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Abstract
Amonitoring algorithm is trace-length independent if its space consumption does not depend
on the number of events processed. The analysis of manymonitoring algorithms has aimed at
establishing their trace-length independence. But a monitor’s space consumption can depend
on characteristics of the trace other than its size. We put forward the stronger notion of event-
rate independence, where a monitor’s space usage does not depend on the event rate, i.e., the
number of events in a fixed time unit. This property is critical for monitoring voluminous
streams of events with a high arrival rate. We propose a new algorithm for metric temporal
logic (MTL) that is almost event-rate independent, where “almost” denotes a logarithmic
dependence on the event rate: the algorithm must store the event rate as a number. After-
wards, we investigate more expressive logics. In particular, we extend linear dynamic logic
with past operators and metric features. The resulting metric dynamic logic (MDL) offers the
quantitative temporal conveniences of MTL while increasing its expressiveness. We show
how to modify our MTL algorithm in a modular way, yielding an almost event-rate inde-
pendent monitor for MDL. Finally, we compare our algorithms with traditional monitoring
approaches, providing empirical evidence that almost event-rate independence matters in
practice.

Keywords Runtime verification · Monitoring · Temporal logic · Regular expressions

1 Introduction

Rules are integral to society. Companies and public institutions are often highly regulated
and subjected to rules, laws, and policies that they must comply to and demonstrate their
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compliance to. In many domains, the rules are sufficiently precise that automated monitoring
tools can be used to prove compliance or identify violations.

In this paper we address the online monitoring problem: Given an unbounded stream of
events and a property expressed in a formal specification language, identify all the points in
the stream that violate the property. Monitoring algorithms come in two flavors: online algo-
rithms, which analyze events as they occur in an unbounded stream, and offline algorithms,
which can analyze, in any order, events stored in finite traces. Compared with other verifica-
tion problems, monitoring is attractive because it can be solved in a scalable way. Monitoring
algorithms usually have a modest time complexity per inspected event. In contrast, keep-
ing the space consumption low for high-velocity event streams is more challenging; this is
precisely the problem we tackle here.

Monitoring algorithms have been analyzed in the past with respect to their space con-
sumption. The notion of trace-length independence requires a monitor’s space complexity to
be constant in the overall number of events [11,14]. Trace-length independence distinguishes
monitors that can handle huge volumes of data from those that cannot. The classic 3V char-
acterization by volume, velocity, and variety [36], tells us, however, that volume is only one
challenging aspect of big data. Here, we account for another aspect: velocity or event rate.

Our first contribution is a new notion, event-rate independence, which states that a mon-
itor’s space consumption does not depend on the event rate, i.e., the number of events in
a fixed time unit. We survey existing monitors (Sect. 2) for past-only linear temporal logic
(ptLTL) [28] and its extension with metric intervals (ptMTL) [40] and we identify those
monitors that have this property. For future-time operators, no such algorithms exists.

From a traditional standpoint, event-rate independent monitors for properties depending
on future events seem impossible: these dependencies require themonitor towait before it can
output a Boolean verdict on whether the property holds. Because of this, traditional monitors
only handle bounded future operators. But even in the bounded case, the sheer number of
events that the monitor may need to wait for can be larger than the event rate. Moreover, it is
unclear if one could even achieve a slightly weaker notion, which we call almost event-rate
independence, where the monitor’s space complexity is upper bounded by a logarithm of the
event rate, whereby the monitor can store indices or pointers.

As our second contribution, we present almost event-rate independent monitoring algo-
rithms for specification languages with past and future operators. We first focus on metric
temporal logic (MTL) [32] interpreted over streams of time-stamped events (Sect. 3). This
discrete semantics is based on integer time-stamps, which reflects the imprecision of phys-
ical clocks and is algorithmically easier to handle than a dense, interval-based model [10].
A finite number of consecutive events, each defining a time-point, might, however, carry
the same time-stamp. The event rate is formally defined as the number of time-points per
time-stamp (Sect. 4). There are several trace-length independent monitoring algorithms for
MTL on streams with a bounded event rate, but none that are event-rate independent or even
trace-length independent on streams with an unbounded event rate.

To achieve almost event-rate independence, our monitor produces a different kind of
output than traditional monitors (Sect. 5). Namely, it outputs two kinds of verdicts: standard
Boolean verdicts expressing that a formula is true or false at a time-point and equivalence
verdicts. The latter express that the monitor does not know the Boolean verdict at a given
time-point, but it knows that the verdict will be equal to another one (presently also not
known) at a different time-point. Additionally, our monitor may output verdicts out of order
relative to the input stream. Thus, it must indicate in the output to which time-point a verdict
belongs. Instead of storing (and outputting) a time-point reference, we store the time-stamp
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and the time-point’s relative offset denoting its position among the time-points labeled with
the same time-stamp.

In reasoning about our monitor’s space requirements, we assume that time-stamps can
be stored in constant space, which is realistic since 32 bits (as used for Unix time-stamps)
will suffice to model seconds for the next 20years. Storing the offset, however, requires
space logarithmic in the event rate. Note that one could argue that, if time-stamps model
seconds, there is a physical bound on the number of events that fit into this fixed unit of
time and the space to store this number can be considered constant. However, we envi-
sion applications where time-stamps model days, months, or even years, for which the
number of events fitting into one time unit increases dramatically. Beyond this logarith-
mic dependency, our monitor’s space usage is independent of the event rate. This applies
even to unbounded future operators, which our monitor handles without running out of
memory.

Although our monitor’s output is nonstandard, we are convinced of its usefulness. First,
the output contains sufficient information to reconstruct all Boolean verdicts. Second, a
monitor’s users are often only interested in the existence of violations. In this case, they
can safely ignore all equivalence verdicts. Third, users are generally interested in the first
(earliest) violation. We ensure that equivalence verdicts are output for the later time-points,
while the earliest unresolved time-point stays in the monitor’s memory and is eventually
output with a Boolean verdict. Thus, users will always see a Boolean verdict at the earliest
violating event.

Our third contribution is to extend the specification language’s expressivenesswhile retain-
ing almost event-rate independence. In particular, LTL does not express all regular languages.
For example, one cannot express that some event occurs at every other position in a stream.
This lack of expressiveness is problematic in practice [44] and carries over to MTL’s point-
based semantics [12]. A realistic example that cannot be expressed in MTL is that, within
the next day, an action is approved and executed and the approval happens before the execu-
tion.

To overcome this limitation, researchers have developed numerous, more expressive
extensions of LTL and MTL by extending these languages with regular-expression-like
constructs [45]. This resulted in specification languages like the industrially standardized
property specification language (PSL) [44], regular linear temporal logic (RLTL) [33,38],
and linear dynamic logic (LDL) [18]. We survey these and other languages (Sect. 2). All of
them lack some of the features that makeMTL an attractive choice: either its support for past
operators or its quantitative features. We propose metric dynamic logic (MDL), an exten-
sion of LDL with past operators and quantitative features (Sect. 6) and extend our almost
event-rate independent MTL algorithm to handle this more expressive language (Sect. 7).
Our extension builds on Antimirov’s partial derivatives of regular expressions [1].

We report on efficient implementations of our MTL and MDL monitoring algorithms
(Sect. 8) and experimentally evaluate them. We demonstrate that they outperform state-of-
the-art monitoring tools for MTL and timed regular expressions (Sect. 9).

Taken together, our contributions lay the foundations for onlinemonitoring that scales both
with respect to the volume and the velocity of the event stream. This article is based on our
earlier TACAS [3] and RV [7] conference papers. The additional contributions of this article
are: (1) a unified presentation of the two works; (2) a simplified syntax for metric dynamic
logic (Sect. 6); (3) more detailed correctness proofs of the algorithms (Sects. 5.3, 7.3); (4)
additional implementation details (Sect. 8); and (5) a substantially more extensive experi-
mental evaluation (Sect. 9).
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2 Related work

Wefirst survey existing trace-length and event-rate independent onlinemonitoring algorithms
for specification languageswith a point-based time semantics and discrete time-stamps. There
are numerous monitoring algorithms for other time domains and semantics and we leave the
study of event-rate independence in these settings as future work. Afterwards, we survey
languages that can express ω-regular languages and associated monitoring algorithms.

Space Efficient Algorithms Havelund and Roşu [28] propose a simple, yet efficient, online
monitor for past-time linear temporal logic (ptLTL) using dynamic programming. The satis-
faction relation of ptLTL at a given time-point in an event stream can be recursively defined
in terms of the truth-values of subformulas at the previous time-point in the event stream.
They exploit this to develop an algorithm that stores the truth-values of all subformulas at
just the two latest time-points. Their algorithm’s space complexity is linear in the formula’s
size.

Thati and Roşu [40] extend Havelund and Roşu’s results to provide a trace-length inde-
pendent, dynamic programming monitoring algorithm for MTL. The metric extension is
handled by additionally storing the truth-values of all the interval-skewed subformulas. These
are essentially the variants of the temporal subformulas that have their intervals skewed (or
shifted) down by some constant. Note that this algorithm crucially relies on the values of
time-stamps being discrete as otherwise the number of skewed subformulas would be infinite.
The monitor’s space complexity, therefore, depends only on the size of the formula and the
constants occurring in its intervals. Hence, their monitor is event-rate independent. However,
with no additional bookkeeping for the (unresolved) verdicts that depend on the future events,
the algorithm essentially implements a non-standard semantics for MTL, truncated to finite
traces. Namely, it outputs a verdict at each time-point without considering future events that
alter the verdict. Computing verdicts this way defeats the purpose of (top-level) future opera-
tors: An until that is not satisfied at the current time-point, but only at the next one, is reported
as a violation. Our algorithm builds upon these dynamic programming techniques [28,40].
However it implements MTL’s standard non-truncated semantics.

Basin et al. [4,9] introduce techniques to handle MTL and metric first-order temporal
logic with bounded future operators, adhering to the standard non-truncated semantics. Their
monitor uses a queue to postpone evaluation until sufficient time has elapsed to determine
the formula’s satisfiability at a previous time-point. This requires the algorithm to store, in
the worst case, all time-points during the time-interval while it waits. The monitor’s space
complexity therefore grows linearly with the event rate, as is confirmed by their empirical
evaluation [9, Section 6.3]. Havelund et al. [27] present a trace-length dependent algorithm
based on dynamic programming for past-only first-order temporal logic. The dependency on
the trace-length is inherent in the first-order setting with infinite data domains, since it is easy
to write formulas that require the monitor to store all previously seen data values.

Trace-length (but not event-rate) independent monitoring algorithms have also been pro-
posed for other temporal specification languages. Maler et al. [35] compare the expressive
power of timed automata and MTL. They show that past formulas can be converted to deter-
ministic timed automata (DTA) and that there are future formulas that cannot be represented
by a DTA. There exist trace-length independent monitors for ptLTL extended with counting
quantifiers [19], and ptMTL extended with recursive definitions [26]. D’Angelo et al. [14]
propose an online algorithm for a stream processing language called Lola that supports
past and future references. Lola’s semantics is defined in terms of relations between input
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and output streams. The authors identify an efficiently monitorable fragment of Lola, on
which their algorithm is trace-length independent. It is not clear how one can define the event
rate in the non-metric trace model they consider. Metric extensions of Lola [25,34] require
subsequent time-stamps to strictly increase, which limits the event rate in the discrete time
setting.

Temporal Logic and ω-regular Languages Dynamic LTL [29] (DLTL) is an extension of
LTL able to express all ω-regular languages. Leucker and Sánchez [33] propose regular LTL
(RLTL), which improves upon DLTL by allowing regular expressions to be nested arbitrarily
as LTL subformulas. RLTL’s power operator is also more suitable for extensions that can
handle the past. Sánchez and Leucker [38] extend RLTL with past operators and show that it
can be translated into a 2-way alternating parity automaton with size linear in the size of the
RLTL formula. But 2-way automata are not well-suited for the online monitoring of high-
velocity event streams, and removing bidirectionality incurs an exponential blowup [31]. Dax
et al. [15] propose a similar extension of the property specification language [44] (PSL) with
additional past operators, called regular temporal logic (RTL). They translate RTL formulas
into nondeterministic Büchi automata whose worst-case size is doubly exponential in the
size of the RTL formula.

More recently, De Giacomo and Vardi [18] revisited this problem for the finite-trace
semantics and introduced linear dynamic logic (LDL f ). This logic was inspired by proposi-
tional dynamic logic (PDL) [23], but its semantics closely resembles LTL. The authors do not
discuss past operators and do not provide a monitoring algorithm. However, they do provide
a general translation from LDL formulas to alternating finite state automata that employs
partial derivatives of regular expressions [1]. De Giacomo et al. [16,17] provide a direct
translation from LDL f formulas to nondeterministic automata that are more suitable for
monitoring. Faymonville et al. [20,21] propose an extension of LDL called parametric linear
dynamic logic (PLDL) that can specify quantitative temporal constraints. However, PLDL
does not support past operators and its point-based time model does not include time-stamps;
time is instead implicitly encoded in the time-points.

Asarin et al. [2] introduce timed regular expressions (TRE) and prove their equivalence to
timed automata. Subsequentworks propose offline [42] andonline [43] patternmatching algo-
rithms for TRE, implemented in theMontre tool [41]. Although TREwas originally defined
over both discrete point-based and dense interval-based time models, Montre assumes the
latter model. This makes it hard to use for streams with high event-rates in practice as the
dense time model assumes that events can be sampled with an arbitrary time granularity.

3 Metric temporal logic

Metric temporal logic (MTL) [32] is a logic for specifying qualitative and quantitative tem-
poral properties. We briefly describeMTL’s syntax and point-based semantics over a discrete
time domain. An in-depth account of various flavors of MTL is given elsewhere [10].

Let Σ be a set of atomic propositions. An event is a pair (π, τ ), where τ ∈ N is a time-
stamp and π ⊆ Σ is a set of propositions that are true at that event. An event stream is an
infinite sequence of events ρ = 〈(π0, τ0), (π1, τ1), (π2, τ2), . . .〉, written 〈(πi , τi )〉i∈N, with
monotonically increasing time-stamps: τi ≤ τi+1 for all i ∈ N. We write �i for the non-
negative time-stamp difference τi+1 − τi . We call the indices in ρ time-points, i.e., the event
(πi , τi ) occurs at time-point i . Moreover, we require that time progresses: for all time-stamps
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τ there exists a time-point i with τi > τ . These requirements allow successive time-points
to have identical time-stamps; e.g., τ0 = τ1 = τ2 = 5. Hence, time-stamps may stutter, but
only for finitely many time-points.

MTL’s syntax is given by the grammar

ϕ = p | ¬ϕ | ϕ ∨ ϕ | �I ϕ | �I ϕ | ϕ SI ϕ | ϕ UI ϕ,

where p ∈ Σ and I ∈ I. Here, I denotes the set of non-empty intervals over N. We write
[a, b] for the interval {x ∈ N | a ≤ x ≤ b}, where a ∈ N, b ∈ N ∪ {∞}, and a ≤ b. For
an interval I and n ∈ N, we define I − n to be the interval {x − n | x ∈ I } ∩ N and I−
to be the set of intervals {I − n | n ∈ N}, which is always finite. For instance, [2,∞)− is
{[2,∞), [1,∞), [0,∞)}. Note that the “−” operator is truncated over N, i.e., a − b = 0 for
a < b.

Along with the standard Boolean operators, MTL includes the past temporal operators�I

(previous) and SI (since) and the future temporal operators �I (next) and UI (until), which
maybe nested freely.We call a formulapast if its top-level operator is a past temporal operator.
We omit the subscript I if I = [0,∞), and we use the usual syntactic sugar for the additional
Boolean constants and operators true = p ∨ ¬p, false = ¬true, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ) and
the future temporal operators eventually ♦Iϕ ≡ true UI ϕ and always �Iϕ ≡ ¬♦I¬ϕ as
well as their past counterparts once �I and historically �I .

A formula is interpreted with respect to a fixed event stream ρ = 〈(πi , τi )〉i∈N at a time-
point i . The dependence on the fixed ρ is left implicit in the following definition (also in
many forthcoming ones), i.e., we write i | ϕ instead of the more standard ρ, i | ϕ.

i | p iff p ∈ πi

i | ¬ϕ iff i �| ϕ

i | ϕ ∨ ψ iff i | ϕ or i | ψ

i | �Iϕ iff i > 0 and �i−1 ∈ I and i − 1 | ϕ

i | �Iϕ iff �i ∈ I and i + 1 | ϕ

i | ϕ SI ψ iff j | ψ for some j ≤ i with τi − τ j ∈ I and k | ϕ for all j < k ≤ i
i | ϕ UI ψ iff j | ψ for some j ≥ i with τ j − τi ∈ I and k | ϕ for all i ≤ k < j

From the semantics of MTL, it is easy to derive an equivalent recursive definition for the
until and since operators for a fixed stream ρ as

i | ϕ S[a,b] ψ iff (a = 0 ∧ i | ψ)∨
(i > 0 ∧ �i−1 ≤ b ∧ i | ϕ ∧ i − 1 | ϕ S[a,b]−�i−1 ψ) (1)

i | ϕ U[a,b] ψ iff (a = 0 ∧ i | ψ) ∨ (�i ≤ b ∧ i | ϕ ∧ i + 1 | ϕ U[a,b]−�i ψ). (2)

Note that the formula being “evaluated” on the right-hand side of these recursive equations
has the same structure as the formula on the left-hand side, except that the interval has been
shifted by the difference between the current and the previous (or the next) time-stamps.
Our algorithm, described in Sect. 5, uses these equations to update the monitor’s state by
simultaneously monitoring the formulas arising from all possible interval shifts. We call such
formulas interval-skewed subformulas. For an MTL formula ϕ, let SF(ϕ) denote the set of
its subformulas defined in the usual manner. Note that ϕ ∈ SF(ϕ). We say that ψ is a proper
subformula of ϕ if ψ ∈ SF(ϕ) \ {ϕ}. The set of interval-skewed subformulas of ϕ is defined
as

ISF(ϕ) = SF(ϕ) ∪ {ϕ1 SJ ϕ2 | ϕ1 SI ϕ2 ∈ SF(ϕ) and J ∈ I−}
∪ {ϕ1 UJ ϕ2 | ϕ1 UI ϕ2 ∈ SF(ϕ) and J ∈ I−}.
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Fig. 1 Evaluation of a U[0,1] b on an example stream

Clearly, the size of ISF(ϕ) is bounded by O(|SF(ϕ)| × c), where c is the largest integer
constant occurring in the intervals of ϕ. We pick some well-order< over ISF(ϕ) that respects
the proper subformula relation, i.e., if ϕ is a proper subformula of ψ , then ϕ < ψ . We use
this to order the elements of ISF(ϕ) into an array in Sect. 5.

We also define the future reach (FR) of an MTL formula following Ho et al. [30], which
we subsequently use to analyze the complexity of our proposed algorithm.

FR(p) = 0 FR(¬ϕ) = FR(ϕ) FR(ϕ ∨ ψ) = max(FR(ϕ),FR(ψ))

FR(�Iϕ) = FR(ϕ) − inf(I ) FR(�Iϕ) = sup(I ) + FR(ϕ)

FR(ϕ SI ψ) = max(FR(ϕ),FR(ψ) − inf(I )) FR(ϕ UI ψ) = sup(I ) + max(FR(ϕ),FR(ψ))

Here max denotes the maximum of two integers and sup and inf denote the supremum and
infimum of sets of integers, respectively. For a bounded future MTL formula ϕ, i.e. a formula
for which all subformulas of the form α U[a,b] β, where b �= ∞, we have FR(ϕ) �= ∞.
Intuitively, events that have a time-stamp larger than τi +FR(ϕ) are irrelevant for determining
ϕ’s validity at a time-point i with the time-stamp τi .

Example 1 Consider the formula ϕ = a U[0,1] b and the event stream ρ = 〈({a}, 1), ({a}, 2),
({a}, 2), ({b}, 3), ({a, b}, 4), . . .〉. In Fig. 1, � and ⊥ denote the satisfaction and violation
of ϕ. Note that the verdict ⊥ at time-point 0 is determined only after the event ({b}, 3) has
arrived. This observationwould also apply, even if the event ({a}, 2)was replicated arbitrarily
often in the stream.

4 Almost event-rate independence

The space complexity of monitoring algorithms has been previously analyzed with respect
to two parameters: formula size and trace length. Usually, the formula is much smaller
than the trace and does not change during monitoring. Hence, an algorithm with a space
complexity exponential in the formula size is tolerable, but a space complexity linear in the
trace length is problematic since this corresponds to storing the entire trace. Researchers have
recently studied trace-length independence [11,14]. A monitor is trace-length independent
if its efficiency does not decline as the number of events increases.

Definition 1 Fix a set of streamsS. Amonitoring algorithmM isS-trace-length independent
if for all ρ ∈ S and for all time-points i , the space required byM after processing the event
at i when monitoring ρ is constant with respect to i . If S is the set of all streams, we drop S
and simply write trace-length independent.

Trace-length independence is critical for determining whether a monitor scales to large quan-
tities of data. However, it does not yield insights into the monitor’s performance regarding
other aspects of the stream, such as its event rate.

Definition 2 The event rate er of a stream ρ = 〈(πi , τi )〉i∈N at time-stamp τ is defined as
the number of time-points whose time-stamps are equal to τ , i.e., erρ(τ ) = |{i | τi = τ }|.
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Wepropose the notion of event-rate independence,whichnot only guarantees themonitor’s
memory efficiency with respect to the number of events, but also with respect to the rate at
which the events arrive. A varying event rate is a realistic concern inmany practically relevant
monitoring scenarios. For example, if the unit of time-stamps is on the order of days, there
may bemillions of time-points with the same time-stamp. An event-rate dependent algorithm
may work well on days with a few thousand events, but exhaust memory when the number of
events rises significantly. (Such a situation could be an indicator that something interesting
happened, which in turn makes the monitor’s output particularly valuable on that day.)

Definition 3 Fix a set of streams S. A monitoring algorithmM is S-event-rate independent
if for all ρ ∈ S and for all time-points i , the space required byM after processing the event
at i when monitoring ρ is constant with respect to erρ(τ ) for all τ ≤ τi , i.e., the event rates
in ρ at all time-stamps up to and including the current one. If S is the set of all streams, we
again drop S and simply write event-rate independent.

Note that event-rate independence implies S-event-rate independence for any set of
streams S. The same holds for (S-)trace-length independence. As an example, the dynamic
programming algorithms [28,40] for past-only MTL are event-rate independent. Their space
consumption only depends on the size of the formula.

The trace length up to time-point i is greater than the sum of the event rates erρ(τ ) for
τ < τi for all streams ρ. Hence, we obtain the following lemma by contraposition.

Lemma 1 Fix a set of streams S. Let M be a monitoring algorithm for some specification
language. If M is S-event-rate independent, then M is S-trace-length independent.

When S is the set of all streams, event-rate independence is not stronger than trace-length
independence. To see this, consider the following stream where the event rate itself depends
on the trace length: ρ = 〈(π0, 0), (π1, 1), (π1, 1), (π2, 2), (π2, 2), (π2, 2), (π2, 2), . . .〉,
where (πτ , τ ) is repeated 2τ times. Any event-rate dependent monitor for ρ is also trace-
length dependent, since the event rate erρ(τi ) at time-point i is at least i/2 + 1 (and at most
i + 1).

In contrast to the above example, streams arising in practice have a bound on the event
rate. For such an (event-rate) bounded stream ρ we have ∀i . erρ(τi ) < bρ for some arbitrary
but fixed bρ . Let B be the set of bounded streams. In fact, the related bounded variability
assumption [24,30,35] is deemed necessary for trace-length independence. The considera-
tion of the event rate clarifies the need for this assumption: B-event-rate independence is
stronger than B-trace-length independence. For example, monitors using a waiting queue for
future operators [9] are B-trace-length independent, but not B-event-rate independent. For
unbounded streams, i.e., streams that are not event-rate bounded, the two notions coincide.
This is in line with the fact that there are trace-length independent monitors for MTL (with
future operators) on bounded streams [9,30], but none on unbounded streams.

Event-rate independence and trace-length independence for unbounded streams are indeed
impossible ifwe adhere to themode of operation of existingMTLmonitors. Existingmonitors
output verdicts monotonically, i.e., for time-points i and j , if i < j then the verdict at i is
output before the verdict at j . Monotonicity makes any monitor handling future operators
linearly event-rate dependent (and hence trace-length dependent for unbounded streams), as
the monitor must wait for and therefore store information associated to more than erρ(τ )-
many events (for some τ ) before being able to output a verdict. So event-rate independence
seems to be too strong a condition for traditional monitors.

To overcome this problem, our monitor outputs verdicts differently. In addition to the
standard Boolean verdicts � and ⊥, it outputs equivalence verdicts j ≡ i (oriented such that
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j > i) if it is certain that the verdict at time-point j will be equivalent to the verdict at an
earlier time-point i , even if the exact truth value is presently unknown at both points. This
makes verdict outputs non-monotonic with respect to time-points, but it is still possible to
ensure monotonicity with respect to time-stamps for time-stamps that are far enough apart.
More precisely, a monitor that is monotonic with respect to time-stamps outputs the verdict
at i before the verdict at j when monitoring ϕ, if τ j − τi > FR(ϕ).

To output equivalence verdicts, the algorithm must refer to time-points. This requires
non-constant space, e.g., logarithmic space for natural numbers. Time-points increase with
the trace length, leading to a logarithmic dependence on the trace length. An alternative way
to refer to time-points is to use time-stamps together with an offset pointing into a block
of consecutive time-points labeled with the same time-stamp. Algorithms that output such
verdicts are therefore not event-rate independent but rather require logarithmic space in the
event rate, since the size of such a block is bounded by the event rate. These observations
suggest the slightly weaker notion of almost event-rate independence, which is defined iden-
tically to event-rate independence except that the space complexity is upper bounded by a
logarithm of the event rate.

Definition 4 Fix a set of streams S. A monitoring algorithmM is almost S-event-rate inde-
pendent if for all ρ ∈ S and for all time-points i , the space required by M after processing
the event at i when monitoring ρ is O(log(maxτ≤τi erρ(τ ))). If S is the set of all streams,
we again drop S and write almost event-rate independent.

Our proposed monitor is almost event-rate independent. In particular, it is the first almost
B-event-rate independent monitor and the first almost trace-length independent monitor for
metric properties with past and future operators.

5 An almost event-rate independent monitor for MTL

We first informally describe the high-level design of our MTL monitor. Afterwards we give
a formal description and prove its correctness and almost event-rate independence.

5.1 Informal account

The idea of computing equivalence verdicts draws inspiration from the problem of simulta-
neous suffix matching with automata. To decide which suffixes of a word are matched by an
automaton, a naive approach is to run the automaton starting at each position in the word. For
a word of length n, this requires storing n copies of the automaton. A more space-efficient
approach is to store a single copy, and use markers (one marker for each position in the word)
that are moved between states upon transitions. If n is larger than the number of states, then
at some point two markers will necessarily mark the same state. At this point, it suffices
to output their equivalence and track only one of them, since they will travel through the
automaton together. Our algorithm takes a similar approach; however, we avoid explicitly
constructing automata from formulas.

Our algorithm builds on Havelund and Roşu’s dynamic programming algorithm for past-
time LTL [28], where the monitor’s state consists of an array of Boolean verdicts for all
subformulas of themonitored formula at a given time-point. The array is dynamically updated
when consuming the next event based on the recursive definition of satisfiability for LTL. To
support intervals, we use the idea by Thati and Roşu [40] to store an array of verdicts for all
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interval-skewed subformulas, instead of plain subformulas as in Havelund and Roşu. This
accounts for possible interval changeswhenmoving between different time-stamps according
to the recursive definition of satisfiability for past-timeMTL. This step crucially relies on the
time-stamps being integer-valued, as otherwise the number of skewed subformulas would be
infinite.

The problem with future operators is that they require us to wait until we are able
to output a verdict. At first, we sidestep almost event-rate independence and formulate
a dynamic programming algorithm that treats past operators as in Havelund and Roşu’s
algorithm [28], but also supports future operators. The recursive Eq. (2) for until reduces
the satisfaction of a formula ϕ UI ψ at the current time-point to a Boolean combi-
nation of the satisfaction of ϕ and ψ at the current time-point and the satisfaction of
ϕ UI−n ψ (for some n) at the next time-point. While we can immediately resolve the
dependencies on the current time-point, those on the next time-point force us to wait.
This also means that we cannot store the Boolean verdict in an array (because we do
not know it yet), but instead we will store the dependency in the form of pointers to
some entries in the next array to be filled. In general, our dynamically updated array (of
length |ISF(ϕ)|), indexed by interval-skewed subformulas, will contain Boolean expres-
sions instead of Booleans, in which the variables denote the dependencies on those next
entries. We may only output a verdict (i.e., the entry in the array indexed by the top-
level formula) when its Boolean expression is resolved to a Boolean verdict. But until this
happens, all such yet-to-be-output Boolean expressions must be separately stored, which
affects the algorithm’s space consumption. The idea of storing Boolean expressions for
the unresolved verdicts is similar to the monitoring algorithms in stream runtime verifica-
tion [14].

To obtain almost event-rate independence, we refine our monitor by allowing it to
output equivalence verdicts between different time-points. As soon as the monitor sees
two semantically equivalent Boolean expressions for the top-level formula, it may output

such verdicts and discard one of the two expressions. Since there are only O(22
|ISF(ϕ)|

)

semantically different Boolean expressions in O(|ISF(ϕ)|) variables (corresponding to
the verdicts for interval-skewed subformulas at the next time-point), the space required
to store them depends only on the monitored formula ϕ. However, to enable users to
understand equivalence verdicts, the equivalences must refer to different time-points rep-
resented using indices. Storing the indices requires logarithmic space in the event rate
(as explained in Sect. 4). Hence, the overall algorithm is almost event-rate indepen-
dent.

5.2 The algorithm

At its core, our MTL monitor relies on the recursive Eqs. (1) and (2). The key observation
is that the satisfiability of ϕ UI ψ at time-point i is determined solely by the satisfiability
of ϕ and ψ at the current time-point i and the satisfiability of the interval-skewed formula
ϕ UI−�i ψ at the next time-point i+1, alongwith some interval boundary checks. ForSI , the
symmetric characterization refers to an interval-skewed formula at the previous time-point
i − 1.

Figure 2 (left) illustrates these dependencies as arrows for verdicts at time point i for the
formula (p S[0,5] ϕ) U[2,4] ψ and its subformula p S[0,5] ϕ. Future dependencies can, in
general, only be resolved after having seen the event at time-point i + 1. Our monitor treats
such future dependencies symbolically as Boolean variables. To monitor the formula Φ, the
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Fig. 2 Example excerpt of the MTL monitor’s state (left) and pseudocode (right)

algorithm stores a Boolean expression for each interval-skewed subformula ϕ ∈ ISF(Φ) in
an array curr, ordered such that, for any formula ϕ at index k, each of its proper subformulas
occurs at a lower index l < k.WewriteΦk for the formula occurring at index k and sometimes
identify formulas with their indices, for example, by writing curr[ϕ] for the curr’s entry at
position k, given that ϕ = Φk . We use Boolean expressions in negation normal form, defined
as:

bexp = ⊥ | � | Var N | ¬Var N | bexp ∧ bexp | bexp ∨ bexp.

Negation ¬ is applied to arbitrary Boolean expressions by pushing it down to the leaves.
With each arriving event, the array curr is updated following Eqs. (1) and (2) or using

the MTL semantics directly. The variables in expressions at time-point i represent pointers
into the monitor’s array curr after processing the event at time-point i + 1. Instead of using
pointers to the past time-point i − 1, the monitor directly uses the expressions from the array
at time-point i − 1 to build from them new expressions at time-point i .

For future formulas, there is an additional complication: before the monitor has seen the
time-stamp at position i + 1, it cannot know which of the interval-skewed future formulas to
refer to. We therefore work with so called future expressions defined as fexp = Now bexp |
Later (N → bexp), where Later expresses a dependence on the time-stamp difference
between the time-points i+1 and i . The functions∧fexp,∨fexp, and¬fexp lift Boolean operators
to future expressions while propagating Boolean values eagerly, for example, by simplifying
Now � ∨fexp b to Now � and Now ⊥ ∨fexp b to b. Given a time-stamp difference �, a future
expression evaluates to a Boolean expression: eval�(Now b) = b and eval�(Later f ) =
f (�).
We are now set to describe our monitor. Figure 2 (right) depicts its pseudocode. The

monitor’s state consists of five variables initialized as shown, where n is the number of
interval-skewed subformulas ofΦ. To denote their mutability, we write the variables in bold-
face. The variable now is the current time-stamp and together with it the natural number off
identifies the current time-point. Note that we represent time-points as pairs (τ, k), where
the second component is an offset into a block of time-points labeled with time-stamp τ .
The history hist is a set of pairs of Boolean expressions and time-points (again stored as
time-stamp-offset pairs). It contains all time-points at which no verdict was output so far,
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Fig. 3 Auxiliary functions and procedures

since the verdict depends on future events. The variable curr is the array of length n of
future expressions for all interval-skewed subformulas at the current time-point. The vari-
able prev is another array of length n of Boolean expressions that belong to the previous
time-point. The monitor updates its state using the step procedure for each incoming event
(π, τ ).

The step procedure first computes the time-stamp difference� between τ and the previous
time-stamp stored in now. It uses � to evaluate future expressions from curr to Boolean
expressions and store them inprev, thereby discarding any old expression stored inprev. Next
it updates the history hist. This is the key step to obtaining almost event-rate independence.
The variables of all Boolean expressions stored in the history refer to the last seen time-point.
To maintain this invariant, we first update all expressions in the history by substituting their
variables (pointing to what used to be in curr before the call of step) with the actual Boolean
expressions contained in curr (that is now stored in prev). The substitution is performed by
the subst function shown in Fig. 3 (top left). Moreover, the expression prev[Φ] is added as a
new element to the history. Then, the filter_verdicts procedure, shown in Fig. 3 (bottom left),
performs two verdict output steps. First, it iterates over the history and removes (using the
output_bool procedure, which both returns a Boolean verdict and outputs it as a side-effect)
all Boolean expressions equivalent to� or⊥. Second, it finds all pairwise equivalent pairs of
expressions from the history and for each such pair it removes the expression with the larger
time-point from the history (using output_equivwhich simply returns its first argument, and
as a side-effect outputs an equivalence verdict of the form (τ, k) ≡ (τ ′, l)). By guaranteeing
that only semantically different Boolean expressions in at most n variables are contained in
the history, the monitor is almost event-rate independent, as only the offset components of
the time-points stored in history have sizes that depend on the event rate.

If the second step were omitted, we would obtain amonitor that is event-rate dependent. In
fact, we employ a mode flag in the definition of filter_verdicts to switch between this event-
rate dependent naivemode of operation and the above almost event-rate independent mode,
which we call global. The third mode, local constitutes a middle ground between naive
and global: it outputs equivalence verdicts only for time-points with the same time-stamp.
This mode is still almost event-rate independent, but requires fewer Boolean equivalence
check to be performed. Finally, after a trivial update of now and off, the progress procedure
fills the curr array with new future expressions.
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Fig. 4 An execution of the monitoring algorithm on a U[0,1] b

progress (ϕ,�, π) = case ϕ of
| p ⇒ Now (p ∈ π)

| ¬ψ ⇒ ¬fexp(curr[ψ])
| ψ1 ∨ ψ2 ⇒ curr[ψ1] ∨fexp curr[ψ2]
| �Iψ ⇒ Now (� ∈ I ) ∧fexp substfexp(prev[ψ])
| �Iψ ⇒ Later (λ�′. �′ ∈ I ∧ Var ψ)

| ψ1 S[a,b] ψ2 ⇒ (Now (a = 0) ∧fexp curr[ψ2]) ∨fexp

(Now (� ≤ b) ∧fexp curr[ψ1] ∧fexp substfexp(prev[ψ1 S[a,b]−� ψ2]))
| ψ1 U[a,b] ψ2 ⇒ (Now (a = 0) ∧fexp curr[ψ2]) ∨fexp

Later (λ�′. �′ ≤ b ∧ eval�′(curr[ψ1]) ∧ Var (ψ1 U[a,b]−�′ ψ2))

The first three cases of the definition are straightforward. After passing the metric condition
check, the case �I accesses the prev array to obtain the Boolean expression representing the
satisfaction ofψ at the previous time-point. Note that the variables in this Boolean expression
refer to the current time-point. The substfexp function, shown in Fig. 3 (top right), is used to
lift such Boolean expressions to future Boolean expressions that refer to the next time-point
and fit precisely what should be stored in the curr array. For�I the situation is similar, except
that the parameter � is not used, as it is the time-stamp difference between the current and
previous time-point. In contrast, �′ from the Later argument is the appropriate time-stamp
difference for �I . It will be instantiated to a concrete value after the next event (including its
time-stamp) is received. To refer to the satisfiability of ψ at time-point i + 1, we use the Var
constructor applied to (the index of) ψ . For the last two cases, progress follows the recursive
Eqs. (1) and (2) and behaves similarly to �I and �I when accessing the previous and next
time-points. For example, to refer to the satisfiability of ψ1 U[a,b]−�′ ψ2 at time-point i + 1
as stipulated by Eq. (2), we use the Var constructor applied to (the index of)ψ1 U[a,b]−�′ ψ2.

Example 1 (continued) Figure 4 shows the internal states of the global version of our algo-
rithm when monitoring the formula a U[0,1] b on the stream ρ = 〈({a}, 1), ({a}, 2), ({a}, 2),
({b}, 3), ({a, b}, 4), . . .〉. The first three rows show the time-points, time-stamps, and the
events from ρ. The next four rows show the values �, hist, now, and off in the order in
which they are updated in the step procedure. The following four rows are dedicated to the
Boolean expressions stored for each interval-skewed subformula. The last row displays the
monitor’s verdicts. At each time-point, the monitor’s state consists (roughly) of one column
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from this table. Since it is hard to display future expressions stored in curr, we show instead
the result of evaluating the expressions in curr with the time-stamp difference �i to the next
time-point, i.e., eval�i (curr[−]). This causes a delay of one time-point between the values
in the arrays and the history updates and verdict outputs.

5.3 Correctness and complexity analysis

In this subsection, we fix a formulaΦ and a stream ρ = 〈(πi , τi )〉i∈N. To prove the soundness
and completeness of our monitor and to establish its space complexity bounds, we formulate
an invariant I = (I1)∧ (I2)∧ (I3)∧ (I4)∧ (I5)∧ (I6)∧ (I7) that holds after processing
the first event and all subsequent states.

(I1) ∀((τ, i), b) ∈ hist. τ@i | Φ ←→ now@off |bexp b

(I2) ∀ϕ ∈ ISF(Φ). now@off | ϕ ←→ (now@off) + 1 |bexp eval�now@off(curr[ϕ])
(I3) ∀ϕ ∈ ISF(Φ). (now@off) − 1 | ϕ ←→ now@off |bexp prev[ϕ]
(I4) ∀ϕ ∈ ISF(Φ). Vars (eval�now@off(curr[ϕ])) ∪ Vars (prev[ϕ]) ⊆ ISF(ϕ)

(I5) ∀ϕ ∈ {ϕ ∈ ISF(Φ) | ϕ is past}.
Vars (eval�now@off(curr[ϕ])) ∪ Vars (prev[ϕ]) ⊆

⋃
ψ∈SF(ϕ)\{ϕ} ISF(ψ)

(I6) ∀((τ, i), b) ∈ hist. b �≡ � ∧ b �≡ ⊥
(I7) ∀((τ, i), b) ∈ hist. ∀((τ ′, j), c) ∈ hist.

(τ@i = τ ′@ j → b = c) ∧ (τ@i �= τ ′@ j → compact(τ, τ ′, b, c))

We write τ@i to denote the time-point uniquely defined by the time-stamp τ and the offset
i within the time-stamp. Moreover, Vars is the set of variables in a Boolean expression and
|bexp is the lifting of MTL satisfaction to expressions. For the base case of this lifting, we
have k |bexp Var ϕ ←→ k | ϕ.

The invariant consists of six predicates. (I1), (I2), and (I3) capture the semantics of the
entries in the history and the expression arrays. (I4) expresses that future dependencies in any
expression indexed by a subformula ϕ may only refer to ϕ’s interval-skewed subformulas.
More precisely, for past subformulasϕ, (I5) asserts that the expression indexed byϕmayonly
refer to interval-skewed subformulas of ϕ’s proper subformulas. In particular, no expression
indexed by a past formula ϕ will refer to ϕ’s truth value at a future point. (I6) guarantees that
Boolean verdicts are output as early as possible. (I7) is crucial for our complexity analysis.
It uses an auxiliary predicate compact, defined differently for each of the three modes of the
monitoring algorithm we consider.

compact(τ, τ ′, b, c) =

⎧
⎪⎨

⎪⎩

� naive

b �≡ c global

τ = τ ′ → b �≡ c local

We prove that I holds for every reachable state except the initial state itself. In the initial
state, (I2) is violated for future subformulas. The curr array of the initial state is accessed only
for past-time operators at the first event. In this case, the stored values ⊥ for all subformulas
have exactly the right semantics: essentially they affirm that there is no previous time-point.

We start by proving two auxiliary lemmas.
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Lemma 2 Fix a Boolean expression b with Vars(b) ⊆ ISF(Φ). Assume for all ψ ∈ Vars(b)
that i | ψ ←→ i + 1 |bexp eval�i (curr[ψ]). Then i |bexp b ←→ i + 1 |bexp

eval�i (substfexp(b)).

Proof Straightforward induction on the structure of the Boolean expression b. ��

Lemma 3 Let 0 < i = now@off, ϕ ∈ ISF(Φ), and fb = progress(ϕ,�i−1, πi ). Assume
that

(i) for all ϕ ∈ ISF(Φ), we have i − 1 | ϕ ←→ i |bexp prev[ϕ],
(ii) for all ψ ∈ ⋃

ψ∈SF(ϕ)\{ϕ} ISF(ψ), we have i | ψ ←→ i + 1 |bexp eval�i (curr[ψ]),
and

(iii) for all ϕ ∈ ISF(Φ), we have Vars (prev[ϕ]) ⊆ ⋃
ψ∈SF(ϕ)\{ϕ} ISF(ψ) if ϕ is past, and

Vars (prev[ϕ]) ⊆ ISF(ϕ) otherwise.

Then i | ϕ ←→ i + 1 |bexp eval�i (fb).

Proof The statement follows by a case distinction on ϕ:

ϕ = p: We have fb = Now (p ∈ πi ) and hence

i | ϕ ←→ p ∈ πi ←→ i + 1 |bexp p ∈ πi ←→ i + 1 |bexp eval�i (fb).

ϕ = ¬ψ : We have fb = ¬fexp(curr[ψ]) and hence
i | ϕ ←→ i �| ψ

(ii)←→ i + 1 �|bexp eval�i (curr[ψ])
←→ i + 1 |bexp ¬(eval�i (curr[ψ]))
←→ i + 1 |bexp eval�i (¬fexp(curr[ψ])) ←→ i + 1 |bexp eval�i (fb).

ϕ = ψ1 ∨ ψ2: We have fb = curr[ψ1] ∨fexp curr[ψ2] and hence

i | ϕ ←→ i | ψ1 ∨ i | ψ2
twice (ii)←→ i + 1 |bexp eval�i (curr[ψ1]) ∨ i + 1 |bexp eval�i (curr[ψ2])
←→ i + 1 |bexp eval�i (curr[ψ1]) ∨ eval�i (curr[ψ2])
←→ i + 1 |bexp eval�i (curr[ψ1] ∨fexp curr[ψ2]) ←→ i + 1 |bexp eval�i (fb).

ϕ = �Iψ : We have fb = Now (�i−1 ∈ I ) ∧fexp substfexp(prev[ψ]) and hence

i | ϕ
i>0←→ �i−1 ∈ I ∧ i − 1 | ψ

(i)←→ �i−1 ∈ I ∧ i |bexp prev[ψ]
Lemma 2←→ �i−1 ∈ I ∧ i + 1 |bexp eval�i (substfexp(prev[ψ]))
←→ i + 1 |bexp eval�i (Now (�i−1 ∈ I ) ∧fexp substfexp(prev[ψ]))
←→ i + 1 |bexp eval�i (fb).

When Lemma 2 is invoked, the lemma’s assumptions hold since Vars (prev[ψ]) ⊆
ISF(ψ) by (iii) and thus i | ψ ′ ←→ i + 1 |bexp eval�i (curr[ψ ′]) for all ψ ′ ∈
Vars (prev[ψ]) by (ii).

ϕ = �Iψ : We have fb = Later (λ�′. �′ ∈ I ∧ Var ψ) and hence

i | ϕ ←→ �i ∈ I ∧ i + 1 | ψ ←→ �i ∈ I ∧ i + 1 |bexp Var ψ

←→ i + 1 |bexp eval�i (Later (λ�′. �′ ∈ I ∧ Var ψ))

←→ i + 1 |bexp eval�i (fb).
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ϕ = ψ1 S[a,b] ψ2: Let ϕ′ = ψ1 S[a,b]−�i−1 ψ2. We have fb = (Now (a = 0) ∧fexp

curr[ψ2]) ∨fexp (Now (�i−1 ≤ b) ∧fexp curr[ψ1] ∧fexp substfexp(prev[ϕ′])) and hence

i | ϕ
Eq. 1,i>0←→ (a = 0 ∧ i | ψ2) ∨ (�i−1 ≤ b ∧ i | ψ1 ∧ i − 1 | ϕ′)
(i), (ii)←→ (a = 0 ∧ i + 1 |bexp eval�i (curr[ψ2]))∨

(�i−1 ≤ b ∧ i + 1 |bexp eval�i (curr[ψ1]) ∧ i |bexp prev[ϕ′])
Lemma 2←→ i + 1 |bexp eval�i (fb).

Here, the assumptions ofLemma2hold sinceVars (prev[ϕ′])⊆⋃
ψ∈SF(ϕ′)\{ϕ′} ISF(ψ)

by (iii),moreover
⋃

ψ∈SF(ϕ′)\{ϕ′} ISF(ψ) = ISF(ψ1)∪ISF(ψ2), andfinally i | ψ ′ ←→
i + 1 |bexp eval�i (curr[ψ ′]) for all ψ ′ ∈ Vars (prev[ϕ′]) by (ii).

ϕ = ψ1 U[a,b] ψ2: We have fb = (Now (a = 0) ∧fexp curr[ψ2]) ∨fexp

Later (λ�′. �′ ≤ b ∧ eval�′(curr[ψ1]) ∧ Var (ψ1 U[a,b]−�′ ψ2)) and hence

i | ϕ
Eq. 2←→ (a = 0 ∧ i | ψ2) ∨ (�i ≤ b ∧ i | ψ1 ∧ i + 1 | ψ1 U[a,b]−�i ψ2)(ii)←→ (a = 0 ∧ i + 1 |bexp eval�i (curr[ψ2]))∨

(�i ≤ b ∧ i + 1 |bexp eval�i (curr[ψ1])∧
i + 1 |bexp Var (ψ1 U[a,b]−�i ψ2))

←→ i + 1 |bexp eval�i (fb).

��
The above lemma is the key property needed to establish the invariant’s preservation.

Lemma 4 I holds after processing the first event using step. Moreover, I is preserved by
processing any event using step.

Proof Lemma 3 establishes the preservation of (I2) by the progress procedure when pro-
cessing the time-point i > 0. The lemma’s assumptions (i), (ii), and (iii) are discharged using
the invariants (I2)–(I5) for the previous state of the monitor. The other invariants are easy
to establish by following the monitor’s execution shown in Fig. 2 (right). ��

The step from the invariant to a correctness theorem is easy. For soundness, we calculate,
using (I1), the expected semantic properties for verdicts that are output in a step. Complete-
ness is more delicate: a violation of a liveness property, such as�♦ p, cannot be detected by a
monitor. However, for safety properties that can be expressed using bounded future formulas,
we can guarantee that for every time-point a verdict is eventually output by our algorithm.
This is easy to see: for each time-point either a verdict is output or the corresponding expres-
sion remains in the history. Moreover, each expression in the history is eventually output as
time progresses and all future intervals are bounded.

Theorem 1 (Correctness) The monitor for a formula Φ is sound: whenever it outputs the
Boolean verdict ((τ, i), b)we have τ@i | Φ ←→ b andwhenever it outputs the equivalence
verdict (τ, i) ≡ (τ ′, j) we have τ@i > τ ′@ j and τ@i | Φ ←→ τ ′@ j | Φ. For the
local mode, we additionally have τ = τ ′. Moreover, the monitor is complete on bounded
future formulas.

Finally, we establish complexity bounds. Let n = |ISF(Φ)| and d = FR(Φ). Note that, n is
linear in the number of subformulas and in the unary encoding of constants inΦ. Furthermore,
d ≤ n for bounded future formulas. The size of a Boolean expression in n variables can be
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bounded by 2n assuming a normal form for expressions such as DNF. Then the size of the
future-dependent array curr is n · 2n . The length of the history depends on the version of the
algorithm used and (except for the naive algorithm) dominates the size of curr.

Theorem 2 (Space complexity) The space complexity for storing all Boolean expressions
used by the three versions of the algorithm at the time-stamp τ is

naive: O
(
2n ·

(
n +

∑τ

τ ′=τ−d
er(τ ′)

))
, global: O(22

n+n), and local: O(d · 22n+n).

Time-stamps additionally require a constant and the offsets a logarithmic amount of space
in the event rate. Hence, global and local are almost event-rate independent.

Proof Each stored Boolean expression requires O(2n) space. The bound for naive follows
since, at time-stamp τ , we can output Boolean verdicts for all time-stamps that are at most
τ − d . Hence, the history needs to store only those expressions that fit into the interval
(τ − d, τ ]. For global (or local) there are at most 22

n
(or d · 22n ) semantically different

Boolean expressions that must be stored in the history. ��
The above bounds apply to arbitrary formulas. For liveness properties, such as �♦ p, the
naive and local bounds are useless, since d = ∞. In fact, the naive and local algo-
rithms will eventually run out of memory for �♦ p. Interestingly, the global algorithm
can handle such liveness properties gracefully in terms of memory consumption. Of course,
these algorithms will never output Boolean verdicts for such formulas, but only equivalence
verdicts.

To process an event, ourmonitor solves several NP-complete problem instances. However,
the Boolean equivalences arising in practice are simple and tractable (Sect. 9).

6 Metric dynamic logic

In this section, we introduce metric dynamic logic (MDL). This logic extends LDL [18] with
past temporal operators and time intervals associated with temporal formulas. Moreover, we
further syntactically simplify LDL’s temporal operators without losing expressiveness.

MDL’s syntax is defined by the following grammar, where p ∈ Σ denotes an atomic
proposition, and I ∈ I denotes a non-empty interval.

ψ = p | ¬ψ | ψ ∨ ψ | |r〉I | 〈r |I r = � | ψ? | r + r | r · r | r∗

Aside from Boolean operators, MDL contains regular expressions modalities. The metric
future match operator |r〉I expresses that there exists some future time-point with a time
difference bounded by the interval I and the regular expression r matches the portion of
the event stream from the current point up to that future time-point. Notably, the regular
expression itself may nest arbitrary MDL formulas. The past match operator 〈r |I expresses
the same property about a past time-point. An MDL formula is called past if its top-most
operator is the past match operator. Regular expressions in MDL match portions of the event
stream, i.e., words over 2Σ . The expression � matches any character and ϕ? matches the
empty word starting at time-point i if the formula ϕ holds at i . Moreover, +, ·, and ∗ are the
standard sum, concatenation, and (Kleene) star operators.

The semantics of formulas and regular expressions are defined by mutual induction. A
formula is interpreted over a fixed event stream ρ = 〈(πi , τi )〉i∈N and a position i ∈ N. The
semantics of a regular expression r is given by a relation R(r) ⊆ N × N that contains pairs
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of time-points (i, j) with i ≤ j (or j ≤ i for past) such that the sequence πi , . . . , π j (or
π j , . . . , πi for past) from the fixed ρ matches r .

i | p iff p ∈ πi

i | ¬ϕ iff i �| ϕ

i | ϕ ∨ ψ iff i | ϕ or i | ψ

i | |r〉I iff there exists j ≥ i

with τ j − τi ∈ I and (i, j) ∈ R(r)

i | 〈r |I iff there exists j ≤ i

with τi − τ j ∈ I and ( j, i) ∈ R(r)

R(�) = {(i, i + 1) | i ∈ N}
R(ϕ?) = {(i, i) | i | ϕ}

R(r + s) = R(r) ∪ R(s)

R(r · s) = {(i, k) | ∃ j . (i, j) ∈ R(r) ∧ ( j, k) ∈ R(s)}
R(r∗) = {(i, i) | i ∈ N} ∪

{(i0, ik) | ∃i1, . . . , ik−1. (i j , i j+1) ∈ R(r)

for all 0 ≤ j < k}
We employ the usual syntactic sugar for additional Boolean constants and operators:

true = p ∨ ¬p, false = ¬true, and ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ). The future diamond dynamic
modality of LDL [18], which we had previously extended with metric intervals and the dual
past operator given in our earlier formulation of MDL [7], can be easily defined in terms
of the match operators: 〈r〉I ϕ = |r · ϕ?〉I and ϕ I 〈r〉 = 〈ϕ? · r |I . The ability to arbitrarily
nest the negation operator allows us to define the metric future and past box operators [r ]I ϕ

and ϕ I [r ] as ¬(〈r〉I ¬ϕ) and ¬(¬ϕ I 〈r〉), respectively. We use the abbreviations |ϕ〉I , 〈ϕ|I ,
〈ϕ〉I ψ , and ψ I 〈ϕ〉 for |ϕ? · �〉I , 〈� · ϕ?|I , 〈ϕ? · �〉I ψ , and ψ I 〈� · ϕ?〉, respectively. We
perform the same implicit cast of a formula ϕ to the regular expression ϕ? · � in the context
of a future regular expression (or � · ϕ? in the context of a past regular expression) for any
formula that occurs as an argument to one of the +, · , and ∗ constructors. For example,
〈ϕ∗〉I ψ abbreviates 〈(ϕ? · �)∗〉I ψ .

For an MDL formula ϕ, let SF(ϕ) denote the set of its subformulas defined as usual.
(We overload this and other notions, which are used for both MTL and MDL.) Note that
ϕ ∈ SF(ϕ). We say that ψ is a proper subformula of ϕ if ψ ∈ SF(ϕ) \ {ϕ}. We define the set
of interval-skewed subformulas ISF(ϕ) as SF(ϕ) ∪ {〈r |J | 〈r |I ∈ SF(ϕ), J ∈ I−} ∪ {|r〉J |
|r〉I ∈ SF(ϕ), J ∈ I−}, which contains all temporal formulas with the same structure as
existing temporal subformulas of ϕ, except with intervals shifted by constants.

Theorem 3 For every MTL formula there exists an equivalent MDL formula.

Proof We prove this constructively by defining a syntactic translation ξ :

ξ(p) = p; ξ(ϕ ∨ ψ) = ξ(ϕ) ∨ ξ(ψ); ξ(¬ϕ) = ¬ξ(ϕ); ξ(�I ϕ) = 〈�〉I ξ(ϕ);
ξ(ϕ UI ψ) = 〈ξ(ϕ)∗〉I ξ(ψ); ξ(�I ϕ) = ξ(ϕ) I 〈�〉; ξ(ϕ SI ψ) = ξ(ψ) I 〈ξ(ϕ)∗〉.

Given an MTL formula ϕ and a fixed stream ρ, we prove that ∀i . i | ξ(ϕ) ←→ i | ϕ by
induction on the structure of ϕ. (Note that we overload the notation for satisfiability | for
both logics.) We show the proof only for UI . The other cases follow similarly.

i | ξ(ϕ UI ψ)
def. ξ←→ i | 〈ξ(ϕ)∗〉I ξ(ψ)

desugar←→ i | |(ξ(ϕ)? · �)∗ · ξ(ψ)?〉I
def. |←→ there exists j ≥ i with τ j − τi ∈ I and (i, j) ∈ R((ξ(ϕ)? · �)∗ · ξ(ψ)?)
def. R←→ j | ξ(ψ) for some j ≥ i with τ j − τi ∈ I and (i, j) ∈ R((ξ(ϕ)? · �)∗)
IH ψ←→ j | ψ for some j ≥ i with τ j − τi ∈ I and (i, j) ∈ R((ξ(ϕ)? · �)∗)
def. R←→ j | ψ for some j ≥ i with τ j − τi ∈ I and k | ξ(ϕ) for all i ≤ k < j
IH ϕ←→ j | ψ for some j ≥ i with τ j − τi ∈ I and k | ϕ for all i ≤ k < j

def. |←→ i | ϕ UI ψ ��
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Since MDL extends LDL, it can express any ω-regular language [18]. For instance, the
property “a occurs at every even position” can be expressed as [(true · true)∗ ] a. This property
cannot be expressed by any LTL orMTL formula. Similarly, the property “both b and c occur
within the next two time-units and b occurs before c” cannot be expressed inMTLwith point-
based semantics [12]. It can, however, be expressed in MDL: |(¬c)∗ · b · true∗ · c?〉[0,2].

7 An almost event-rate independent monitor for MDL

In our MTL monitoring algorithm, only the progress procedure and the computation of
interval-skewed subformulas are specific toMTL. In the following subsectionswewill change
these ingredients to obtain a monitor for MDL.

7.1 Derivatives of the regular expressionmodalities

To build on ideas from our algorithm for MTL, we need an alternative recursive definition
of the past and future modalities that refer only to the (i − 1)st and (i + 1)st time-point. For
a fixed stream ρ, the following characterization holds.

i | |r〉[a,b] iff (a = 0 ∧ εi (r)) ∨ (
�i ≤ b ∧ i + 1 | |δi (r)〉[a,b]−�i

)
(3)

i | 〈r |[a,b] iff (a = 0 ∧ εi (r)) ∨ (
i > 0 ∧ �i−1 ≤ b ∧ i − 1 | 〈 δi (r)|[a,b]−�i−1

)
(4)

Here, εi (r) is the Boolean denoting whether (i, i) ∈ R(r) (i.e., r matches the empty word),
and δi (r) is the Brzozowski derivative [13] of the regular expression r (and δi (r) its symmet-
ric counterpart). For plain regular expressions, the Brzozowski derivative δc(r) computes a
regular expression whose language is the left quotient {w | cw ∈ L(r)} of the input expres-
sion’s language L(r) by a given letter c. One may view the derivative as a deterministic
automaton whose states are labeled by regular expressions, whereby reading c in a state r
takes the automaton to δc(r). For MDL formulas, the time-point i takes the place of the
given letter c and “reading c” means querying a subformula’s satisfaction at i . The inductive
definitions of ε, δ, and δfollow. They all are implicitly parameterized by the fixed ρ.

εi (�) = ⊥ δi (�) = �? δi (�) = �?

εi (ϕ?) = i | ϕ δi (ϕ?) = ⊥? δi (ϕ?) = ⊥?

εi (r + s) = εi (r) ∨ εi (s) δi (r + s) = δi (r) + δi (s) δi (r + s) = δi (r) + δi (s)

εi (r · s) = εi (r) ∧ εi (s) δi (r · s) = δi (r) · s + δi (r · s) = r · δi (s) +
εi (r)? · δi (s) εi (s)? · δi (r)

εi (r
∗) = � δi (r

∗) = δi (r) · r∗ δi (r
∗) = r∗ · δi (r)

The definition of δ is faithful to Brzozowski’s original definition. Note that R(�?) =
{(i, i) | i ∈ N},R(⊥?) = {}, and εi (r)? · δi (s) is equivalent to “if εi (r) then δi (s) else ⊥?”,
which is more commonly used to define Brzozowski derivatives. The equations for the right
derivative δare symmetric for the concatenation and star cases. Thereby, δmatches the
regular expression from right to left. It is easy to verify that the Eqs. (3) and (4) hold for those
definitions by structural induction on the regular expression r .

How can we integrate Eqs. (3) and (4) into our monitor? Since the equations refer to the
satisfiability of the formulas |δi (r)〉[a,b]−�i

and 〈 δi (r)|[a,b]−�i−1
, those formulas must occur

123



468 Formal Methods in System Design (2019) 54:449–478

in our interval-skewed subformula array. In other words, wemust monitor |δi (r)〉I simultane-
ously to |r〉I (and all their interval-skewed variants). But, by the same reasoning, |δ j (δi (r))〉I
must be monitored too. Hence, we must monitor all formulas obtained by repeatedly com-
puting the derivative of the original subexpressions. Fortunately, Brzozowski proved that the
set of expressions reachable by repeatedly taking derivatives is finite, provided that expres-
sions are rewritten to a normal form with respect to the associativity, commutativity, and
idempotence (ACI) of the + constructor. Unfortunately, the number of all such Brzozowski
derivatives is exponential in the size of the initial expression r . This is not surprising since
regular expressions are exponentially more concise than deterministic automata and the set
of derivatives represents exactly the set of states of a deterministic automaton.

With the size of the array exponential in the size of the input formula, we would still
obtain an almost event-rate independent monitor, but not one that is very time efficient. We
can do better by resorting to nondeterministic automata, which are as concise as regular
expressions. The equivalent of the Brzozowski derivative for nondeterministic automata are
Antimirov’s partial derivatives of regular expressions [1]. Instead of computing only one
successor expressions, a partial derivative computes a set of expressions, analogous to the
transition function of a nondeterministic automaton. The partial derivative ∂ and its symmetric
counterpart ∂are defined inductively as follows.

∂i (�) = {�?} ∂i (�) = {�?}
∂i (ϕ?) = {} ∂i (ϕ?) = {}

∂i (r + s) = ∂i (r) ∪ ∂i (s) ∂i (r + s) = ∂i (r) ∪ ∂i (s)

∂i (r · s) = ∂i (r) � s ∪ εi (r)? � ∂i (s) ∂i (r · s) = r � ∂i (s) ∪ εi (s)? � ∂i (r)

∂i (r
∗) = ∂i (r) � r∗ ∂i (r

∗) = r∗ � ∂i (r)

The overloaded � lifts · to sets of expressions: r � X = {r · s | s ∈ X} and X � r = {s · r |
s ∈ X}.

Partial derivatives enjoy nice properties: the sum of all expressions in ∂i (r) is equivalent to
δi (r).Moreover, the number of different expressions reachable from r by repeated application
of the partial derivative is bounded by n + 1, where n is r ’s size [1]. In other words, partial
derivatives convert a regular expression of size n into a nondeterministic automaton of size
n + 1. The states of this automaton are labeled by the n + 1 reachable expressions, and these
are exactly the ones our monitor must keep track of to follow the following partial derivative
variant of Eqs. (3) and (4).

i | |r〉[a,b] iff (a = 0 ∧ εi (r)) ∨
(
�i ≤ b ∧ ∨

s∈∂i (r) i + 1 | |s〉[a,b]−�i

)
(5)

i | 〈r |[a,b] iff (a=0 ∧ εi (r)) ∨
(
i>0 ∧ �i−1≤b ∧ ∨

s∈ ∂i (r) i − 1 | 〈s|[a,b]−�i−1

)
(6)

These equations follow by structural induction on r , using the distributivity of the match
operators over +, i.e., i | |r + s〉I ←→ i | |r〉I ∨ |s〉I .

We must know which regular expressions to keep track of before actually running the
monitor (i.e., before reading ρ).We can overapproximate this set of iterated partial derivatives
by replacing εi (ϕ?) with � instead of i | ϕ. Then both ε and ∂ become independent of
the fixed ρ and i . Let us call this overapproximation ∂̂ (or ˆ∂) for a regular expression r . The
number of expressions in ∂̂(r) (or ˆ∂(r)) is bounded by the size of the original expression (+1).
Our monitor keeps track of all such interval-skewed partial derivatives defined as follows:

ISF∂ (ϕ) = ISF(ϕ) ∪ {〈s|I | 〈r |I ∈ ISF(ϕ), s ∈ ˆ∂(r)} ∪ {|s〉I | |r〉I ∈ ISF(ϕ), s ∈ ∂̂(r)}}.
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7.2 An almost event-rate independent monitor for MDL

The recursive equations are a useful blueprint. However, we cannot use the ε and partial
derivative operations directly, since they rely on the satisfiability of subformulas that are
arguments of _?. But the monitor might not know at time-point i whether some subformula
ϕ is satisfied, since ϕ could refer to the future. However, the monitor does know the symbolic
future expression curr[ϕ] denotingϕ’s satisfiability at i . This knowledge allows us to compute
the ε symbolically as a future expression:

ε(�) = Now ⊥ ε(r + s) = ε(r) ∨fexp ε(s)

ε(ϕ?) = curr[ϕ] ε(r · s) = ε(r) ∧fexp ε(s) ε(r∗) = Now �

Unlike previous definitions of ε, this definition does not depend on any fixed stream ρ.
For the symbolic version of partial derivatives, we must address the following compli-

cation. Our definition of ∂ computes a set of expressions, requiring the Boolean verdicts
of certain subformulas (through ε). When working with future regular expressions, we lack
information on whether to include the partial derivatives of s when computing the partial
derivatives of r · s, since ε(r) is not a Boolean value, but rather a future Boolean expres-
sion. As Eqs. (5) and (6) illustrate, we are not interested in regular expressions as such,
but rather in expressions wrapped into some fixed past or future match operators and ulti-
mately the satisfiability of the resulting formulas. Satisfiability queries can be represented
using our machinery as future expressions. Using continuation-passing-style programming,
we obtain the symbolic partial derivative ∂ (and the symmetric ∂) that computes a future
expression corresponding to

∨
s∈∂i (r) i +1 | |s〉[a,b]−�i

(and
∨

s∈ ∂i (r) i −1 | 〈s|[a,b]−�i−1
,

respectively).
The function ∂ takes two arguments: a regular expression r and a continuation function

κ that, in the base case, wraps a regular expressions in a past or future match operator and
creates a variable pointing to the corresponding formula in the (i + 1)st time-point.

∂ (�, κ) = κ(�?) ∂(�, κ) = κ(�?)

∂ (ϕ?, κ) = Now ⊥ ∂(ϕ?, κ) = Now ⊥
∂ (r + s, κ) = ∂ (r , κ) ∨fexp ∂ (s, κ) ∂(r + s, κ) = ∂(r , κ) ∨fexp ∂(s, κ)

∂ (r · s, κ) = ∂ (r , λt . κ (t · s)) ∨fexp ∂(r · s, κ) = ∂(s, λt . κ (r · t)) ∨fexp

(ε(r) ∧fexp ∂ (s, κ)) (ε(s) ∧fexp ∂(r , κ))

∂ (r∗, κ) = ∂ (r , λt . κ (t · r∗)) ∂(r∗, κ) = ∂(r , λt . κ (r∗ · t))

Observe how the continuation is altered in the concatenation and star cases. In contrast, the
standard partial derivative first calculates recursively the set ∂i (r) before concatenating s to
each expression in ∂i (r). Here, we extend the continuation κ to perform the concatenation
via λt . κ (t · s) at the leaves of the recursion tree.

Finally, we define the progress procedure for MDL. As with MTL, the procedure takes
as input a subformula ϕ, the time-stamp difference � between the current and the previous
time-point, and the set of currently true atomic predicates π . Moreover, it assumes that
the array prev contains the Boolean expressions denoting the satisfiability at the previous
time-point for all interval-skewed variants of ϕ and that the array curr contains the future
expression denoting the satisfiability at the current time-point for all proper subformulas of
ϕ. It computes a future expression denoting the satisfiability of ϕ at the current time-point.
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progress (ϕ,�, π) = case ϕ of
| p ⇒ Now (p ∈ π)

| ¬ψ ⇒ ¬fexp(curr[ψ])
| ψ1 ∨ ψ2 ⇒ curr[ψ1] ∨fexp curr[ψ2]
| |r〉[a,b] ⇒ (Now (a = 0) ∧fexp ε(r)) ∨fexp

Later (λ�′. �′ ≤ b ∧ eval�′(∂ (r , λs. Now (Var (|s〉[a,b]−�′)))))
| 〈r |[a,b] ⇒ (Now (a = 0) ∧fexp ε(r)) ∨fexp

(Now (� ≤ b) ∧fexp ∂(r , λs. substfexp(prev[〈s|[a,b]−�])))
Only the cases for the match operators are interesting. They implement Eqs. (5) and (6). The
first disjunct is the same for both the future and past, since it covers the case when the regular
expression matches the empty word. For the future match operator, the second disjunct is
a Later future expression, since it does not know the time-stamp difference between the
current and the next time-point. The argument to Later is the conjunction of the Boolean
from the interval boundary test with the symbolic partial derivative ∂ (evaluated to a Boolean
expression using the abstracted time-difference�′). The continuation κ wraps a given regular
expression into a match formula and creates a variable denoting the satisfiability of the
resulting formula at the next time-point. For the past match operator, the second disjunct
is the conjunction of the interval boundary test and the right derivative ∂. The continuation
function for the latter wraps a given regular expression into a match formula and retrieves the
Boolean expression denoting the formula’s satisfaction at the previous time-point from prev.
The variables in this expression point to the current time-point. The subst function updates
those variables to the next time-point by accessing curr.

Using this progress procedure in the algorithm shown in Sect. 5 results in our almost
event-rate independent monitor for MDL.

7.3 Correctness

We fix a stream ρ = 〈(πi , τi )〉i∈N and the MDL formula Φ for the rest of this subsection.
Our monitors for MTL and MDL differ only in the progress procedure. We establish exactly
the same invariants (I1)–(I7) for MDL as for MTL, but with ISF(Φ) replaced by ISF∂ (Φ),
and obtain the correctness and complexity statements. Similarly, we make use of Lemma 2
where ISF(Φ) has been replaced by ISF∂ (Φ). We first prove two auxiliary lemmas. The first
formulates basic properties about the semantics of the ε, ∂ , and ∂operators. The second
constitutes a reformulation of Lemma 3 (used to establish the preservation of (I2) in the
MTL case) for the MDL progress procedure.

Lemma 5 Let r be a regular expression occurring in ISF∂ (Φ), i.e., there exists an interval I
such that either |r〉I ∈ ISF∂ (Φ) or 〈r |I ∈ ISF∂ (Φ). Assume that for all formulas ϕ occurring
in r , we have i | ϕ ←→ i + 1 |bexp eval�i (curr[ϕ]). Then

(ε) i + 1 |bexp eval�i (ε(r)) ←→ εi (r),
(∂) i + 1 |bexp eval�i (∂ (r , κ)) ←→ ∨

s∈∂i (r) i + 1 |bexp eval�i (κ(s)), and
( ∂) i + 1 |bexp eval�i ( ∂(r , κ)) ←→ ∨

s∈ ∂i (r) i + 1 |bexp eval�i (κ(s)).

Proof Three straightforward inductions on the structure of the regular expression r . ��
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Lemma 6 Let 0 < i = now@off, ϕ ∈ ISF∂ (Φ), and fb = progress(ϕ,�i−1, πi ). Assume
that

(i) for all ϕ ∈ ISF∂ (Φ), we have i − 1 | ϕ ←→ i |bexp prev[ϕ],
(ii) for all ψ ∈ ⋃

ψ∈SF(ϕ)\{ϕ} ISF∂ (ψ), we have i | ψ ←→ i + 1 |bexp eval�i (curr[ψ]),
and

(iii) for all ϕ ∈ ISF∂ (Φ), we have Vars (prev[ϕ]) ⊆ ⋃
ψ∈SF(ϕ)\{ϕ} ISF∂ (ψ) if ϕ is past, and

Vars (prev[ϕ]) ⊆ ISF∂ (ϕ) otherwise.

Then i | ϕ ←→ i + 1 |bexp eval�i (fb).

Proof As in the proof of Lemma 3, we perform a case distinction on ϕ. Here, we only show
the two match operator cases.

ϕ = |r〉[a,b]: We have fb = (Now (a = 0) ∧fexp ε(r)) ∨fexp

Later (λ�′. �′ ≤ b ∧ eval�′(∂ (r , λs. Now (Var (|s〉[a,b]−�′))))) and hence

i | ϕ
Eq. 5←→ (a = 0 ∧ εi (r)) ∨

(
�i ≤ b ∧ ∨

s∈∂i (r) i + 1 | |s〉[a,b]−�i

)

Lemma 5(ε)←→ (a = 0 ∧ i + 1 |bexp eval�i (ε(r)))∨(
�i ≤ b ∧ ∨

s∈∂i (r) i + 1 |bexp eval�i (Now (Var (|s〉[a,b]−�i
)))

)

Lemma 5(∂)←→ (a = 0 ∧ i + 1 |bexp eval�i (ε(r)))∨(
�i ≤ b ∧ i + 1 |bexp eval�i (∂ (r , λs. Now (Var (|s〉[a,b]−�i

))))
)

←→ i + 1 |bexp eval�i (fb).

ϕ = 〈r |[a,b]: We have fb = (Now (a = 0) ∧fexp ε(r)) ∨fexp

(Now (�i−1 ≤ b) ∧fexp ∂(r , λs. substfexp(prev[〈s|[a,b]−�i−1
]))) and hence

i | ϕ
Eq. 6,i>0←→ (a = 0 ∧ εi (r)) ∨

(
�i−1 ≤ b ∧ ∨

s∈ ∂i (r) i − 1 | 〈s|[a,b]−�i−1

)

(i), Lemma 5(ε)←→ (a = 0 ∧ i + 1 |bexp eval�i (ε(r)))∨(
�i−1 ≤ b ∧ ∨

s∈ ∂i (r) i |bexp prev[〈s|[a,b]−�i−1
]
)

Lemma 2←→ (a = 0 ∧ i + 1 |bexp eval�i (ε(r)))∨(
�i−1 ≤ b ∧ ∨

s∈ ∂i (r) i + 1 |bexp eval�i (substfexp(prev[〈s|[a,b]−�i−1
]))

)

Lemma 5( ∂)←→ (a = 0 ∧ i + 1 |bexp eval�i (ε(r)))∨(
�i−1 ≤ b ∧ i + 1 |bexp eval�i ( ∂(r , λs. substfexp(prev[〈s|[a,b]−�i−1

]))))
←→ i + 1 |bexp eval�i (fb).

��
Theorem 4 The monitor for an MDL formula Φ is sound: whenever it outputs the Boolean
verdict ((τ, i), b) we have τ@i | Φ ←→ b and whenever it outputs the equivalence verdict
(τ, i) ≡ (τ ′, j) we have τ@i > τ ′@ j and τ@i | Φ ←→ τ ′@ j | Φ. For the local

mode, we additionally have τ = τ ′. Moreover, the monitor is complete on bounded future
formulas and its space consumption is almost event-rate independent for the local and
global modes.

Proof Theproof is analogous to the proof ofMTLmonitor’s correctness and space complexity
(Theorems 1, 2), only replacing the application of Lemma 3 with Lemma 6. ��
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8 Implementation

We have implemented the monitoring algorithms for both MTL and MDL in a tool called
Aerial [6], consisting of about 2500 lines of OCaml code. In previous work [3], we
reported on a PolyML implementation of the homonymous MTL monitor. The OCaml
successor incorporates optimizations, used in both logics, that substantially improve its per-
formance.

Most of our implementation is structured into modules. The generic module Monitor
implements the core logic behind almost event-rate independentmonitoring, similarly towhat
we present in Fig. 2 (right), but purely functional without procedures and global arrays. The
implementation includes the three modes naive, local, and global. TheMonitor module
is language-independent, which supports introducing new specification languages. Building
a monitor for a new language simply requires implementing a new module that specifies
the language’s syntactic representation and parsing and implements the language-specific
progress function. We have implemented separate modules for MTL and MDL formulas.
Additionally, the module Generator produces random formulas and logs given the appropri-
ate size parameters.

A central operation in our monitor is the access to the curr and prev arrays based on a
subformula’s index. This raises the question of how to efficiently retrieve a subformula’s
index. Searching the array of subformulas is of course inefficient, although our previ-
ous PolyML implementation did just that. A more efficient solution would be to use a
hash table, but preliminary experiments showed that computing formulas’ hashes quickly
becomes a bottleneck. Instead, Aerial stores the indices for all subformulas directly in the
formulas as annotations on the constructors. In the progress function, one can obtain the
index of a formula based on the indices of its subformulas and the interval. However, the
stored formula index allows us to avoid computing the indices of the subformulas recur-
sively.

For MTL it is easy to compute the exact position of a temporal formula ϕ U[a,b] ψ based
on this information by using the well-order < over interval-skewed subformulas (Sect. 3):
the index of ϕ U[a,b] ψ is just the index of ψ increased by b. For MDL this is problematic,
since the derivatives are hard to align in a predictable way. We resort to memoizing the
derivative functions ∂ and ∂to compute a symbolic expression not only in the verdicts at the
(i+1)st time-point but also in the verdicts at the i th time-point. The search for indices thereby
happens only once during the monitor’s initialization and not during the progress function.
The progress function must merely substitute the symbolic variables pointing to the i th time-
point with the current values of curr. To further increase memory efficiency, our monitor
stores only Boolean expressions for temporal subformulas. The expressions for the Boolean
connectives are computed on the fly, accessing the curr array for temporal subformulas and,
hence, are not stored.

Another crucial question is how to represent Boolean expressions stored in curr, prev,
and hist. Aerial offers the choice between three representations: the one reported in this
paper, one based on our simple implementation of binary decision diagrams (BDDs), and one
based on the BDDs implemented in the safa library [37]. Aerial uses an abstract module
that can be instantiated by a specific representation. This makes it easy to plug in differ-
ent representations and assess their performance. Our goal in the first representation was to
keep the expressions small. To achieve this, we normalize expressions with respect to the
associativity, commutativity, and idempotence of ∧ and ∨, as well as Boolean tautologies
such as � ∧ c = c. Boolean expressions offer a low-cost substitution operation, but they
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are expensive to check for equivalence. In fact, our implementation of the equivalence check
translates expressions into BDDs. The BDD versions always work with the BDD representa-
tion, thereby avoiding the costly translation. In contrast, the substitution operation becomes
more expensive.

Our simpler BDD representation serves as a back-up solution in cases where the richer
functionality of the safa library imposes a performance overhead. The safa library uses
hash-consing [22] to maximally share the BDD structures, thereby reducing memory con-
sumption. However, computing hashes is time-consuming. To better balance the time-space
trade-off and avoid recomputation, hash-consing is often used in combination with mem-
oization. We have not yet employed memoization in our tool. The expensive (in the BDD
representation) subst function would be a natural candidate to memoize. However, it is tech-
nically challenging to do this efficiently as subst depends on the prev array, whose content
needs to be taken into account during memoization.

9 Evaluation

In our evaluation, we consider both variants of our tool: Aerial MTL and Aerial MDL,
implementing the MTL and MDL monitoring algorithms, respectively. We refer to Aerial

without specifying the input language for statements that apply to bothmonitoring algorithms.
As discussed before,Aerial allows us to specify different modes of operation that determine
the contents of the hist array (hereafter referred to as naive, local, and global), as well
as to select different representations of Boolean expressions (hereafter referred to as expr,
bdd, and Safa). We compare Aerial to MonPoly [5,8,9], a state-of-the-art monitor for
metric first-order temporal logic (MFOTL) and Montre [42,43], a state-of-the-art matcher
for timed regular expressions (TRE).

Our evaluation aims to answer the following questions:

Q1 How does Aerial scale with respect to the event rate?
Q2 How does Aerial scale with respect to the size of the monitored formula?
Q3 How does Aerial scale with respect to the size of the formula intervals?
Q4 Which Aerial mode (naive, local, or global) scales best?
Q5 Which (Boolean expression) representation (expr, bdd, or safa) scales best?
Q6 How does Aerial perform compared to the existing state-of-the-art tools?

We answer the above questions with three experiments attesting to the scalability of all the
tools with respect to the event rate, the formula size, and the formula interval size. In our first
experiment, wemonitor a fixed set of formulas (♦[0,5] p, p U[0,5] q, p U[0,5] (q S[2,6] r), and
p U[0,5] (q U[2,6] r)) over streams with an increasing event rate. In our second experiment,
we monitor formulas of increasing size over streams with a fixed event rate of 100 events per
time unit. In our third experiment, we monitor a formula of the form p U[0,N ] (q S[ N2 ,N ] r)
over streams with a fixed event rate of 100 events per time unit, while varying the value of
the parameter N . All combinations ofAerial’s input languages, modes, and representations
are evaluated as a family of 18 different tools.

We ran all our experiments on a machine with two sockets, each containing twelve Intel
Xeon 2.20GHz CPU cores with hyperthreading. We use GNU Parallel [39] to exploit the 48
independent threads to speed up both the generation of the streams and the execution of the
actual experiments. We measure the tools’ total execution time and maximal memory usage
using the Unix time command. Having thoroughly tested the tools’ outputs separately, we
discard any output during the experiments to minimize noise in our measurements.
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(a) (b) (c) (d)

Fig. 5 Time (top) and memory (bottom) against event rate

We fix the time span of the finite prefixes of the streams used in the experiments to 100
time units, with the event rate (the number of time-points labeled with the same time-stamp)
ranging from100 to 100,000 on average (±10%) per stream. The streams contain three atomic
propositions, Σ = {p, q, r}, and their distribution depends on four different generation
strategies: random, constant, custom, andmonpoly. The random generation strategy uses the
uniform probability distribution for each event. Under the constant strategy, each stream has
identical events at every time-point. Since |Σ | = 3, there are exactly eight distinct constant
streams, including the stream consisting of only empty time-points, and the stream consisting
only of time-points in which all atomic propositions hold. Constant streams serve to test
edge cases in the monitors’ implementations and often trigger worst-case monitor execution
time and memory usage (and the best-case as well). The custom generation strategy uses
probability distributions tailored to the particular formulas. For example, for ♦[0,5] p, the
probability of p occurring is very small, which makes the tools wait longer before producing
a verdict. Finally, the monpoly generation strategy uses MonPoly’s own stream generator
used in the evaluation [9], which we adapted to the propositional setting.

Streams generated with the custom and monpoly strategies are used only in the first
experiment, since these strategies are tailored to the four formulas shown above. For each
strategy and event rate, we generated eight different streams. We also converted each of
these streams to the format supported by Montre. Since Montre supports only strictly
monotonic time-stamps, our conversion simulated large event rates by increasing the time
granularity: time-points that share the same time-stamp in the original stream are con-
verted into a sequence of time-points with time-stamps that strictly increase by one time
unit. The granularity of the time unit in the converted stream is proportional to the event
rate.

OurGeneratormodule generates randomMTL andMDL formulas given a size parameter.
We define the formula size as the number of subformulas. We separately check the scala-
bility of the monitors with respect to different interval sizes in the formulas. The tools can
only be compared on commonly supported logical fragments. Propositional MTL with both
future and past is the common fragment supported by Aerial MDL, Aerial MTL, and
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(a) (b) (c) (d)

Fig. 6 Time (top) and memory (bottom) usage against formula (left) and interval size (right)

(a) (b) (c) (d)

Fig. 7 Time (top) and memory (bottom) usage of Aerial MDL’s modes and representations

MonPoly, while MDL formulas in positive normal form belong to the common fragment of
Aerial MDL, andMontre. To supply the correct input to each tool, the formula generator
implements a translation from MTL to fragments of MDL, MFOTL, and a translation from
MDL to TRE. The translation to TRE also scales the intervals appropriately to match the
different time granularity ofMontre-compliant streams. In contrast to monitors that report
violations,Montre outputs all parts of the stream that match a TRE pattern. Hence, to prop-
erly compare the tools, we negate the formulas provided as input to the other monitors. We
generated eight arbitrary formulas for each formula size, ranging from 5 to 100.

We set a timeout for each monitoring run to be 100s, coinciding with the streams’ time
span. Moreover, we employ the following disqualification rule: If a tool times out for all the
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runs with some event rate (or some formula size) then it will not be invoked with streams
with larger event rates (or with larger formula sizes). When computing the mean values, a
timeout counts as 100s (although the actual run may take longer) and skews the curves to
converge to the 100s margin. Therefore, in our plots we only show values below 50s. The
memory used before a timeout contributes to the mean memory usage.

Figure 5 shows the results of the first part of the evaluation classified according to the
stream generation strategy.We show the plots for formula p U[0,5] (q U[2,6] r), which had the
least favorable outcome for our tool. Each data point in the plots shows the average calculated
over eight different streams with a fixed event rate. To answer Q1, scalability with respect to
the event rate, observe that the space consumption of both versions of Aerial is constant.
As expected, the increasing memory consumption of other tools significantly increases the
overall processing time.Montrewas almost immediately disqualified in the case of constant
streams. Its plot is not visible in the case of custom streams due to many timeouts.

To answer Q2, scalability with respect to formula size, note that, even for the largest
formula, Aerial requires only 12MB of space compared to 100MB used by Monpoly

(Fig. 6a) and 250MB used by Montre (Fig. 6b). These experiments were performed on
random streams and random formulas and each data point is an average value over eight
random streams and eight random formulas with the same size. During the experiment shown
in Fig. 6b,Montre timed out 3816 times which is over 82% of all its invocations. Figure 6c,
d answer Q3 and show that all the tools are mostly unaffected by the size of the time interval
N in the formula p U[0,N ] (q S[ N2 ,N ] r). Here each point shows the average value over eight
streams with the event rate of 100 events per time unit.

Figure 7 compares performance of different versions of Aerial, answering Q4 and Q5.
Figure 7a, c show the scalability of the threeAerialmodes with respect to event rate and for-
mula size respectively. As expected, the naivemode scales poorly with the increasing event
rate. In terms of the time efficiency, local mode is only marginally better than the global
mode. In 86% of the experiments, there was no conclusive winner between the two modes.
However, we report on the most significant difference exhibited while monitoring constant
streams. global mode uses less memory, since it always removes equivalent expressions
from the hist array. Figure 7b, d show the scalability of Aerial using the three different
representations for Boolean expressions with respect to event rate and formula size respec-
tively. Note that the naivemode shown in Fig. 7b often times out for event rates higher then
1000, which skews the plots. Direct representation (expr) is the fastest overall, while the
safa BDDs provided the best memory efficiency. This fits well with our intuition on time
and memory tradeoffs when hash-consing the BDD structures.

Finally, regarding Q6, in all experiments Aerial MDL performs only marginally worse
thanAerial MTL, while supporting amore expressive logic. Overall,Aerial outperformed
the other state-of-the-art monitoring tools both in terms of time and memory efficiency.

10 Conclusion

We have introduced the notion of event-rate independence for measuring the space complex-
ity of online monitoring algorithms. This notion is fundamental for monitors that process
event streams of varying velocity. We then presented two novel monitoring algorithms. The
first is a monitor for metric temporal logic (MTL) that is almost event-rate independent.
Afterwards, we introduced metric dynamic logic (MDL) and we extended our almost event-
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rate independent monitoring algorithm for MTL to support MDL. Our evaluation shows that
our implementation of both monitors outperforms other state-of-the-art monitoring tools.

As future work, we would like to extend these ideas to other settings, including the dense
time domain and the fragments of first-order settingwhere eventsmay carry data and formulas
may quantify over the data’s domain. To further improve Aerial’s performance, it would
be interesting to explore parallelization as well as the use of data structures to efficiently
represent Boolean expressions and to leverage state-of-the-art SAT solvers to decide their
equivalence.
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