
From Nondeterministic to Multi-Head1

Deterministic Finite-State Transducers2

Martin Raszyk3

Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Switzerland4

martin.raszyk@inf.ethz.ch5

David Basin6

Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Switzerland7

basin@inf.ethz.ch8

Dmitriy Traytel9

Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Switzerland10

traytel@inf.ethz.ch11

Abstract12

Every nondeterministic finite-state automaton is equivalent to a deterministic finite-state automaton.13

This result does not extend to finite-state transducers—finite-state automata equipped with a one-way14

output tape. There is a strict hierarchy of functions accepted by one-way deterministic finite-state15

transducers (1DFTs), one-way nondeterministic finite-state transducers (1NFTs), and two-way non-16

deterministic finite-state transducers (2NFTs), whereas the two-way deterministic finite-state trans-17

ducers (2DFTs) accept the same family of functions as their nondeterministic counterparts (2NFTs).18

We define multi-head one-way deterministic finite-state transducers (mh-1DFTs) as a natural ex-19

tension of 1DFTs. These transducers have multiple one-way reading heads that move asynchronously20

over the input word. Our main result is that mh-1DFTs can deterministically express any function21

defined by a one-way nondeterministic finite-state transducer. Of independent interest, we formulate22

the all-suffix regular matching problem, which is the problem of deciding for each suffix of an input23

word whether it belongs to a regular language. As part of our proof, we show that an mh-1DFT can24

solve all-suffix regular matching, which has applications, e.g., in runtime verification.25

2012 ACM Subject Classification Theory of computation → Transducers26

Keywords and phrases Formal languages, Nondeterminism, Multi-head automata, Finite transducers27

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.12728

Category Regular Paper Track B29

Funding This research is supported by the Swiss National Science Foundation grant “Big Data30

Monitoring” (167162).31

1 Introduction32

Finite-state automata (FAs) are a fundamental model of computation. In its simplest form,33

a finite-state automaton reads an input word once, from left to right, while updating its34

state deterministically. FAs accept the regular languages. It is well-known that neither35

allowing the reading head to move in both directions on the input word nor updating the36

state nondeterministically extends their expressiveness beyond the regular languages.37

A generalization of the finite-state automata are finite-state transducers (FTs). FTs38

extend a finite-state automaton with an output tape and each transition also outputs a39

(possibly empty) sequence of symbols from an output alphabet. The language accepted40

by a finite-state transducer is a relation (transduction) between input and output words.41

A finite-state transducer is functional (f -FT) if the relation represents a function. Any42

deterministic finite-state transducer is functional (hence, we just write DFT instead of43

f -DFT). For transducers, nondeterminism makes a difference: adding nondeterminism44

EA
T

C
S

© Martin Raszyk, David Basin, Dmitriy Traytel;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 127; pp. 127:1–127:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.raszyk@inf.ethz.ch
mailto:basin@inf.ethz.ch
mailto:traytel@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.ICALP.2019.127
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

127:2 Multi-Head Deterministic Finite-State Transducers

L(1DFA) = L(1NFA) (L(mh-1DFA)

=

L(2DFA) = L(2NFA)

L(1DFT) (L(f -1NFT) (L(mh-1DFT)(

L(2DFT) = L(f -2NFT)

Figure 1 The language hierarchy accepted by models of automata (left) and transducers (right).

extends the expressiveness of a finite-state transducer to nonfunctional relations. One can45

also classify finite-state transducers as one-way or two-way (1FTs or 2FTs) depending on46

whether the reading head can only move forwards or in both directions on the input word.47

Another generalization of finite-state automata adds multiple reading heads that move48

asynchronously over the input word (see, e.g., [6] for a survey). This results in an expressive49

computational model with problems like emptiness, finiteness, and equivalence not being50

semi-decidable already for two reading heads [6]. Multi-head finite-state automata induce a51

strict hierarchy of languages when increasing the number of reading heads [10]. The problem52

of simulating two-head one-way nondeterministic finite-state automata by multi-head two-way53

deterministic finite-state automata is equivalent to the L ?= NL problem [9].54

We combine the previous two generalizations to the notion of multi-head finite-state trans-55

ducers (Section 2). We show that multi-head one-way deterministic finite-state transducers56

(mh-1DFTs) can simulate any functional one-way nondeterministic finite-state transducer57

(f -1NFT), and thereby establish inclusion between the classes of languages accepted by these58

models. Central to our proof is the ability of an mh-1DFT to decide for each suffix of an59

input word whether it belongs to a regular language (Section 3); we call this transduction60

all-suffix regular matching. Computing this transduction allows us to deterministically find61

an accepting computation of the nondeterministic transducer, whenever it exists (Section 4).62

Figure 1 shows how our contributions, the transducer model and the proper inclusion of63

language classes, highlighted in gray, fit into the landscape of other well-studied language64

classes. We discuss the remaining inclusions in Section 5.65

Preliminaries Let I be the set of all finite intervals over the positive integers. We de-66

note an interval I ∈ I by [a..b] = {x | a ≤ x ≤ b}. We define [a..b) := ∅, if a ≥ b, and67

[a..b) := [a..(b − 1)], if a < b. Moreover, we write [k] for [1..k]. Given a finite alphabet Σ,68

we denote the set of all finite words over Σ by Σ∗, the empty word by ε, and the length of69

a word w ∈ Σ∗ by |w|. Given a tuple of positions ps ∈ [|w|]|ps| of length |ps|, w[ps] denotes70

w[ps1]w[ps2] . . . w[ps|ps|], i.e., the word consisting of symbols from w at the positions ps.71

A one-way deterministic finite-state automaton (1DFA) is a tuple A = (Σ, Q, qs, QF , δ),72

where Σ is the input alphabet, Q is a finite set of states, qs ∈ Q is the initial state, QF ⊆ Q73

is the set of accepting states, and δ : Q× Σ→ Q is the transition function. We extend the74

function δ to δ∗ : Q× Σ∗ → Q in the natural way. A one-way nondeterministic finite-state75

automaton (1NFA) is obtained by replacing the transition function in the definition of a76

1DFA by a transition relation δ ⊆ Q× Σ×Q.77

A one-way nondeterministic finite-state transducer (1NFT) is derived from an underlying78

1NFA by extending its transition relation with output words over an output alphabet Γ, i.e.,79

the transition relation becomes δ ⊆ Q×Σ×Q×Γ∗. We extend the relation δ to δ∗ ⊆ Q×Σ∗×80

Q× Γ∗ in the natural way. A 1NFT is functional if the transduction it defines is a function.81

I Example 1. Figure 2a shows a f -1NFT computing the function f that maps a non-empty82

binary word w to 0|w|, if w ends with a zero, and 1|w|, otherwise. In the first step, the83

transducer guesses the last symbol and moves to a state qi,j , where i is the guess and j is84

the current (i.e., first) symbol. In the subsequent steps, the transducer updates the current85

state based on the current symbol. In each transition, the transducer outputs its original86

guess. Finally, the transducer accepts if the last symbol equals its guess.87

M. Raszyk, D. Basin, D. Traytel 127:3

qs

q0,0 q0,1

q1,0 q1,1

0,0

1,0

0,1

1,1

0,0

1,0

1,0

0,0

0,1

1,1

1,1

0,1

(a) The f -1NFT from Example 1. A
transition labeled by i, j represents a
transition when reading the symbol i
and producing the output j.

qs

q0

q1

q′0

q′1

qf

(0,
b),

ǫ, (
1,
0)

(0, b), ǫ, (1, 0)

(1, b), ǫ, (1, 0)

(1, b), ǫ, (1, 0)

(0
,b
),
ǫ,
(1
,0
) (1

,b),ǫ,(1
,0
)

(⊣, b), 0, (0, 1)

(⊣, b), 1, (0, 1)

(⊣, b), 0, (0, 1)

(⊣, b), 1, (0, 1)

(⊣,⊣), ǫ, (0, 0)

(⊣,⊣), ǫ, (0, 0)

(b) The mh-1DFT from Example 2. A transition labeled by
(s1, s2), o, (m1,m2) represents a transition when reading the sym-
bols (s1, s2), producing the output o, and advancing the reading
heads by the offsets (m1,m2). Here, b ∈ {0, 1}.

Figure 2 The transducers from Examples 1 and 2.

2 Multi-Head One-Way Deterministic Finite-State Transducer88

We define multi-head one-way deterministic finite-state transducers (mh-1DFTs) by adapting89

the definition of multi-head two-way finite-state automata [6] to multi-head one-way deter-90

ministic finite-state automata and extending the transition function with output symbols.91

The following definition of an mh-1DFT formalizes a transition on a non-final state that92

reads a κ-tuple of symbols, enters a new state, produces some output, and advances some93

of the reading heads. We use a special symbol a to mark the end of the input tape, on94

the right-hand side. We further impose two conditions on the transition function. First,95

no reading head moves out of the input tape. Second, some reading head advances at each96

transition except when the new state is accepting. Without loss of generality, the transition97

relation δ forbids ε-transitions to non-final states. Hence, an mh-1DFT can only reject an98

input word by permitting no further transition. If δ is total, then no input word is rejected99

and the transduction is a total function.100

I Definition 1. A multi-head one-way deterministic finite-state transducer (mh-1DFT) is101

a tuple A = (Σ,a,Γ, κ,Q, qs, QF , δ), where Σ is an input alphabet, a 6∈ Σ is the right102

endmarker, Γ is an output alphabet, κ is the number of reading heads, Q is a finite103

set of states, qs ∈ Q is the initial state, QF ⊆ Q is a set of accepting states, and104

δ : (Q \QF)× (Σ ∪ {a})κ → Q× Γ∗ × {0, 1}κ is the partial transition function such that:105

δ(q, es) = (q′, õ,ms) and esi = a, for any i ∈ [κ], implies that msi = 0, and106

δ(q, es) = (q′, õ,~0) implies that q′ ∈ QF .107

A configuration of an mh-1DFT A = (Σ,a,Γ, κ,Q, qs, QF , δ) is a tuple c = (w, o, q, ps) ∈108

CA, where w ∈ Σ∗ is the input word, o ∈ Γ∗ is the output word produced by A so far,109

q ∈ Q is the current state, and ps ∈ [|w| + 1]κ are the positions of the κ reading heads110

on the input tape. A configuration is accepting if q ∈ QF . A step sA is a relation on111

CA such that ((w, o, q, ps), (w′, o′, q′, ps′)) ∈ sA if and only if w = w′, o′ = o · õ, for some112

õ ∈ Γ∗, and δ(q, w[ps]) = (q′, õ, ps′ − ps). A computation of an mh-1DFT A on a word w is a113

maximal finite sequence of configurations c1, c2, . . . , cl that starts with the initial configuration114

c1 = (w, ε, qs,~1) and in which all pairs of consecutive configurations are contained in the step115

ICALP 2019

127:4 Multi-Head Deterministic Finite-State Transducers

relation sA. (The finiteness is given because ps′−ps 6= ~0 except when q′ ∈ QF by Definition 1.)116

A computation is accepting if its last configuration cl is accepting. Otherwise, it is rejecting.117

We say that an mh-1DFT A accepts a language L ⊆ Σ∗×Γ∗ if the computation on an input118

word w producing some output o satisfies (w, o) ∈ L if and only if it is accepting. One can also119

view a language L ⊆ Σ∗×Γ∗ accepted by an mh-1DFT A as a function f : X → Γ∗, where X120

is the set of all input words w such that (w, o) ∈ L for some (unique) output o and f(w) = o.121

I Example 2. Figure 2b shows a two-head mh-1DFT computing the function f from122

Example 1. Initially, the first reading head reads the entire input word to determine the123

last symbol. Subsequently, the second reading head outputs the last symbol for each input124

symbol it reads. Once the second reading head has arrived at the right endmarker a, the125

mh-1DFT accepts without advancing any reading head. The empty word ε is not mapped to126

any output as there is no transition from the initial state qs when reading (a,a).127

3 All Suffix Regular Matching128

All-suffix regular matching is the problem of deciding for each suffix of an input word whether129

it belongs to a regular language. More formally, for a regular language L, we define a function130

tL : Σ∗ → {0, 1}∗ that maps a word w to a binary word tL(w) of length |w|+ 1 such that,131

for any 1 ≤ i ≤ |w|+ 1, tL(w)[i] = 1 if and only if the suffix w[i..|w|] is in the language L.132

The last symbol in tL(w) denotes whether the empty word ε is in the language L.133

We show that, for any regular language L, all-suffix regular matching can be solved by134

an mh-1DFT, i.e., there exists an mh-1DFT computing the function tL. This construction is135

subsequently used in our simulation of any f -1NFT by an mh-1DFT (Section 4).136

3.1 Informal Account137

Let A be a 1DFA with |Q| states. A naive approach to all-suffix regular matching is to run A138

on each suffix of the input word, i.e., starting from every position. The mh-1DFT solving this139

problem must output the decisions sequentially starting from the leftmost suffix (the entire140

word). Suppose we already know the decision for some past suffixes and want to compute the141

decision for a current suffix. To reuse the decisions for the past suffixes, we can first run the142

automaton A again on these suffixes until we reach the current position. Now we continue to143

run the automaton A on the past suffixes and also run A from its starting state on the current144

suffix. If the state of A in the run on the current suffix equals at some point the state of145

A in a run on a past suffix, then we know that the decision for the current suffix is the same146

as the decision for that past suffix and we can output it without the need to run A further.147

Our mh-1DFT keeps a list of decisions and states for past suffixes such that running A148

on them until the current position yields different states. The length of this list is at most149

|Q|. To compute the decision for the current suffix, our mh-1DFT uses a reading head h150

positioned at the current position to run A from all the stored states for past suffixes as well151

as from the initial state for the current suffix. The reading head h stops once the state for152

the current suffix equals the state for a past suffix (or the end of the input word is reached).153

It remains to be shown that a finite number of reading heads suffice, independently of the154

input word’s length. To this end, observe that whenever the reading head h moves on, the list155

of decisions and different states for past suffixes at that position expands (otherwise, the deci-156

sion for the current suffix would have been known and h would have stopped). As the length157

of the list at any position is at most |Q|, it suffices to use |Q|+ 1 reading heads in total. The158

extra reading head updates the stored states after a decision for the current suffix is computed.159

M. Raszyk, D. Basin, D. Traytel 127:5

q0

q1

1

0, 1

0

0

0

1

0

1

0

0

0

1

1

⊣

1

mh-1DFT accept

0

0

1 1 0 1 ⊣

mh-1DFT q0 : ⊥ q1 : 0

input tape

output tape

0

0

1

0

1 0 1 ⊣

mh-1DFT q0 : 0 q1 : 0

0

0

1

0

1

0

0 1 ⊣

mh-1DFT q0 : 0 q1 : 0

0

0

1

0

1

0

0

0

1 ⊣

mh-1DFT q0 : ⊥ q1 : 0

0

0

1

0

1

0

0

0

1

1

⊣

mh-1DFT q0 : 1 q1 : 0

Figure 3 The automaton and configurations of the mh-1DFT from Example 3.

I Example 3. Consider the regular language L consisting of all binary words without zero.160

A two-state deterministic automaton A accepting L is depicted in Figure 3. We describe a161

computation of our mh-1DFT with three reading heads on the input word w = 01101.162

To compute the decision for the first suffix, one reading head reads the entire input. The163

remaining two reading heads advance and the decision 0 is stored (with the updated initial164

state δ(q0, 0) = q1) and output (to the output tape, which is below the input tape in Figure 3).165

To compute the decision for the second suffix, another reading head positioned at the166

second symbol advances to the fifth symbol until the two states (for the past and current167

suffix) become a single state q1. The only remaining reading head advances and the decision 0168

is stored (with the updated initial state δ(q0, 1) = q0) and output.169

Since the initial state q0 is now stored with a decision, the decision for the third suffix170

can be immediately output, the last reading head advanced, and the stored states updated.171

The decision for the fourth suffix can again be immediately output, the last reading head172

advanced, and the stored states updated (to a single state q1 since δ(q0, 0) = δ(q1, 0) = q1).173

For the last suffix, the initial state q0 is no longer stored with a decision, so a reading head174

reads the last symbol to compute and output the decision 1. Then the last reading head175

advances and the decision is stored (with an updated initial state δ(q0, 1) = q0). Finally, as176

the last reading head has arrived at the right endmarker, our mh-1DFT outputs the Boolean177

decision 1 for the empty suffix (the initial state q0 is accepting) and accepts.178

3.2 The Multi-Head Transducer179

We now formally define an mh-1DFT that solves the all-suffix regular matching problem180

for a regular language L. Let A be a 1DFA accepting L. Suppose A’s set of states is181

Q = {q1, q2, . . . , qn} and that the current suffix of an input word w starts at the position182

i. Let Q̃i = {δ∗(qs, w[j..i)) | j ∈ [1..i)} be the set of stored states for the past suffixes. For183

each i′ ∈ [i, |w|+ 1], let Q̃i,i′ = {δ∗(qj , w[i..i′)) | qj ∈ Q̃i} be the states obtained by running184

the stored states for the past suffixes from the current position i up to the position i′. Let185

βw,i(q) equal one if and only if A accepts the word w[i..|w|] when run from the state q.186

We define our mh-1DFT ÃL = (Σ,a,Γ, κ, Q̃, q̃s, Q̃F , δ̃) as follows. We set the output187

alphabet to Γ = {0, 1} and the number of reading heads to κ = |Q| + 1 = n + 1. The188

set of states is Q̃ = (((Q× {0, 1}) ∪ ⊥)|Q| ×Q) ∪ {q̃f}, where q̃f is a designated accepting189

state. With the last reading head at the position i, i.e., psn+1 = i, and the reading head190

ICALP 2019

127:6 Multi-Head Deterministic Finite-State Transducers

1 δ̃((qbs, q), es) :
2 D := {qj | qbsj 6= ⊥};D′ := {qj′ | ∃j. qbsj = (qj′ ,_)}
3 k := |D|+ 1; k′ := |D′|+ 1
4 if esk′ = a then b := q ∈ QF
5 else if ∃j, qj′ , βj . qbsj = (qj′ , βj) ∧ q = qj′ then b := βj
6 else b := ⊥ fi
7 if b ∈ {0, 1} then
8 if esn+1 = a then output b and return q̃f fi
9 qbs′ := ⊥n

10 ∀qj ∈ D. let qj′ := δ(qj , esn+1), (_, βj) := qbsj in qbs′j′ := (qj′ , βj)
11 let qj′ := δ(qs, esn+1) in qbs′j′ := (qj′ , b)
12 output b
13 let k̃ := k + (qs 6∈ D) in advance reading heads k̃, . . . , n+ 1
14 return (qbs′, qs)
15 else
16 qbs′ := qbs
17 ∀qj ∈ D. let (qj′ , βj) := qbsj in qbs′j := (δ(qj′ , esk′), βj)
18 advance reading head k′ fi
19 return (qbs′, δ(q, esk′))

Figure 4 The transition function δ̃ of the mh-1DFT ÃL.

for the current suffix at the position i′ (the current suffix starts at the position i), a state191

(qbs, q) ∈ Q̃ consists of an n-tuple qbs whose j-th component qbsj = (qj′ , βw,i(qj)) stores the192

decision βw,i(qj) for a past suffix corresponding to the stored state qj ∈ Q̃i and the state qj′193

obtained by running A from the state qj on w[i..i′). If the state qj is not among the stored194

states for the current position i, then qbsj = ⊥. Furthermore, the state q from the state195

(qbs, q) ∈ Q̃ of the mh-1DFT ÃL is the state obtained by running A on the current suffix up196

to the position i′, i.e., q = δ∗(qs, w[i..i′)). We point out that the positions i and i′ themselves197

are not explicitly stored in the state (but i = psn+1 and i′ = psk′ , with k′ as in Figure 4).198

The initial state is q̃s = (⊥n, qs). The set of accepting states is Q̃F = {q̃f}. The transition199

function δ̃ : (Q̃ \ Q̃F)× (Σ ∪ {a})n+1 → Q̃× Γ∗ × {0, 1}n+1 is defined using pseudocode in200

Figure 4. The transition function of the mh-1DFT from Example 3 is shown in Figure 5.201

We use the notation let qj′ := δ(qs, esn+1) in qbs′j′ := (qj′ , b) for pattern-matching, i.e., j′202

denotes the index of the state δ(qs, esn+1) in the expression qbs′j′ := (qj′ , b).203

The last reading head is at the current position i = psn+1 and all reading heads j and j′204

with j > j′ satisfy psj ≤ psj′ (the reading heads do not overtake each other). The transducer205

maintains the invariant that the number of reading heads beyond the position i′ of the reading206

head for the current suffix equals |Q̃i,i′ |. The sets D and D′ (Line 2) equal the set of stored207

states Q̃i and the set of states Q̃i,i′ , obtained by running A from the stored states Q̃i on w[i..i′).208

The invariant implies that k′ = |D′|+ 1 (Line 3) is the reading head for the current suffix.209

The transducer ÃL first tries to determine the decision for the current suffix (Lines 4–6).210

If this can be determined, then ÃL updates the stored states (Lines 9–11), outputs the211

decision, advances all reading heads at the current position i, and sets the state for the212

current suffix to the initial state of A (Line 14). If A’s initial state is not among the stored213

states D = Q̃i, the reading head for the current suffix has already advanced, i.e., ÃL only214

needs to advance the remaining reading heads k + 1 = k̃, . . . , n+ 1 at the current position.215

If the decision for i has not been determined, then the states D′ and q are updated (Lines216

16–17 and 19) and the reading head for the current suffix advances (Line 18).217

M. Raszyk, D. Basin, D. Traytel 127:7

(⊥,⊥, q0) ((q0, 1), (q1, 0), q0) ((q0, 0),⊥, q0) (⊥,⊥, q1) ((q0, 0), (q1, 0), q0)

((q0, 1),⊥, q0) (⊥, (q1, 0), q0) (⊥, (q1, 0), q1)qf

(111, ǫ, 100) (⊣⊣1, 1, 001) (⊣11, 0, 011) (b′bb, ǫ, 100) (⊣∗1, 0, 001)

(⊣11, 1, 011) (⊣11, ǫ, 010)

(0bb, ǫ, 100)

(⊣
1
1
,1
,0
1
1
)

(⊣⊣⊣, 1, 000)

(⊣⊣⊣
,1
,0
0
0
)

(⊣⊣1, 1, 001)

(⊣⊣⊣, 1, 000)(⊣⊣⊣, 1, 000)

(⊣
0
0
,0
,0
1
1
)

(⊣11, 0, 011)

(⊣0
0,
0,
01
1)

(⊣
∗1

,0
,0
0
1
)

(⊣∗0
, 0,

001
)

(⊣0b, ǫ, 010)

(⊣∗0, 0, 001)

Figure 5 The transition function of the mh-1DFT from Example 3. A transition labeled by
(s1s2s3, o,m1m2m3) represents a transition when reading the symbols (s1, s2, s3), producing the
output o, and advancing the reading heads by the offsets (m1,m2,m3). Here, b, b′ ∈ {0, 1} denote
arbitrary symbols from the input alphabet, whereas ∗ ∈ {0, 1,a} denotes an arbitrary input symbol.
(Only states and transitions reachable in a computation on an input word are shown.)

3.3 Proof of Correctness218

To prove that the mh-1DFT ÃL computes tL, we formulate an invariant on a configuration of219

ÃL that is satisfied by each configuration from a computation on an input. For the accepting220

state q̃f , the invariant states that the output is correct: I(w, o, q̃f , ps) ≡ (o = tL(w)) (c0).221

For a state (qbs, q) ∈ Q̃, the invariant captures the properties of a state and the reading222

heads’ positions mentioned previously. In addition, it states that correct output has been223

produced for all positions preceding the current position i = psn+1. In the following, we use224

the definitions from Lines 2–3 in Figure 4. We further define i′ = psk′ to be the position of225

the reading head for the current suffix. To capture the expansion of the set of stored states226

by running A on the current suffix, we define Q̃′j = Q̃i,j ∪ {δ∗(qs, w[i..j))}, for all j ∈ [i..i′),227

and Q̃′j = Q̃i,j , for all j ∈ [i′..(|w|+ 1)]. Then the invariant is as follows:228

I(w, o, (qbs, q), ps) ≡ (|o| = psn+1 − 1 ∧ ∀j ∈ [|o|]. oj = tL(w)[j]) ∧ (c1)229

∀j ∈ [n]. ∀qj′ , βj . (qbsj = (qj′ , βj) =⇒ qj′ = δ∗(qj , w[i..i′)) ∧ βj = βw,i(qj))∧ (c2)230

q = δ∗(qs, w[i..i′)) ∧ (c3)231

D = Q̃i ∧ (c4)232

D′ = Q̃i,i′ ∧ (c5)233

∀j ∈ [i..i′). Q̃i,j (Q̃′j ∧ (c6)234

(psn+1 ≤ · · · ≤ ps1) ∧ (c7)235

∀j ∈ [i..|w|]. |{h | psh > j}| = |Q̃′j |. (c8)236
237

I Lemma 1. For any input word w, the initial configuration of ÃL satisfies the invariant,238

i.e., I(w, ε, (⊥n, qs), 1n+1) holds.239

Proof. Observe that i = i′ = 1 and D = D′ = Q̃i = Q̃i,j = ∅, for all j ∈ [i..|w|]. J240

I Lemma 2. Let c1 = (w, o, (qbs, q), ps) and c2 = (w, o′, q′, ps′) be two configurations of ÃL241

such that I(c1) holds and (c1, c2) ∈ sÃL . Then I(c2) holds.242

Proof. We refer to Line l in Figure 4 as ll. Furthermore, we refer to the i-th conjunct in243

I(c1) and I(c2) as ci and ci’, respectively and to the i-th fact labeled in the proof as fi.244

Let us denote by ij , i′j , Dj , D′j , kj , k′j , jQ̃′j′ , jps, j ∈ {1, 2}, the respective definitions for the245

configuration cj . To derive that I(c2) holds, we analyze the transition function δ̃ in Figure 4.246

ICALP 2019

127:8 Multi-Head Deterministic Finite-State Transducers

First we show that b 6= ⊥ =⇒ b = tL(w)[i1] (f1). If esk′
1

= a, then i′1 = |w|+ 1, c3, and247

l4 imply that b = tL(w)[i1]. If l5’s condition holds, then c2 and c3 imply that b = tL(w)[i1].248

Consider the case b ∈ {0, 1} (l8–14). If esn+1 = a, then i1 = i′1 = |w|+ 1 and b 6= ⊥ (due249

to i′1 = |w|+ 1 and l4) which with f1 implies b = tL(w)[i1]. c1 and b = tL(w)[i1] imply c0,250

i.e., I(c2) holds since c2 is accepting and thus I(c2) ≡ c0. Otherwise (if esn+1 6= a), we have251

i1 ≤ |w|. Because k̃ = |D1|+ 1 + (qs 6∈ D1) ≤ n+ 1, the last reading head advances, i.e., i2 =252

i1 + 1 (f2). Now, f1, f2, and c1 imply c1’. Next we show that |{h | 1psh > i1}| = k̃−1 (f3).253

From c4, we have D1 = Q̃i1 . It follows that |1Q̃′i1 | = |D1| + (qs 6∈ D1). c8 then implies254

|{h | 1psh > i1}| = k̃− 1, i.e., that precisely those readings heads at the position i1 advanced255

(l13). In particular, this implies c7’. l9–11 and c4 imply D2 = D′2 = Q̃i1+1
f2= Q̃i2 (f4).256

This immediately implies c4’. Next we show that i2 = i′2 (f5). If i2 = |w|+ 1, then i2 = i′2257

follows from c7’. Suppose that i2 ≤ |w|. It follows that |{h | 2psh > i2}|
f2–3,l13= |{h |258

1psh > i1 + 1| c8= |1Q̃′i1+1|. If i′1 > i1 + 1, we derive |1Q̃′i1+1|
i′1>i1+1

= |Q̃i1+1|. If i′1 ≤ i1 + 1,259

we derive |1Q̃′i1+1|
l5= |Q̃i1+1|. Hence, |{h | 2psh > i2}| = |Q̃i1+1|

f2= |Q̃i2 |
f4= D′2, which260

implies that i2 = i′2. f5 implies c6’ and f5 together with l14 imply c3’. f4–5 imply c5’.261

l9–11, c2, f1, and f5 further imply c2’. f3 and l13 imply that those reading heads at262

i1 advanced. Hence for c8’, it suffices to show |2Q̃′j | = |1Q̃′j |, for all j ∈ [(i1 + 1)..|w|]. We263

derive |2Q̃′j |
f2,f5= |Q̃i1+1,j |. If i′1 ≤ j, then |Q̃i1+1,j |

l5,i′1≤j= |Q̃i1,j |
i′1≤j= |1Q̃′j |. If i′1 > j, then264

|Q̃i1+1,j |
i′1>j= |1Q̃′j |. This completes the proof of c8’. Thus, I(c2) holds in the case b ∈ {0, 1}.265

We continue with the case b = ⊥ (l17–19). Together with l5, b = ⊥ implies |D′1| < n. We266

obtain k′1 ≤ n and that i2 = 2psn+1 = 1psn+1 = i1 (f6). Moreover, l17 implies D2
l17= D1

c4=267

Q̃i1
f6= Q̃i2 which yields c4’. Since no output is produced, f6 immediately yields c1’. Together268

with l4, b = ⊥ implies i′1 ≤ |w|. Next we show that i′2 = i′1 + 1 (f7). We derive |{h | 1psh >269

i′1}|
c8,i′1≤|w|= |1Q̃′i′1 |

c5= |D′1|
l3= k′1−1 (f8). The fact f8 implies that the single advancing reading270

head k′1 is the first reading head at the position i′1, which further implies c7’. If i′1 +1 = |w|+1,271

then i′2 = i′1 + 1 follows from |D′2|
l17
≤ |D′1|. If i′1 + 1 ≤ |w|, then i′2 = i′1 + 1 follows from272

|D′2|
l17= |1Q̃′i′1+1| and |{h | 1psh > i′1 + 1}|

c8,i′1+1≤|w|
= |1Q̃′i′1+1|. Then, l17, the facts f6–7273

and c2, c4–5 imply c2’ and c5’. Furthermore, l19, f6–7 and c3 imply c3’. Together with274

l5 and f6–7, b = ⊥ implies that Q̃i1,i′1 (2Q̃′i′1
(f9). f6–7 and f9 together with c6 yield c6’.275

It suffices to show c8’ for j = i′1; otherwise 1Q̃′j = 2Q̃′j and the number of heads at positions276

> j did not change. For j = i′1, we derive |{h | 2psh > i′1}|
l18= |{h | 1psh > i′1}|+ 1 c8= |1Q̃′i′1 |+277

1 b=⊥,l5= |2Q̃′i′1 |. This completes the proof of c8’. Thus, I(c2) holds in the case b = ⊥. J278

I Theorem 3. For any input word w, the output produced by ÃL is tL(w).279

Proof. Let c1, c2, . . . , cl be ÃL’s computation on w. Lemmas 1 and 2 imply that I(ci) holds280

for all configurations ci, i ∈ [l]. Since ÃL’s transition function δ̃ is total (the transducer281

cannot get stuck), Definition 1 implies that cl is an accepting configuration. The invariant282

I(w, o, q̃f , ps) for the last configuration cl = (w, o, q̃f , ps) then implies that o = tL(w). J283

4 Simulation284

Let A be a f -1NFT and let L ⊆ Σ∗×Γ∗ be the language accepted by A. We show that there285

exists an mh-1DFT accepting the same language L. This establishes inclusion between the286

classes of languages accepted by these models. Because two-head finite-state automata strictly287

extend the expressiveness of one-head finite-state automata [10], the inclusion is proper.288

M. Raszyk, D. Basin, D. Traytel 127:9

4.1 Informal Account289

To simulate the f -1NFT A with |Q| states on an input w, we first check if w is accepted by290

A’s underlying automaton. This can be done using a single head that reads the entire input.291

If the automaton rejects, then clearly no (w, o) ∈ L and our mh-1DFT simulating A may also292

immediately reject. Otherwise there is exactly one (w, o) ∈ L, since A is functional. Hence, it293

suffices to follow an accepting computation of the underlying automaton and concatenate the294

outputs from A’s transition relation to produce the output o. A problem with this straight-295

forward approach is the nondeterminism of A that may have multiple transitions from a given296

state of A on the same symbol. Nonetheless, if we are able to determine a transition to a state297

from which A’s underlying automaton accepts the rest of the input word, then we can follow298

it, since this transition is part of an accepting computation. So now our problem is reduced to299

checking from which states a 1NFA accepts a suffix of an input word. But since the language ac-300

cepted by a 1NFT run from a particular state is regular, this is precisely an instance of all-suffix301

regular matching, for which we have already constructed an mh-1DFT in the previous section.302

Our mh-1DFT simulating A follows the described approach. It tries to find an accepting303

computation of the underlying automaton of A starting from its initial state. To this end, our304

mh-1DFT runs |Q| instances of the (distinct) mh-1DFTs for the regular languages accepted by305

the underlying finite-state automaton of A when run from one of its states. If at some point,306

no transition can be made from the current state to a new state from which the remainder of307

the input word is accepted, then our mh-1DFT rejects the input word. Otherwise, it follows308

one such transition (an arbitrary one if there are multiple transitions) and outputs the output309

word from the transition of the transducer A. Upon reaching the right endmarker of the input310

word, our mh-1DFT accepts if the current simulated state is accepting with respect to A.311

I Example 4. We revisit the f -1NFT A from Example 1. In Example 2, we proposed an312

ad-hoc mh-1DFT that simulates A. Here, we show how to obtain an mh-1DFT that simulates313

A by following the general approach. First we construct a 1DFA for each regular language ac-314

cepted by A’s underlying automaton when run from one of its states. For instance, the regular315

language Ls for the initial state of A contains all non-empty binary words (note that this is the316

set of all input words w such that (w, o) ∈ L for some o) and can be accepted by a simple two-317

state 1DFA. For the states q0,0 and q0,1, the regular languages L0,0 and L0,1 contain all non-318

empty binary words that end with a zero. Analogously, for the states q1,0 and q1,1, the regular319

languages L1,0 and L1,1 contain all non-empty binary words that end with a one. Each of these320

four regular languages L0,0, L0,1, L1,0, and L1,1 can be accepted by a simple three-state 1DFA.321

Now, for each of the five regular languages (Ls, L0,0, L0,1, L1,0, and L1,1), we construct322

an mh-1DFT solving all-suffix-pattern matching. The mh-1DFT for Ls has three reading323

heads and the mh-1DFTs for L0,0, L0,1, L1,0, and L1,1 have four reading heads each. Hence,324

the resulting mh-1DFT Ã simulating A has 1 + 3 + 4 · 4 = 20 reading heads.325

Let us analyze Ã’s computation on the input word w = 01101. The mh-1DFT for Ls326

computes that the entire input word is accepted by the underlying automaton of A (because327

w is non-empty). Hence, there exists an accepting computation of A on w that Ã will328

simulate. The mh-1DFTs for L0,0 and L0,1 compute that neither of the first two suffixes is329

in either of these two regular languages (because w does not end with a zero). In contrast,330

the mh-1DFTs for L1,0 and L1,1 compute that both the first two suffixes are in both these331

regular languages (because w ends with a one). Now, the mh-1DFT Ã simulating A must332

decide between the states q1,0 and q1,1 based on the actual transition relation of A. Since333

the first symbol of w is a zero, the next simulated state of A is going to be q1,0 and the first334

output symbol is 1 (which is the correct guess of A about the last symbol of the input word).335

The rest of A’s computation on w is in fact deterministic and we omit it.336

ICALP 2019

127:10 Multi-Head Deterministic Finite-State Transducers

1 δ̃((q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), es) :
2 if es1 = a then
3 if q ∈ QF then return q̃f
4 else reject fi fi
5 let i be the smallest index such that (ti,1, ti,2) 6∈ {0, 1}2

6 let esi be the symbols belonging to the reading heads of ÃLi

7 (q̃i, t,msi) := δ̃i(q̃i, esi)
8 advance reading heads belonging to ÃLi according to the offsets msi
9 if t ∈ {0, 1} then

10 if ti,1 = ε then ti,1 := t

11 else ti,2 := t fi fi
12 if ∀i ∈ [n]. (ti,1, ti,2) ∈ {0, 1}2 then
13 let qj := q

14 if ∃j′ ∈ [n]. tj,1 = 1 ∧ tj′,2 = 1 ∧ (qj , es1, qj′) ∈ δ′ then
15 let õ be the output of a transition δ(qj , es1, qj′ , õ, 1) in output õ
16 advance reading head 1
17 return (qj′ , (q̃1, t1,2, ε), . . . , (q̃n, tn,2, ε))
18 else
19 reject fi fi
20 return (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2))

Figure 6 The transition function δ̃ of the mh-1DFT Ã.

4.2 The Multi-Head Transducer337

We define an mh-1DFT simulating a f -1NFT A = (Σ,Γ, Q, qs, QF , δ). Suppose the set of338

states of A is Q = {q1, q2, . . . , qn}. For each i ∈ [n], let Li be the regular language accepted339

by the 1NFA Ai = (Σ, Q, qi, QF , δ′), where δ′ ⊆ Q×Σ×Q is the transition relation obtained340

from δ by ignoring the output word Γ∗. In particular, note that As is the underlying341

automaton of A and Ai is obtained from As by changing the initial state to qi.342

By Theorem 3, there exists an mh-1DFT ÃLi = (Σ,a, {0, 1}, κi, Q̃i, q̃is, Q̃iF , δ̃i) computing343

the function tLi
, for each i ∈ [n]. We define our mh-1DFT Ã = (Σ,a,Γ, κ, Q̃, q̃s, Q̃F , δ̃) simu-344

lating A as follows. We set the number of reading heads to κ = 1+
∑n
k=1 κi (the extra reading345

head is needed to simulate the actual step of A using its transition relation δ, in particular, to346

obtain the output word õ ∈ Γ∗). The set of states is Q̃ = (Q× (Q̃1×{ε, 0, 1}2)× · · · × (Q̃n×347

{ε, 0, 1}2)) ∪ {q̃f}, where q̃f is a designated accepting state. The first component of a state348

q̃ ∈ Q̃ stores the current simulated state q = qij ∈ Q of A. The (i+1)-th component of a state349

q̃ ∈ Q̃ stores a tuple (q̃i, ti,j , ti,j+1), where q̃i ∈ Q̃i is a state of the mh-1DFT ÃLi
, and ti,j and350

ti,j+1 are the decision for the current and next suffix (or ε if they have not been computed yet).351

The initial state is q̃s = (qs, (q̃1
s , ε, ε), . . . , (q̃ns , ε, ε)). The set of accepting states is Q̃F = {q̃f}.352

The transition function δ̃ : (Q̃\Q̃F)×(Σ∪{a})κ → Q̃×Γ∗×{0, 1}κ is defined using pseudocode353

in Figure 6. We point out that the next simulated state qj′ of A (Line 14 in Figure 6) needs not354

be unique and the mh-1DFT Ã chooses (deterministically) an arbitrary state if it is not unique.355

Recall that the only way for an mh-1DFT to reject an input is by getting stuck. In356

Figure 6, this is represented by the command “reject” (Lines 4 and 19). If the control flow357

reaches “reject”, then the transition function is not defined for the respective input arguments.358

The first reading head simulates the only reading head of the f -1NFT A. If it reads the359

right endmarker a, then the computation is accepted if and only if the current simulated360

M. Raszyk, D. Basin, D. Traytel 127:11

state q is accepting (Lines 2–4). Otherwise, the mh-1DFT Ã performs a transition of an361

mh-1DFT ÃLi
for which either ti,1 or ti,2 have not been computed yet (Lines 5–8). The362

mh-1DFT Ã maintains the invariant that one such unknown decision exists. Then it updates363

ti,1, ti,2 accordingly (Lines 9–11). The definition of the transition function δ̃i (Figure 4)364

implies that at most a single Boolean decision is produced in each transition.365

Once all the decisions ti,1 and ti,2 have been computed, a step of the f -1NFT A can be366

simulated (Lines 13–19). If there exists a transition from the current state q = qj to a new367

state qj′ from which the next suffix is accepted by A, then it is taken (Lines 15–17). The368

decisions for the next suffix become the decisions for the current suffix and the decisions for369

the next suffix become unknown (Line 17). Otherwise, the input word is rejected (Line 19).370

4.3 Proof of Correctness371

To prove that the mh-1DFT Ã simulates the f -1NFT A, we formulate an invariant on a372

configuration of Ã that is satisfied by each configuration from a computation on an input373

word. For the accepting state q̃f , the invariant merely states that the input word is accepted374

by A and the output is correct: J (w, o, q̃f , ps) ≡ (w, o) ∈ L (d0).375

For a state (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)) ∈ Q̃, the invariant captures the properties376

of a state mentioned previously. To express them, it uses the invariant I on the configurations377

of the mh-1DFT ÃLi . In addition, it guarantess the existence of the index i from Line 5 in378

Figure 6 and that the simulation does not get stuck after it successfully performs its first379

step. We denote the positions of the reading heads belonging to ÃLi , i ∈ [n], by psi.380

J (w, o, (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), ps) ≡ (qs, w[1..ps1), q, o) ∈ δ∗ ∧ (d1)381

∀i ∈ [n]. ∃ts. (|ts| = ps1 − 1 ∧ I(w, ts · ti1 · ti,2, q̃i, psi)) ∧ (d2)382

∃i ∈ [n]. (ti,1, ti,2) 6∈ {0, 1}2 ∧ (d3)383

(ps1 > 1 =⇒ ∃qf ∈ QF . ∃o′. (q, w[ps1..|w|], qf , o′) ∈ δ∗) (d4)384
385

I Lemma 4. For any input word w, the initial configuration of Ã satisfies the invariant,386

i.e., I(w, ε, (qs, (q̃1
s , ε, ε), . . . , (q̃ns , ε, ε)), 1κ) holds.387

Proof. The invariant follows directly from Lemma 1. J388

I Lemma 5. Let c1 = (w, o, (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), ps) and c2 = (w, o′, q′, ps′)389

be two configurations of Ã such that J (c1) holds and (c1, c2) ∈ sÃ. Then J (c2) holds.390

Proof. We refer to Line l in Figure 6 as ll (e.g., l7 denotes Line 7). Furthermore, we refer to391

the i-th conjunct from J (c1) and J (c2) as di and di’, respectively and to the i-th fact labeled392

in the proof as fi. To derive that J (c2) holds, we analyze the transition function δ̃ in Figure 6.393

If es1 = a, then ps1 = |w|+ 1 and d1 implies (qs, w[1..|w|], q, o) ∈ δ∗ (f1). The fact that394

a step from c1 to c2 was taken implies that q ∈ QF (otherwise, the transition from c1 would395

be undefined, due to l3–4). The fact f1 together with q ∈ QF imply d0, i.e., J (c2) holds396

as c2 is accepting and thus J (c2) ≡ (w, o) ∈ L ≡ d0.397

Suppose that es1 6= a. Conjunct d3 implies that the index from l5 is well-defined. Lines398

l5–11, Conjunct d2, and Lemma 2 imply d2’ after l11. Furthermore, l16–17 imply d2’ also399

if the branch l15–17 is reached. If the branch l13–19 is not reached, then d1, d4 immediately400

imply d1’, d4’, and l12 implies d3’. Otherwise, the branch l15–17 must be reached (other-401

wise, the transition from c1 would be undefined, due to l19). Then Conjunct d1 and Lines402

l14–17 imply d1’. Furthermore, Lines l12 and l17 directly imply d3’ (note that reaching l19403

would make the transition from c1 to c2 undefined, which is a contradiction). Finally, Lines404

l13–14 and conjuncts d1–2 together with the definition of the invariant I imply d4’. J405

ICALP 2019

127:12 Multi-Head Deterministic Finite-State Transducers

I Theorem 6. For any f-1NFT A, there exists an equivalent mh-1DFT Ã, i.e., both A406

and Ã accept the same language.407

Proof. We again refer to Line l in Figure 6 as ll. Let LÃ denote the language accepted408

by Ã. Let c1, c2, . . . , cl be the computation of Ã on an input word w. We refer to the i-th409

conjunct from J (cl) as di. Let o be the output of the computation of Ã on w. Lemmas 4410

and 5 imply that J (ci) holds for all configurations ci, i ∈ [1..l].411

If the computation is accepting (i.e., (w, o) ∈ LÃ), then J (cl) implies that (w, o) ∈ L.412

Moreover, since A is functional and Ã deterministic, there exists no o′ 6= o such that (w, o′) ∈ L413

or (w, o′) ∈ LÃ. If the computation is rejecting, then the transition from cl is undefined due414

to l4 or l19. If l4 is reached, then ps1 = 1 (otherwise, d4 would imply q ∈ QF , which is415

a contradiction). With d1 and l2, this implies that q = qs and w = ε. The facts that q = qs,416

w = ε, and q 6∈ QF (due to l3–4) imply that the input word w is rejected by A (i.e., no (w, o) ∈417

L). Moreover, no (w, o) ∈ LÃ, since the deterministic computation of Ã on w is rejecting.418

If l19 is reached, then again ps1 = 1 (otherwise, the branch l15–17 would have been taken419

by d4 and d2). Then l14 and d2 imply that the input word is rejected by A (i.e., no (w, o) ∈420

L). Moreover, no (w, o) ∈ LÃ, since the deterministic computation of Ã on w is rejecting. J421

5 Discussion and Related Work422

We review results on the expressiveness of transducer models (as depicted in Figure 1) and423

connections to a practical application.424

Expressiveness of Related Formalisms It is well-known that neither nondetermin-425

ism nor a two-way reading head extends the expresiveness of a one-head finite-state automaton426

beyond the regular languages [7]. Formally, L(1DFA) = L(1NFA) = L(2DFA) = L(2NFA).427

But adding reading heads does make a difference: in fact, there is a strict hierarchy of428

languages accepted by finite-state automata when increasing the number of reading heads429

[10]. Formally, L(2NFA) (L(mh-1DFA). By viewing a finite-state automaton as a func-430

tional finite-state transducer that does not produce any output, this further implies that431

L(mh-1DFT) 6⊆ L(f -2NFT). Theorem 6 implies that L(f -1NFT) ⊆ L(mh-1DFT). This432

yields the proper inclusion L(f -1NFT) (L(mh-1DFT).433

Let us consider the function f that maps a non-empty binary word w to 0|w|, if w ends434

with a zero, and 1|w|, otherwise. The function f can be computed by the f -1NFT from435

Example 1. Nevertheless, f cannot be computed by a 1DFT. Intuitively, a 1DFT cannot436

start producing any output before seeing the last symbol of the input word; but it cannot437

remember the input word’s length needed to produce the output. We conclude that the438

expressiveness of f -1NFTs strictly extends that of 1DFTs, i.e., L(1DFT) (L(f -1NFT).439

Now consider the function w 7→ wR that maps a binary word to its reverse. It can be440

computed by a f -2NFT that first moves its reading head to the end of the input word and then441

reads the word backwards while outputting its symbols in the reversed order (in fact, this trans-442

ducer behaves deterministically). Nevertheless, w 7→ wR cannot be computed by a f -1NFT443

[5]. We conclude that the expressiveness of f -2NFTs strictly extends the expressiveness of444

f -1NFTs, i.e., L(f -1NFT) (L(f -2NFT). Surprisingly, adding nondeterminism to functional445

two-way finite-state transducers does not extend their expressiveness [4], i.e., L(2DFT) =446

L(f -2NFT). We further conjecture that the function w 7→ wR cannot be computed by a447

mh-1DFT either, and thus the languages accepted by mh-1DFT and 2DFT are incomparable.448

We also conjecture that mh-1DFTs are closed under composition, i.e., whenever f : X → Y449

and g : Y → Z are computed by some mh-1DFTs, then there exists an mh-1DFT computing450

g ◦ f : X → Z. Such a composition result could give rise to a more modular construction of451

M. Raszyk, D. Basin, D. Traytel 127:13

mh-1DFTs from f -1NFTs, which would recast our mh-1DFT from Figure 6 as a composition.452

Monitoring The use of mh-1DFT and all-suffix regular matching has applications to453

monitoring (also called runtime verification), which is the problem of checking the compliance454

of an event stream, at each position in the stream, to a policy formalized in a specification455

language. Our recent work [8] provides evidence that exploiting multiple one-way reading456

heads significantly improves the efficiency of monitoring policies formalized in metric temporal457

logic (MTL). Since MTL is less expressive than (timed) regular expressions [3], the monitor458

from [8] does not implement the proposed solution to all-suffix regular matching. Moreover,459

its underlying transducer’s space complexity depends logarithmically on the input length.460

6 Conclusion461

We proposed multi-head finite-state transducers as a combination of multi-head finite-state462

automata and finite-state transducers. We showed that multiple one-way reading heads can463

replace nondeterminism on functions computable by finite-state transducers. The key insight464

is that multiple one-way reading heads suffice to solve the all-suffix regular matching problem.465

As future work, we plan to use the mh-1DFT construction for all-suffix regular matching466

to implement an efficient monitor for timed regular expressions [1], which are strictly more467

expressive than metric temporal logic supported by our multi-head monitor [8]. The problem468

of all-suffix regular matching has already inspired another monitor of ours [2]. In that monitor,469

as soon as two past suffixes yield the same state of the automaton, the equivalence between470

them is output (namely, the monitor outputs that the positions associated with the suffixes471

will have the same verdict); outputting the actual Boolean value for the equivalent positions is472

postponed, potentially until the input’s end. We envision designing an mh-1DFT that outputs473

an explicit Boolean value for each position in the input word in the order of their appearance.474

References475

1 Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM, 49(2):172–476

206, 2002.477

2 David Basin, Bhargav Bhatt, Srđan Krstić, and Dmitriy Traytel. Almost event-rate independent478

monitoring. Form. Meth. Sys. Des., 2019 (published online February 2019).479

3 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and480

MTL. Inf. Comput., 208(2):97–116, 2010.481

4 Joost Engelfriet and Hendrik Jan Hoogeboom. Two-way finite state transducers and monadic482

second-order logic. In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors,483

ICALP 1999, volume 1644 of LNCS, pages 311–320. Springer, 1999.484

5 Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. From two-way485

to one-way finite state transducers. In LICS 2013, pages 468–477. IEEE Computer Society,486

2013.487

6 Markus Holzer, Martin Kutrib, and Andreas Malcher. Complexity of multi-head finite488

automata: Origins and directions. Theor. Comput. Sci., 412(1-2):83–96, 2011.489

7 Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM490

Journal of Research and Development, 3(2):114–125, 1959.491

8 Martin Raszyk, David Basin, Srđan Krstić, and Dmitriy Traytel. Multi-head monitoring of492

metric temporal logic. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors,493

ATVA 2019, LNCS. Springer, 2019. To appear. http://people.inf.ethz.ch/trayteld/494

papers/atva19-hydra/hydra.pdf.495

9 Ivan Hal Sudborough. On tape-bounded complexity classes and multihead finite automata. J.496

Comput. Syst. Sci., 10(1):62–76, 1975.497

10 Andrew Chi-Chih Yao and Ronald L. Rivest. k+1 heads are better than k. J. ACM, 25(2):337–498

340, 1978.499

ICALP 2019

http://people.inf.ethz.ch/trayteld/papers/atva19-hydra/hydra.pdf
http://people.inf.ethz.ch/trayteld/papers/atva19-hydra/hydra.pdf
http://people.inf.ethz.ch/trayteld/papers/atva19-hydra/hydra.pdf

	Introduction
	Multi-Head One-Way Deterministic Finite-State Transducer
	All Suffix Regular Matching
	Informal Account
	The Multi-Head Transducer
	Proof of Correctness

	Simulation
	Informal Account
	The Multi-Head Transducer
	Proof of Correctness

	Discussion and Related Work
	Conclusion

