For instance, a data value may contain personally identifiable
information, and then each system action that uses the value should be preceded by an
action that receives a consent for the value’s particular use [5]. To the best of our knowl-
edge, there is no tool that supports enforcement for first-order logic specifications.

In this paper, we consider the online policy enforcement (Sect. 3) of policies
expressed in metric first-order temporal logic (MFOTL) [20], which extends LTL with
metric constraints and first-order quantification (Sect. 4). To enforce MFOTL policies,
our enforcer can observe the target system in real time, actively cause or suppress dif-
ferent types of actions, and only observe other actions of the target system. As enforcer
must react in real time, policies must be such that their satisfaction does not depend on
future information. All actions, caused either by the enforcer or the target system, are
instantaneous and tagged with a timestamp.

We therefore consider two “well-behaved” fragments of MFOTL: (1) we study
enforceability of MFOTLF

� , a safety fragment of MFOTL comprising closed formulae
of the form �ϕ (“always ϕ”) where ϕ’s satisfaction does not depend on future informa-
tion; and (2) we design an efficient enforcement algorithm for monitorable and enforce-
able MFOTLF

� formulae. Violations of monitorable formulae [12] can be detected by
manipulating only finite sets of satisfying valuations. As these sets are always finite, we
can use simple, yet efficient, data structures and reuse the existing, highly-optimized
monitoring algorithm for monitorable MFOTL formulae [13].

Overall, we characterize the enforceability of MFOTLF
� formulae by an enforcer

with the ability to suppress or cause different system actions, and propose and imple-
ment an enforcer for monitorable MFOTLF

� formulae. We make the following contri-
butions:

– For an enforcer with the ability to suppress or cause (disjoint sets of) actions, we
characterize enforceability of MFOTLF

� formulae. We show that it is undecidable
whether an MFOTLF

� formula is enforceable and propose an expressively complete
syntactical approximation (Sect. 5).



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 213

– We develop an enforcement algorithm for monitorable MFOTLF
� formulae and

prove its correctness (Sect. 6).
– Finally, we describe our enforcer’s implementation (Sect. 7) and evaluate its time

and memory usage against other state-of-the-art tools (Sect. 8).

The proofs of all lemmas and theorems can be found in our extended report [35].

2 Related Work

We group related work into conceptual approaches and those that implement enforcers.

Theory. The policy enforcement problem was studied by Schneider and Erlingsson
in the context of security [24,54]. Schneider defined security automata, a class of
Büchi automata, as enforcers. Violations were prevented by terminating the system.
Bauer et al. [14] extended Schneider’s work by considering enforcers that can sup-
press and cause events. Basin et al. [11] distinguished between suppressable and (only-
)observable events and refined Schneider’s enforceability accordingly, but only dis-
cussed enforcement via suppression. Falcone et al. [25] later studied the enforcement
of propositional timed policies by suppressing and delaying events. Recently, Aceto
et al. [2] proposed bidirectional enforcers that treat input and output system actions
differently. We see this distinction as a more refined event type partition (Sect. 3).

Policy enforcement is closely related to the controller synthesis problem [46], where
a controller (≈ enforcer) wants to ensure compliance of a plant (≈ system) with a
specification (≈ policy). Specification realizability corresponds to enforceability, while
controller synthesis (i.e., generating an automaton from a specification) corresponds to
generating an enforcement algorithm tailored to a particular specification. Our enforcer
does not explicitly generate code for a specific policy, but rather takes the policy directly
as input. Early work by Pnueli, Rosner and Abadi [1,46,47] studied LTL realizability
and LTL (controller) synthesis. More efficient approaches later emerged [29,39,53], as
well as techniques for timed automata [6] and metric extensions of LTL [17,19,32,40].

Tools. Policy enforcement approaches typically rely on different classes of automata
both as enforcers and as policies [11,14,21,24,25,27,28,41,42,45,49,50,54]. A recent
survey [26] listed three enforcement tools: GREP [49], Proactive Libraries [50], and
TiPEX [45]. Both GREP and TiPEX use timed automata as a specification language,
and could thus support propositional temporal logics like MITL [3] via conversion to
timed automata [18,43]. They do not, however, natively support temporal logic.

The state-of-the-art MonPoly tool [13] can detect violations of monitorable MFOTL
policies [12]. Other tools for first-order temporal logics include Verimon [8,38,55] and
DejaVu [30,31], none of which supports enforcement to prevent violations.

Many controller synthesis tools have been developed for LTL like Lily [36],
Unbeast [23], Acacia+ [16] and SSyft [56]. Other tools synthesize controllers for sys-
tems described by timed automata to comply with specifications written in TCTL [15,
44], MTL [32], or its fragment MTL0,∞ [40]. BluSTL [22,48] is a MATLAB toolbox for
generating controllers from signal temporal logic (STL) specifications. None of these
tools supports first-order logic.



214 F. Hublet et al.

3 Policy Enforcement

We fix a signature Σ = (D,E,a), containing an infinite set D of constant symbols,
a finite set of event names E, and an arity function a : E → N. An event is a pair
(e,(d1, . . . ,da(e))) ∈ E×D

a(e) of an event name e and a(e) arguments.
Events model system actions observable by the enforcer. While some of these

observable events can also be controlled (i.e., suppressed or caused) by the enforcer,
others can only be observed. To capture these different cases, we partition E into two
sets: a set of controllable event names, and a set of only-observable event names.
Among the controllable event names, we further distinguish between suppressable
event names Sup ⊆ E and causable event names Cau ⊆ E. The set of only-observable
event names is Obs = (E \Sup) \Cau. In general, some controllable events might be
both suppressable and causable. However, we will assume that no such events exist, i.e.
Sup∩Cau = /0. Our reason for this will become apparent when we consider MFOTL
policy enforcement (Sect. 6), and we will discuss ways in which this assumption can be
relaxed.

Example 1. As a running example, consider the signature (N,{Open,Close,Knock},
a), where a(·) = 1, Sup = {Open}, and Cau = {Close}. The target system controls
a set of doors indexed by integers, which an enforcer can mechanically close or keep
closed, but not hold open. Each door i is equipped with a sensor that causes a Knock(i)
event whenever a human knocks on the door. Knock events are only-observable (Obs=
{Knock}), since they reflect the environment’s behavior.

Given a signature Σ, we define the set of (event) databases DB
∗ as

2{(e,d) |e∈E, d∈Da(e)}. Databases represent structures over Σ. We restrict ourselves to con-
sidering automatic databases, i.e., databases that can be represented by a collection of
finite automata [37]. This setup is the most general one used for MFOTL monitoring
in [12].

Definition 1 (Automatic Event Database). An event database D is automatic iff for
all e ∈ E, D∩ {(e,d) | d ∈ D

a(e)} is a regular set. DB is the set of automatic event
databases.

Finally, for any E ⊆E, we denote by Ev(E) the set of all databases with event names
in E only, i.e. Ev(E) := {D ∈ DB | ∀(e,(d1, . . . ,da(e))) ∈ D. e ∈ E}.

Traces are finite or infinite sequences σ= (τi,Di)1≤i≤k, k ∈ N∪{∞}, where τi ∈ N

are nondecreasing timestamps, and Di ∈ DB are databases. The smallest timestamp of
a trace σ is denoted by sts(σ) = τ1 ∈ N, its largest timestamp is denoted by lts(σ) =
sup1≤i≤k τi ∈ N∪{∞}. The empty trace is denoted by ε, the set of traces by T, and the
set of finite traces by T f = {σ∈T | |σ|<∞}. If σ,σ′ are two traces such that σ is finite,
σ ·σ′ denotes the concatenation of σ and σ′. A (trace) property is a subset P ⊆ T. For
all σ,σ′ ∈ T, we write σ � σ′ iff σ is a prefix of σ′, and denote by pre(σ) the set of
all prefixes of σ. The limit closure of a set A ⊆ T, denoted by cl(A), contains all traces
whose finite prefixes are all in A, i.e., cl(A) = {σ ∈ T | ∀σ′ ∈ pre(σ). |σ′| < ∞ ⇒ σ′ ∈
A}. The truncation of A is trunc(A) = {σ ∈ A | pre(σ) ⊆ A}, the largest prefix-closed
subset of A.



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 215

Finite databases DB
† ⊆ DB are a specific type of automatic databases. We also

consider traces with finite databases T† ⊆ T, and finite traces with finite databases T†
f .

We now extend the definition of enforceability [11] to support causable events.

Definition 2 (Enforceability). A property P⊆ T is enforceable iff there is a determin-
istic Turing machine (TM) M accepting a set of finite traces S such that

(i) cl(trunc(S )) = P;
(ii) M accepts ε;
(iii) For all σ ∈ trunc(S ), τ≥ lts(σ), and D ∈ DB, M halts on σ · ((τ,D)); and
(iv) For all σ ∈ trunc(S ), τ ≥ lts(σ), and D ∈ DB, there exists S ∈ Ev(Sup) and

C ∈ Ev(Cau) such that M accepts σ · ((τ,(D\S )∪C)).

Properties are sets of infinite traces, while enforcers (that do not know the system’s
implementation) can only observe finite traces. Hence, an enforceable property must be
checked “prefix-wise”: a trace is in a property iff an enforcer accepts all of its prefixes.
Enforceable properties must hold on the empty trace, i.e., the system must initially
comply with the property. For any extension of a (non-violating) prefix, the enforcer
must be able to decide on its compliance to the property. Whenever a valid prefix is
extended with an additional database, there must exist sets of suppressable and causable
events which the enforcer can respectively suppress and cause to ensure satisfaction of
the property.

Our notion of enforceability implies safety:

Lemma 1. Any enforceable property P ⊆ T is a safety property.

The converse is not true: a safety property that requires that no Knock event ever
happens is not enforceable, as Knock events are only-observable and cannot be sup-
pressed.

An enforcer can be seen as a Turing machine that, given a finite trace, returns a
pair of sets of events to be respectively suppressed and caused in the last database of the
trace, with the additional requirement that events to be suppressed (resp. caused) should
be suppressable (resp. causable) and present (resp. not already present) in this database.

Definition 3 (Enforcer). An enforcer is a computable function μ :T f →DB×DB such
that for all σ ∈ T f , τ≥ lts(σ), D ∈ DB, and (B,C) = μ(σ · ((τ,D))):
(i) For all (e,d) ∈ B, e ∈ Sup and (e,d) ∈ D; and
(ii) For all (e,d) ∈C, e ∈ Cau and (e,d) /∈ D.

An enforcer μ is correct with respect to a property P if, for all σ ∈ P, any trace σ′
obtained by adding a single database at the end of σ and then updating it (to some σ′′)
according to μ ensures σ′′ ∈ P.

Definition 4 (Correct Enforcement). An enforcer μ is called correct with respect to a
property P ⊆ T and a set of databases Δ⊆ DB if for all σ ∈ P∩T f , τ≥ lts(σ), D ∈ Δ,
and (B,C) = μ(σ · ((τ,D))), we have σ · ((τ,(D\B)∪C)) ∈ P.

Transparent enforcers [10] do not to alter traces that belong to the enforced prop-
erty:



216 F. Hublet et al.

Fig. 2. MFOTL semantics

Definition 5 (Transparent Enforcement). An enforcer μ is called transparent with
respect to a property P ⊆ T and a set of databases Δ ⊆ DB if for all σ ∈ P∩T f ,
τ≥ lts(σ), D ∈ Δ, we have σ · ((τ,D)) ∈ P=⇒ μ(σ · ((τ,D))) = ( /0, /0).

Given A⊆ T and B,C ⊆ E, extend(A,B,C) is the set of all traces σ · (τ,D) obtained
by appending to any trace σ ∈ A the pair (τ,D∪D′) with τ ≥ lts(σ), D ∈ 2B×D

∗
and

D′ = {(c,d) | c ∈ C,d ∈ D
a(c)}. Intuitively, set extend(A,B,C) is obtained from the set

A by appending some events from B and all events from C to A. We have:

Lemma 2. Let P ⊆ T such that P is enforceable. Then there exists a correct and trans-
parent enforcer with respect to P and DB.

4 Metric First-Order Temporal Logic

Metric first-order temporal logic (MFOTL) extends first-order logic with the metric
temporal operators “previous” (�I), “next” (�I), “since” (SI), and “until” (UI). We
write I for the set of intervals over N and V for a countable set of variables. MFOTL
formulae over a signature Σ are defined by the grammar

ϕ ::= r(t1, . . . , ta(r)) | ¬ϕ | ϕ∨ϕ | ∃x. ϕ | �I ϕ | �I ϕ | ϕSI ϕ | ϕUI ϕ,

where t1, . . . , ta(r) ∈V∪D, r∈E, and I ∈ I. We define shorthands � := p∨¬p, ⊥ :=¬�,
ϕ⇒ ψ := ¬ϕ∨ψ, and the operators “once” (�Iϕ :=�SI ϕ), “eventually” (♦Iϕ :=�UI

ϕ), “always” (�Iϕ :=¬♦I¬ϕ), and “historically” (�Iϕ :=¬�I¬ϕ). Temporal operators
with no interval have [0,∞) instead. Predicates are formulae of the form r(t1, . . . , ta(r)).

We extend the domain of valuation v : V→D to D by setting v(d) = d for all d ∈D.
We write v[x �→ d] for the mapping equal to v, except that v(x) is d. We use fv(ϕ) for the
set of ϕ’s free variables. For k ∈ N, a trace σ= ((τi,Di))1≤i≤k, a timepoint 1 ≤ i ≤ |σ|,
a valuation v, and a formula ϕ, satisfaction relation |= is defined in Fig. 2. Note that |=
is well-defined for both finite and infinite traces. We write v |=σ ϕ for v,1 |=σ ϕ.

We say that two MFOTL formulae ϕ and ψ are equivalent, written ϕ≡ ψ, iff for all
v, σ ∈ T, 1 ≤ i ≤ |σ|, we have v, i |=σ ϕ⇔ v, i |=σ ψ.

If ϕ is closed, i.e., fv(ϕ) = /0, ϕ’s satisfaction does not depend on v. We then write
|=σ ϕ as shorthand for ∀v. v |=σ ϕ. Given a closed formula ϕ, we denote by L(ϕ) ⊆ T

the set of all traces that satisfy ϕ, i.e., L(ϕ) := {σ ∈ T | |=σ ϕ}. Finally, we denote by
L f (ϕ) the set of finite traces in L(ϕ), i.e., L f (ϕ) = {σ∈ L(ϕ) | |σ| <∞}. Extending the
previous terminology, we say that a formula ϕ is enforceable iff L(ϕ) is enforceable.

If the truth value of a formula only depends on the trace content in the past or
present, an enforcer can compute satisfactions for each trace prefix, and react timely.



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 217

Definition 6 (Future-Free Formulae). An MFOTL formula ϕ is called future-free iff
for all σ∈T, valuation v, and σ′ �σ such that |σ′|= i, we have v, i |=σ ϕ⇔ v, i |=σ′ ϕ.

For instance, formulae without future operators (UI , �I , ♦I , �I) are future-free, but
also some that have these operators nested in appropriate past operators.

Example 2. The formula ϕ1 = �[3,4](∃x. Close(x)) uses no future temporal operators,
and is therefore future-free. The formula ϕ2 =�[3,4](∃x. Close(x)∧♦[1,2]Open(x)) con-
tains a future operator, but is still future-free, since the future operator ♦[1,2] (looking at
most 2 time units into the future) is nested in a �[3,4] operator that is always evaluated
at least 3 time units in the past. The formula ϕ3 = ♦[1,2]Open(x) is not future-free: its
truth value depends on events happening up to 2 time units in the future.

In the rest of this paper, we consider the fragment MFOTLF
� that contains all closed

formulae of the form �ϕ, where ϕ is future-free. Given the correctness of the moni-
toring algorithm [12] for MFOTL formulae of the form �ϕ, where all future operators
in ϕ have bounded intervals and the fact that future-free formulae are a subset of the
algorithm’s supported formulae, we have:

Lemma 3. For any ϕ ∈ MFOTLF
� , there exists a TM that decides L f (ϕ).

In fact, the algorithm determines without delay whether a future-free formula is satis-
fied.

5 MFOTL Enforceability

In this section, we characterize the enforceability of MFOTLF
� formulae with an

enforcer as described in Sect. 3. Our first result is negative: a reduction, presented in
our extended report [35], shows that the enforceability of MFOTLF

� formulae in unde-
cidable.

Theorem 1. Assume that Sup contains at least one event of arity at least 2 andObs �= /0.
The set E = {ϕ ∈ MFOTLF

� | ϕ is enforceable} is not computable.

The proof relies on the undecidability of universal validity in FOL. Therefore, it is
sensible to ask whether some syntactical characterization of enforceability can be recov-
ered by reasoning modulo equivalence of formulae. Is there a decidable and enforce-
able fragment of MFOTLF

� that contains all enforceable policies modulo equivalence?
If so, such a fragment would not only provide a sound approximation of enforce-
able MFOTLF

� formulae, but also an approximation that is expressively complete. All
enforceable MFOTLF

� policies could be expressed using the fragment via an appropri-
ate (manual) rewriting. Rather surprisingly, such a fragment exists. Consider the fol-
lowing:

Definition 7 (GMFOTL). Guarded MFOTL (GMFOTL) is defined inductively by:

ψ ::= ⊥ | s(t1, . . . , tn) | ¬c(t1, . . . , tn) | ψ∧ϕ | ψ∨ψ | ∃x. ψ
where s ∈ Sup,c ∈ Cau, and ϕ is an MFOTL formula.



218 F. Hublet et al.

In GMFOTL, all subformulae (and, in particular, all temporal subformulae) are
guarded by an instance of a predicate r(t1, . . . , tn) with r being suppressable, or by an
instance of a negated predicate ¬r(t1 . . . , tn) with r being causable. In the following,
we call such a (possibily negated) predicate a guard. The presence of a guard ensures
that, when an GMFOTL formula is satisfied with respect to a trace prefix, it can always
be made false by suppressing or causing appropriate events in the last database of the
prefix.

Example 3. Consider the formula ϕ4 = ¬Close(x)∧ψ, with an arbitrary future-free
formula ψ and fv(ψ) = {x}. For ϕ4 to be satisfied with respect to a trace prefix σ, it
must hold for some valuation of x and {(Close,(a)) | v, |σ| |=σ ψ,v(x) = a} must not
be in the last database of σ. Hence, ϕ4 can be falsified by causing the appropriate Close
events.

It can be shown that all closed formulae of the form �¬ψ with ψ ∈ GMFOTL and
future-free are enforceable. Since enforceability is defined in terms of the language
recognized by a given formula, we obtain that all MFOTLF

� formulae equivalent to
some �¬ψ, with ψ ∈ GMFOTL closed and future-free, are enforceable. In fact, the
converse is also true: all future-free MFOTLF

� formulae are equivalent to a formula of
the above form. We have thus obtained an expressively complete fragment of enforce-
able MFOTLF

� . Formally:

Theorem 2. A formula �ϕ ∈ MFOTLF
� is enforceable iff there exists ψ ∈ GMFOTL

such that �ϕ≡ �¬ψ.
Example 4. Consider the formula ϕ5 = �∀x. (Open(x) ⇒ ¬�[2,5]Open(x)). This for-
mula is enforceable: Open events that lead to a violation (i.e., those occurring 2 to 5
time units after a previous Open event with the same argument) can always be sup-
pressed. The formula ϕ5 is equivalent to �¬ψ where ψ ∈ GMFOTL is

(∃x. Open(x))∧¬(∀x. (Open(x) ⇒ ¬�[2,5]Open(x))).

6 MFOTL Enforcement in the Finite Case

In the previous section, we have presented GMFOTL, a syntactic class of MFOTL that
is expressively complete for enforceable MFOTLF

� formulae. Lemma 2 implies the
existence of an enforcer for such formulae. However, the naive enforcer constructed in
the lemma’s proof may be inefficient—in fact, it may cause an infinite number of new
events.

In this section, we focus on traces with finite databases and MFOTL formulae from
the intersection of enforceable MFOTLF

� formulae with monitorable MFOTL formu-
lae [12]. We show that, in this case, we can exhibit a correct and transparent enforcer
that produces only a finite number of events to be suppressed or caused.



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 219

6.1 Monitoring MFOTL Formulae

Basin et al. [12] describe an algorithm that efficiently monitors monitorable MFOTL
formulae. Variants of this algorithm and the fragment it supports are used in several
state-of-the-art tools [13,55]. We now briefly recall the algorithm and some of its prop-
erties.

The algorithm encodes each database D ∈ DB
† as a finite set of tables, one for each

event name in the database. The row d is in the table corresponding to the event name e
if (e,d) ∈ D. The set of satisfying valuations of a formula can similarly be encoded as
a table whose rows represent valuations restricted to the domain of the formula’s free
variables.

The algorithm computes the table of satisfying valuations for a monitorable MFOTL
formula bottom-up, using well-known table operations like join, anti-join, union, and
projection. The syntactic monitorable fragment ensures that table operations always
produce finite tables. In the rest of the section, we assume that this algorithm is available
as a subroutine SAT(ϕ,σ) = {v | v, |σ| |=σ ϕ} that returns the set of satisfying valuations
of a monitorable MFOTL formula ϕ with respect to finite trace σ ∈ T

† and timepoint
|σ|.

The monitorable MFOTL fragment [55] also ensures that for any valuation v satis-
fying a formula ϕ from the fragment with respect to a finite trace σ and a time point
1 ≤ i≤ |σ|, for every x ∈ fv(ϕ) the value v(x) ∈D is contained in some event argument
in a database in σ or a constant term in ϕ. Formally:

Lemma 4. For all monitorable ϕ ∈ MFOTL, valuation v, trace σ ∈ T
†, and timepoint

1 ≤ i ≤ |σ|, assuming v, i |=σ ϕ, we have
∀x ∈ fv(ϕ). ∃1 ≤ j ≤ |σ|. (e,d) ∈ Dj,1 ≤ k ≤ a(e). dk = v(x)∨dk ∈ cst(ϕ)

where cst(ϕ) ⊂ D denotes the (finite) set of constant terms that appear in ϕ.

We will use this lemma, as well as the termination of the subroutine SAT [12], to
prove the termination of our enforcer.

Algorithm 1. Function enf

function enf(ϕ,σ,v)
if ϕ= r(t1, . . . , tn),r ∈ Sup then

return ({(r,(v(t1), . . . ,v(tn)))}, /0)
else if ϕ= ¬r(t1, . . . , tn),r ∈ Cau then

return ( /0,{(r,(v(t1), . . . ,v(tn)))})
else if ϕ= ϕ1 ∧ϕ2 then

return enf(ϕ1,σ,v)
else if ϕ= ϕ1 ∨ϕ2 then

returnFIXPOINT(σ,enfor, ϕ1, ϕ2, v)
else if ϕ= ∃x. ϕ1 then

return FIXPOINT(σ,enfex, ϕ1, v)

function enfor, ϕ1, ϕ2, v(σ)
(D−,D+) ← ( /0, /0)
if v ∈ SAT(ϕ1,σ) then

(D−,D+) ← (D−,D+)� enf(ϕ1,σ,v)
if v ∈ SAT(ϕ2,σ) then

(D−,D+) ← (D−,D+)� enf(ϕ2,σ,v)
return (D−,D+)

function enfex, ϕ1, v(σ)
(D−,D+) ← ( /0, /0)
for v ∈ D s.t. v[x �→ v] ∈ SAT(ϕ1,σ) do

(D−,D+)← (D−,D+)�enf(ϕ1,σ,v[x �→ v])
return (D−,D+)



220 F. Hublet et al.

6.2 Enforcer

Given σ ∈ T f , τ≥ lts(σ), and D,D−,D+ ∈ DB, we first define the function update as

update(σ · ((τ,D)),(D−,D+)) := σ · ((τ,(D∪D+)\D−)).

Namely, update returns the trace obtained by adding all events from D+ and removing
all events from D− in the last database of σ.

For any σ ∈ T f and enforcer μ, we define 	μ(σ) ∈ T f as the limit of the sequence
(ui)i∈N ∈ T

N

f defined by u0 = σ and for all i ∈ N, ui+1 = update(ui,μ(ui)). This limit
is always well-defined [35], and if ui+1 = ui for some i ∈ N, we have 	μ(σ) = ui. This
allows us to define a routine FIXPOINT(σ,μ) that iteratively computes u0,u1, . . . ,ui, . . . ,
returns 	μ(σ) = ui as soon as (ui)i∈N reaches a fixpoint ui+1 = ui, and does not terminate
otherwise. We will later show that, in our setup, this procedure always terminates.

Our enforcer relies on the function enf described in Algorithm 1, which takes as
an input a future-free and monitorable GMFOTL formula ϕ, a finite trace σ, and a
valuation v such that v, |σ| |=σ ϕ, and returns a pair of sets of events to be respectively
suppressed and caused at the last timepoint in σ in order to obtain some new trace σ′
such that v, |σ| �|=σ′ ϕ. For notational convenience, we denote by � the elementwise
union of pairs of sets (A,B)� (C,D) = (A∪C,B∪D).

The intuition behind enf is as follows. If the formula ϕ is reduced to an atom
r(t1, . . . , tn) or ¬r(t1, . . . , tn), we can make it false by suppressing or causing a single
event. If ϕ is of the form ϕ1 ∧ϕ2 with ϕ ∈ GMFOTL, it is sufficient to make ϕ1 false to
make ϕ false: enf looks for events to be suppressed or caused in ϕ1.

For formulae of the form ϕ1 ∨ ϕ2, additional care is needed. At first glance, the
strategy used for ∧ seems applicable, modulo a simple case distinction: if both ϕ1 and
ϕ2 are satisfied by a given pair of a trace and a valuation, we need to find events to
suppress or cause in both subformulae; if only one conjunct is satisfied, we look for
events to suppress or cause in this subformula only. But such a one-step strategy is
insufficient.

Example 5. Consider the formula ϕ6 = Open(1) ∨ (¬Close(2) ∧ ¬Open(1)) ∈
GMFOTL and the trace σ6 = ((0,{(Open,(1))})). Only the left disjunct is satisfied.
Hence, applying the above strategy would produce the trace σ′

6 = ((0, /0)), which
again satisfies ϕ6 as it satisfies the right disjunct now. Hence, after having suppressed
(Open,(1)) we must check for satisfaction of ϕ6 again, and, if necessary, select addi-
tional events to be suppressed or caused, here causing (Close,(2)) suffices. This results
in the trace σ′′

6 = ((0,{(Close,(2))})), which now does not satisfy ϕ6.

The above iterative approach, which performs a fixpoint computation, is formalized
as a call to FIXPOINT(σ,enfor, ϕ1, ϕ2, v), where enfor, ϕ1, ϕ2, v performs the above case
distinction for a fixed valuation v satisfying ϕ1 ∨ϕ2.

The same problem arises with existentially quantified formulae of the form ∃x. ϕ1.
For fixed v, function enfex, ϕ1, v identifies events that must be suppressed or caused
to prevent the satisfaction of ϕ1 using any valuation v′ extending v, and a call to
FIXPOINT(σ,enfex, ϕ1, v) computes the corresponding fixpoint.



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 221

Finally, for any closed, monitorable and future-free ϕ ∈ GMFOTL, we define our
tentative enforcer for �¬ϕ as

μ̂ϕ(ρ) =
{
enf(ϕ,ρ, /0) if |σ| |=ρ ϕ
( /0, /0) otherwise.

Example 6. Consider the GMFOTL monitorable formula

ϕ7 = (∃x. Open(x)∧�[0,5]Close(x)︸ ︷︷ ︸
ϕ1

7

)∨ (∃y. ¬Close(y)∧¬Close(y)S[5,∞) Open(y)︸ ︷︷ ︸
ϕ2

7

),

which is satisfied whenever an (Open,(x)) event follows a (Close,(x)) within 5 time
units for some x∈D, or there is a (Close,(y)) event for some y ∈D that is not followed
by any (Close,(y)) event within 5 time units. Consider the following trace:

σ7 = ((0,{(Open,(1))}),(1,{(Close,(2))}),(5,{(Open,(2))})) .
We have |=σ7 ϕ7: events (Close,(2)) and (Open,(2)) at timestamps 1 and 5 satisfy the
left disjunct, while the (Open,(1)) event at timestamp 0 and the lack of a (Close,(1))
event between timestamps 0 and 5 satisfies the right disjunct. As ϕ7 is closed, the set
of valuations satisfying it is { /0}, where /0 denotes the empty application. We compute
enf(ϕ7,σ7, /0) = FIXPOINT(σ7,enfor, ϕ1

7, ϕ
2
7, /0).

Since σ7 satisfies both ϕ1
7 and ϕ2

7, we get:

enfor, ϕ1
7, ϕ

2
7, /0(σ7) = enf(ϕ1

7,σ7, /0)� enf(ϕ2
7,σ7, /0)

= enf(Open(x)∧�[0,5]Close(x),σ7,{x �→ 2})�
enf(¬Close(y)∧¬Close(y)S[5,∞) Open(y),σ7,{y �→ 1})

= enf(Open(x),σ7,{{x �→ 2}})� enf(¬Close(y),σ7,{{y �→ 1}})
= ({(Open,(2))}, /0)� ( /0,{(Close,(1))})
= ({(Open,(2))},{(Close,(1))}).

We then update σ7:

σ′
7 = update(σ7,enfor, ϕ1

7, ϕ
2
7, /0(σ7))

= (({0,Open,(1)}),(1,{Close,(2)}),(5,{Close,(1)}))
and check that σ′

7 = update(σ′
7,enfor, ϕ1

7, ϕ
2
7, /0(σ

′
7)), i.e., that �|=σ′

7
ϕ7.

Hence, we finally get μ̂ϕ7(σ7) = enf(ϕ7,σ7, /0) = ({(Open,(2))},{(Close,(1))}).

6.3 Correctness and Transparency

For any monitorable, future-free and closed ϕ ∈ GMFOTL and finite σ ∈ T
†, the

enforcer μ̂ϕ always terminates. Termination is a consequence of Lemma 4 above; the
corresponding proofs are given in our extended report [35]. Having established termi-
nation, we can prove that our enforcer is correct and transparent:



222 F. Hublet et al.

Theorem 3. Let ϕ ∈ GMFOTL be closed, monitorable and future-free. Then μ̂ϕ is a
correct and transparent enforcer with respect to L(�¬ϕ)∩T

† and DB
†.

At this point, it is worth reflecting on the effect that the assumption Sup∩Cau= /0
has on the correctness of our enforcer. In general, dropping this assumption results
in some non-enforceable formula being equivalent to some formula �¬ψ with ψ ∈
GMFOTL; thus, Theorem 2 no longer holds. For example, a formula such as ϕ7 =
�¬(C∨¬C) where C ∈ Sup∩Cau and a(C) = 0 is not enforceable: given an initially
empty trace—on which, by convention, ϕ7 is satisfied—adding any first timepoint
makes the formula unsatisfiable, since ¬(C∨ ¬C) ≡ ⊥. This rules out enforceability,
which requires that appending only-observable events to a valid trace does not lead to a
violation.

To understand why we need to assume Sup∩Cau= /0 for the above algorithm to be
correct, consider the behavior of μ̂ϕ7 for the (non-enforceable) formula ϕ7 above on the
trace σ7 = (({C},0)). The enforcer calls FIXPOINT(σ7,enfor, C, ¬C, /0), which itself calls
enfor, C, ¬C, /0(σ7). This routine determines that only the left disjunct C is satisfied, and
returns the actions (D−,D+) = ({C}, /0). We get σ′

7 = ((0, /0)) and call enfor,C,¬C(σ7)
again to find a fixpoint. Now, the second disjunct is not satisfied, leading to the actions
(D−,D+) = ( /0,{C}) and to the updated trace σ′′

7 = ((0,{C})) = σ7. The same process
repeats indefinitely.

When Sup∩Cau = /0, such a behavior is avoided. Since only suppressable events
are suppressed and causable events caused, and since suppressable and causable events
are disjoint, the algorithm will never try to suppress (resp. cause) an event that it has
previously caused (resp. suppressed). Hence, the sets of caused and suppressed events
can only grow during the fixpoint computation. This ensures termination, as any new
iteration except the last one must compute at least one new event to cause or suppress.

Note that the assumption Sup∩Cau = /0 can be relaxed if we additionally require
each suppressable and causable event to appear only with, or only without, a nega-
tion in the formula. In the definition of enf, each element from Sup∩Cau can then be
considered to belong to Sup or Cau only.

7 Implementation

We have implemented our enforcer in the EnfPoly tool [34], which extends the MonPoly
tool [13] with ca. 500 lines of OCaml code. Users can specify suppressable and causable
events by adding “-” or “+” after the corresponding event description in the signature.

Example 7. The example signature Σ can be specified as:

Open(int)- Close(int)+ Knock(int)

Events that are both enforceable and causable can be specified, e.g. as SomeE+-. In this
case, for each formula to be enforced, a simple constraint-solving procedure is used to
determine whether each such event can be considered only enforceable or only causable
in the context of the current formula.



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 223

Strictly Relative-Past MFOTL. Note that Algorithm 1 takes as input a monitorable and
enforceable MFOTLF

� formula. Monitorability and enforcability can be syntactically
approximated, but determining whether an MFOTL formula is future-free is undecid-
able [35]. Therefore, we have also developed a syntactical approximation of future-
free formulae, called strictly relative-past formulae, which EnfPoly uses in practice.
We formally define the fragment in our extended report [35]. Intuitively, all formu-
lae that use only past temporal operators (i.e. past-only MFOTL) are strictly relative-
past. Additionally, the strictly relative-past fragment contains many non-past formulae,
for which one can statically verify that they do not depend on the future. For exam-
ple, ϕ8 = �[5,+∞)(Close(2)U[0,5) Open(3)) is strictly relative-past, but not past-only.
Observe that the intervals of the temporal operators of ϕ8 ensure that its truth value
does not depend on future events: the evaluation of ϕ8 at timestamp τ uses Close events
from timestamps ≤ τ− 5, and Open from timestamps < τ− 5+ 5 = τ, which all lie in
the past.

To enforce a formula of the form �¬ϕ, EnfPoly checks if ϕ is closed, in GMFOTL,
and strict relative-past. Associative and commutative rewriting is used to relax the
GMFOTL membership conditions in conjuncts. Then, the enforcement loop starts. At
every timepoint, the enforcer reacts either with OK, if there is no violation, or with a set
of events to cause and a set of events to suppress, otherwise.

Example 8. The output of EnfPoly when enforcing formulae �¬ϕ6 and �¬ϕ7 (from
Examples 5 and 6) on traces σ6 and σ7, respectively, is shown in the table below.

Formula: �¬ϕ6, Trace: σ6 Formula: �¬ϕ7, Trace: σ7

@0 Open(1); @0 Open(1);
[Enforcer] Suppress: Open(1) [Enforcer] OK.
[Enforcer] Cause: Close(2) @1 Close(2);
[Enforcer] OK. [Enforcer] OK.

@5 Open(2);
[Enforcer] Suppress: Open(2)
[Enforcer] Cause: Close(1)
[Enforcer] OK.

Timestamped databases (prefixed with @) of a trace are incrementally input to Enf-
Poly, while its output (prefixed with [Enforcer]) is shown chronologically interleved
with the input. When enforcing �¬ϕ6 on σ6, the enforcer immediately reacts to the
the first database {(Open,(1))} at timestamp 0 with two actions: it suppresses the event
(Open,(1)) and causes the event (Close,(2)). Finally, it indicates that it has finished
enforcing the formula by emitting OK. For �¬ϕ7, EnfPoly processes three timestamped
databases. The first two do not violate the policy and hence there is no reaction other
than OK from the enforcer. The third database causes a violation and the enforcer sup-
presses event (Open,(2)) and causes event (Close,(1)) to satisfy the policy.



224 F. Hublet et al.

Fig. 3. Policies used to compare EnfPoly to GREP

8 Evaluation

We now compare our enforcer with other state-of-the-art tools. As our tool is the first
one to support the enforcement of first-order temporal policies, comparison is only pos-
sible with (1) propositional temporal enforcers or (2) first-order temporal monitors.

Note that when there are no causable events in the signature, online monitoring
tools can be used as online enforcers in the following way. First, before the events of
every timepoint are sent to the monitor, save the monitor’s internal state. Then, have
the monitor process the timepoint. If the monitor does not detect a violation, save the
monitor’s state again and proceed with the next timepoint. If a violation is detected,
restore the previous saved state and re-read only the only-observable events from the
timepoint that led to a violation, suppressing all suppressable events from the last time-
point. When the formula to monitor is enforceable and there are no causable events
in the signature, this construction always provides a valid enforcer. This approach has
been used recently [33] to perform MFOTL enforcement with MonPoly.

Our evaluation aims to answer the following research questions:

RQ1. Does EnfPoly show better performance than existing propositional enforcers?
RQ2a. Given an MFOTL formula, how much overhead does EnfPoly’s enforcement

cause compared to MonPoly’s monitoring of the same formula?
RQ2b. Does EnfPoly show better performance in enforcing formulae over a signature

with no causable events than MonPoly adapted to be an online enforcer?

For RQ1, we focus on runtime enforcement tools, which use a setup similar to ours
in terms of enforcement capabilities. We compare EnfPoly to GREP [49]. The tool
GREP, along with TiPEX and Proactive Libraries, is one of three tools referenced in
a recent survey paper [26]. GREP has been shown to outperform TiPEX by up to two
orders of magnitude [49], and, unlike Proactive Libraries, it comes with an publicly
available implementation. For RQ2, we compare EnfPoly to MonPoly [13].

In all experiments, we measure the enforcers’ memory using Python’s psutil. We
also measure enforcers’ total runtime, as well as their latency, i.e., the time spent waiting
for an enforcer to compute its output, which we normalize by the number of events in



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 225

the trace. The speedup of our tool with respect to a tool t is computed as the difference
between t’s and our tool’s runtime divided by t’s runtime. All experiments are run on
an 2.4 GHz Intel Core i5-1135G7 QuadCore CPU with 32 GB RAM.

Fig. 4. Runtime and memory consumption of EnfPoly and GREP



226 F. Hublet et al.

EnfPoly vs GREP (RQ1). To compare the performance of the two enforcers, we con-
sider the three policies presented on Fig. 3, which are slight adaptations of the three
benchmark examples used in [45,49] to evaluate GREP and TiPEX. The original bench-
mark policies were not enforceable according to Definition 2. To enable enforceability,
some previously non-accepting states were made accepting. As GREP takes as input
policies specified as timed automata, we provide both an automaton and an MFOTLF

�
definition for each formula. These specifications are equivalent on traces with at most
one event per database. We generate such random traces of length L ·n= 50000 with

– L= 5000 unique timestamps from {1, . . . ,L};
– timestamps τi equal to � i

n� for timepoint i ∈ {1 . . .L ·n}, where n= 10;
– each timepoint containing an event with probability p and no event otherwise; and
– event names sampled uniformly from {a,r} for χ1 and from {a,g,r} for χ2 and χ3.

For GREP, the duration of a time unit is set to 1 ms. GREP’s and EnfPoly’s code is
instrumented to report the latency of processing inputs (i.e., excluding communication
costs). Communication costs were excluded since GREP and EnfPoly receive inputs in
a different format (one timepoint per line for EnfPoly, several timepoints per line for
GREP). The experiment is repeated N = 25 times for various values of p to measure
the effect of the event rate (i.e., the number of events per time unit) on the enforcers’
performance. Note that as the signatures of χ1, χ2, and χ3 contain at most three event
names, we can keep the maximal number of events per timestamp small, fixing n= 10
and varying p only. GREP is run in online mode with the “fast” option (flag -f) activated.

For formulae χ1 and χ2, EnfPoly is faster than GREP on average for all values of
p, with a speedup between 40% and 90%. For χ3, GREP outperforms EnfPoly by up
to 20% for p ≥ 0.55, but underperforms it for p < 0.55. The corresponding summary
figures are presented in Fig. 4a. Numerical data is given in Table 1 in the Appendix.

Additionally, in Fig. 4b, we plot the cumulated latency and the memory consump-
tion over time for N = 100 individual executions of both EnfPoly and GREP. The mem-
ory consumption of our tool is constant over time, while GREP’s is linear. GREP also
displays quadratic latency for policy χ1, while EnfPoly’s latency is constant in all three
cases, resulting in linear cumulative latency.

EnfPoly vs MonPoly (RQ2). For RQ2a, we compare the runtime of EnfPoly with the
runtime of MonPoly (used as a monitor) on the same traces and formulae. For RQ2b,
we repeat this experiment using MonPoly as an enforcer, in the way described above.

In both cases, we generate random enforceable and monitorable MFOTL formulae
and random traces over a signature (int,E,a) with E = Sup = {A,B,C} and a(·) = 1.
The random formula generator has a configurable maximal depth d and samples bounds
of temporal operator intervals uniformly from {(i, j) ∈ {0, . . . , I}2 | i ≤ j}. Random
traces of length 1000 are generated with timestamps 1,2, . . . ,L with L = 1000 with no
repetitions. The number of events in a database is sampled according to the binomial
distribution with n trials and success probability p, while event names are sampled
uniformly from E. Finally, event’s arguments are sampled uniformly from {1, . . . ,A}.

Given parameters n,A,d, I ∈ N and p ∈ [0,1], both tools are executed on pairs of
independently generated random traces and enforceable and monitorable MFOTLF

� for-
mulae with the same combinations of parameters, repeated N = 25 times.



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 227

For all values of the parameters, enforcement with EnfPoly adds up to 50% runtime
overhead on top of the costs of monitoring with MonPoly, and does not affect mem-
ory consumption. On the other hand, using EnfPoly for enforcement is still 4 to 20
times faster than using MonPoly as an enforcer, working in the way described above,
and with a comparable memory consumption. Most of the overhead of MonPoly used
as an enforcer is due to loading and saving the (complete) monitor state at each iter-
ation, which EnfPoly avoids. Average runtime costs are under 0.1 ms per event, with
most averages under 10 µs. In individual executions, both tools display constant time
and memory consumption. Detailed numerical results can be found in Table 1 in the
Appendix (for RQ2b), as well as in our extended report [35] (for RQ2a).

Discussion. The above experiments show that EnfPoly, despite supporting a much
larger specification language, displays a runtime and memory performance at least as
good as GREP’s. Our enforcer’s performance is less sensitive to the choice of the input
formula and consumes a constant amount of memory over time. Compared to using
MonPoly as an MFOTL enforcer, EnfPoly provides a speedup of one order of magni-
tude. Runtime and memory consumption per event processed is stable or decreasing
when more events occur simultaneously, and is not affected by longer trace sizes.

9 Conclusion

We have presented both the theory and practice of enforcing metric first-order temporal
logic (MFOTL) formulae with disjoint sets of causable and suppressable events. We
have characterized enforceability for MFOTL for such enforcers and proposed an effi-
cient enforcement algorithm. Our enforcer EnfPoly extends the MonPoly monitoring
tool and it is the first tool for first-order temporal logic enforcement. We have evaluated
EnfPoly and showed that although it supports a more expressive language it can still
outperform state-of-the-art enforcers.

As future work, we plan to generalize our approach to allow events that are both
suppressable and causable. Currently, it remains open whether enforceability can be
characterized syntactically modulo equivalence (as in Theorem 2) when this assump-
tion is lifted. But even if no such characterization exists, in practice one could develop
enforcement algorithms for larger (syntactical) fragments of enforceable policies.

Acknowledgments. We thank Dmitriy Traytel and three anonymous ESORICS reviewers for
their helpful comments. François Hublet is supported by the Swiss National Science Foundation
grant “Model-driven Security & Privacy” (204796).

A Evaluation Data

Table 1 shows the raw evaluation data produced by our experiments. The table on the
left contains the data obtained when answering RQ1, while the data in the table on
the right is obtained when answering RQ2. In the former we use three policies χ1, χ2,
and χ3, while in the latter we generate random enforceable and monitorable MFOTL
formulae.



228 F. Hublet et al.
Ta

bl
e
1.

M
ea

n
ru

nt
im

e
pe

rf
or

m
an

ce
(s

ta
nd

ar
d

de
vi

at
io

n)
fo

r
va

ri
ou

s
pa

ra
m

et
er

va
lu

es



Real-Time Policy Enforcement with Metric First-Order Temporal Logic 229

Parameter d is the depth of the generated random formulae, while I defines the
sample space for the bounds of temporal operator intervals: {(i, j) ∈ {0, . . . , I}2 | i≤ j}.

Random traces have length L ·n with timestamps 1,2, . . . ,L, each repeated n times.
Event names are sampled uniformly from E= {A,B,C}, while their arguments are sam-
pled uniformly from {1, . . . ,A}. The number of events in a database is sampled accord-
ing to the binomial distribution with n trials and success probability p.

Given parameters n,A,d, I ∈ N and p ∈ [0,1], both tools are executed on pairs of
independently generated random traces and enforceable and monitorable MFOTLF

� for-
mulae with the same combinations of parameters repeated N times.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive
systems. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035748

2. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On bidirectional runtime enforce-
ment. In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 3–21.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0_1

3. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43(1), 116–
146 (1996). https://doi.org/10.1145/227595.227602

4. Ames, S.R., Gasser, M., Schell, R.R.: Security kernel design and implementation: an intro-
duction. Computer 16(7), 14–22 (1983). https://doi.org/10.1109/MC.1983.1654439

5. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider, S., Ryan,
P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 681–699. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29959-0_33

6. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed sys-
tems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp.
1–20. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3_1

7. Bartocci, Ezio, Falcone, Yliès (eds.): Lectures on Runtime Verification. LNCS, vol. 10457.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

8. Basin, D., et al.: A formally verified, optimized monitor for metric first-order dynamic logic.
In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp.
432–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_25

9. Basin, D., Debois, S., Hildebrandt, T.: In the nick of time: proactive prevention of obliga-
tion violations. In: Computer Security Foundations Symposium (CSF), pp. 120–134. IEEE
(2016). https://doi.org/10.1109/CSF.2016.16

10. Basin, D., Debois, S., Hildebrandt, T.: Proactive enforcement of provisions and obligations.
J. Comput. Secur. (to appear)

11. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revisited. ACM
Trans. Inf. Syst. Secur. 16(1), 1–26 (2013). https://doi.org/10.1007/978-3-642-28641-4_17

12. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 1–45 (2015). https://doi.org/10.1145/2699444

13. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G.,
Havelund, K. (eds.) International Workshop on Competitions, Usability, Benchmarks, Eval-
uation, and Standardisation for Runtime Verification Tools (RV-CuBES), vol. 3, pp. 19–28.
Kalpa (2017). https://doi.org/10.29007/89hs

14. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Workshop on Foun-
dations of Computer Security (FCS). Citeseer (2002)

https://doi.org/10.1007/BFb0035748
https://doi.org/10.1007/978-3-030-78089-0_1
https://doi.org/10.1145/227595.227602
https://doi.org/10.1109/MC.1983.1654439
https://doi.org/10.1007/978-3-030-29959-0_33
https://doi.org/10.1007/3-540-60472-3_1
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1109/CSF.2016.16
https://doi.org/10.1007/978-3-642-28641-4_17
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89hs


230 F. Hublet et al.

15. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga:
time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 121–125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_14

16. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_45

17. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifications. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 450–464. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949_30

18. Brihaye, T., Geeraerts, G., Ho, H.-M., Monmege, B.: MIGHTYL: a compositional transla-
tion from MITL to timed automata. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10426, pp. 421–440. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-
9_21

19. Bulychev, P., David, A., Larsen, K., Li, G.: Efficient controller synthesis for a fragment of
MTL0,∞. Acta Inf. 51(3-4), 165–192 (2014). https://doi.org/10.1007/s00236-013-0189-z

20. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded history
encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995). https://doi.org/10.1145/
210197.210200

21. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with mandatory results
automata. Int. J. Inf. Secur. 14(1), 47–60 (2014). https://doi.org/10.1007/s10207-014-0239-
8

22. Donzé, A., Raman, V.: BluSTL: controller synthesis from signal temporal logic specifica-
tions. In: Frehse, G., Althoff, M. (eds.) International Workshop on Applied veRification for
Continuous & Hybrid Systems (ARCH@CPSWeek). EPiC, vol. 34, pp. 160–168. EasyChair
(2015). https://doi.org/10.29007/g39q

23. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9_25

24. Erlingsson, Ú., Schneider, F.: SASI enforcement of security policies: a retrospective. In:
Kienzle, D., Zurko, M.E., Greenwald, S., Serbau, C. (eds.) Workshop on New Security
Paradigms, pp. 87–95. ACM (1999). https://doi.org/10.1145/335169.335201

25. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular timed
properties by suppressing and delaying events. Sci. Comp. Program. 123, 2–41 (2016).
https://doi.org/10.1016/j.scico.2016.02.008

26. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verification
tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021). https://doi.org/10.1007/
s10009-021-00609-z

27. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composi-
tion, synthesis, and enforcement abilities. Form. Methods Syst. Des. 38(3), 223–262 (2011).
https://doi.org/10.1007/s10703-011-0114-4

28. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In: Finkbeiner, B.,
Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 48–69. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32079-9_4

29. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL synthe-
sis. Form. Methods Syst. Des. 39(3), 261–296 (2011). https://doi.org/10.1007/s10703-011-
0115-3

30. Havelund, K., Peled, D., Ulus, D.: DejaVu: a monitoring tool for first-order temporal logic.
In: Workshop on Monitoring and Testing of Cyber-Physical Systems (MT-CPS), pp. 12–13.
IEEE (2018). https://doi.org/10.1109/MT-CPS.2018.00013

31. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with BDDs. Form.
Methods Syst. Des. 56(1), 1–21 (2020). https://doi.org/10.1007/s10703-018-00327-4

https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/11817949_30
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/s00236-013-0189-z
https://doi.org/10.1145/210197.210200
https://doi.org/10.1145/210197.210200
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.29007/g39q
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1145/335169.335201
https://doi.org/10.1016/j.scico.2016.02.008
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1007/s10703-018-00327-4


Real-Time Policy Enforcement with Metric First-Order Temporal Logic 231

32. Hofmann, T., Schupp, S.: TACoS: a tool for MTL controller synthesis. In: Calinescu, R.,
Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp. 372–379. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92124-8_21

33. Hublet, F.: The Databank Model. Master’s thesis, ETH Zürich (2021)
34. Hublet, F., Basin, D., Krstić, S.: EnfPoly’s development repository (2022). https://gitlab.ethz.

ch/fhublet/mfotl-enforcement
35. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-order tem-

poral logic. Tech. rep., ETH Zürich, Extended Report (2022). https://gitlab.ethz.ch/fhublet/
mfotl-enforcement/-/blob/main/paper/extended.pdf

36. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: International Conference
Formal Methods in Computer-Aided Design (FMCAD), pp. 117–124. IEEE (2006). https://
doi.org/10.1109/FMCAD.2006.22

37. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.)
LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-60178-3_93

38. Krstić, S., Schneider, J.: A benchmark generator for online first-order monitoring. In: Desh-
mukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 482–494. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-60508-7_27

39. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Symposium on Foundations
of Computer Science (FOCS), pp. 531–542. IEEE (2005). https://doi.org/10.1109/SFCS.
2005.66

40. Li, G., Jensen, P., Larsen, K., Legay, A., Poulsen, D.: Practical controller synthesis for mtl0,∞.
In: Erdogmus, H., Havelund, K. (eds.) ACM SIGSOFT International SPIN Symposium on
Model Checking of Software, pp. 102–111. ACM (2017). https://doi.org/10.1145/3092282.
3092303

41. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with program mon-
itors. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol.
3679, pp. 355–373. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_21

42. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur. 12(3), 1–41 (2009). https://doi.org/10.1145/1455526.1455532

43. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P.
(eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006). https://
doi.org/10.1007/11867340_20

44. Peter, H.-J., Ehlers, R., Mattmüller, R.: Synthia: verification and synthesis for timed
automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 649–
655. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_52

45. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: TiPEX: a tool chain for timed property
enforcement during eXecution. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol.
9333, pp. 306–320. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_22

46. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM Symposium on Prin-
ciples of Programming Languages (POPL), pp. 179–190. ACM (1989). https://doi.org/10.
1145/75277.75293

47. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ausiello,
G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–
671. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035790

48. Raman, V., Donzé, A., Sadigh, D., Murray, R., Seshia, S.: Reactive synthesis from signal
temporal logic specifications. In: Girard, A., Sankaranarayanan, S. (eds.) International Con-
ference on Hybrid Systems: Computation & Control (HSCC), pp. 239–248. ACM (2015).
https://doi.org/10.1145/2728606.2728628

https://doi.org/10.1007/978-3-030-92124-8_21
https://gitlab.ethz.ch/fhublet/mfotl-enforcement
https://gitlab.ethz.ch/fhublet/mfotl-enforcement
https://gitlab.ethz.ch/fhublet/mfotl-enforcement/-/blob/main/paper/extended.pdf
https://gitlab.ethz.ch/fhublet/mfotl-enforcement/-/blob/main/paper/extended.pdf
https://doi.org/10.1109/FMCAD.2006.22
https://doi.org/10.1109/FMCAD.2006.22
https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.1007/978-3-030-60508-7_27
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1145/3092282.3092303
https://doi.org/10.1145/3092282.3092303
https://doi.org/10.1007/11555827_21
https://doi.org/10.1145/1455526.1455532
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/978-3-642-22110-1_52
https://doi.org/10.1007/978-3-319-23820-3_22
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1145/2728606.2728628


232 F. Hublet et al.

49. Renard, M., Rollet, A., Falcone, Y.: GREP: games for the runtime enforcement of properties.
In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp.
259–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67549-7_16

50. Riganelli, O., Micucci, D., Mariani, L.: Policy enforcement with proactive libraries. In: Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp. 182–192. IEEE (2017). https://doi.org/10.1109/SEAMS.2017.9

51. Rushby, J.: Design and verification of secure systems. In: Howard, J., Reed, D. (eds.) Sym-
posium on Operating System Principles (SOSP), pp. 12–21. ACM (1981). https://doi.org/10.
1145/800216.806586

52. Rushby, J.: Kernels for safety. In: Safe and Secure Computing Systems, pp. 210–220 (1989)
53. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino,

T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75596-8_33

54. Schneider, F.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000). https://doi.org/10.1145/353323.353382

55. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric first-
order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
310–328. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_18

56. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to safety LTL

synthesis. In: HVC 2017. LNCS, vol. 10629, pp. 147–162. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70389-3_10

https://doi.org/10.1007/978-3-319-67549-7_16
https://doi.org/10.1109/SEAMS.2017.9
https://doi.org/10.1145/800216.806586
https://doi.org/10.1145/800216.806586
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10

	Real-Time Policy Enforcement with Metric First-Order Temporal Logic
	1 Introduction
	2 Related Work
	3 Policy Enforcement
	4 Metric First-Order Temporal Logic
	5 MFOTL Enforceability
	6 MFOTL Enforcement in the Finite Case
	6.1 Monitoring MFOTL Formulae
	6.2 Enforcer
	6.3 Correctness and Transparency

	7 Implementation
	8 Evaluation
	9 Conclusion
	A  Evaluation Data
	References




