SSG: A Model-Based Development Environment for Smart,
Security-Aware GUIs

Miguel A. Garcia de Dios

Carolina Dania

Michael Schilapfer

IMDEA Software Institute IMDEA Software Institute . ETH Zirich
miguel.garcia@imdea.org carolina.dania@imdea.org michschl@inf.ethz.ch
David Basin Manuel Clavel Marina Egea
ETH Zirich IMDEA Software Institute _ ETH Zirich
basin@inf.ethz.ch manuel.clavel@imdea.org marinae@inf.ethz.ch

ABSTRACT

We present a development environment for automatically
building smart, security-aware GUIs following a model-based
approach. Our environment consists of a number of plugins
that have been developed using the Eclipse framework and
includes three model editors, a model-transformation tool,
and a code generator.

1. INTRODUCTION

In many programs, users access application data using
GUI widgets: data is created, deleted, read, and updated
using text boxes, check boxes, buttons, and the like. There
is an important, but little explored, link between visualiza-
tion and security. When the application data is protected
by an access control policy, the application GUI should be
aware of and respect this policy. For example, the GUI
should not display options to users for actions that they are
not authorized to execute on application data. This pre-
vents user frustration, for example, from filling out a long
electronic form only to have the server reject it because the
user lacks a permission to execute some associated action
on the application data. Taking this idea one step further,
the GUI should not, for example, display options to users to
open other widgets when these widgets only display options
for actions that the users are not authorized to execute on
application data. That is, the application GUI should not
just be security-aware but also smart.

Here we present an environment for developing such GUIs,
using the Eclipse framework. Our environment supports
linking visualization and security during system design and
using this design information to automatically generate GUI
implementations that are both smart and security-aware. To
the best of our knowledge, no other GUI development envi-
ronment currently provides this kind of support, either for
design or implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10 Cape Town, South Africa

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2. MODEL-BASED DEVELOPMENT OF
SMART, SECURITY-AWARE GUIS

The default, ad-hoc solution to the problem of linking vi-
sualization and security would be to directly hardcode the
security policy within the GUI. But this is clearly inade-
quate. First, the GUI designer is often not aware of the ap-
plication data security policy. Second, even if the designer is
aware of it, hardcoding the application data security policy
within the GUI code is cumbersome and error-prone, if done
manually. Finally, any changes in the security policy will re-
quire manual changes to the GUI code where this policy is
hardcoded, which again is a cumbersome and error-prone
task.

In [1] we propose a model-based approach to linking vi-
sualization and security. The key idea is that this link is
ultimately defined in terms of data actions, since data ac-
tions are both controlled by the security policy and triggered
by the events supported by the graphical user interface. The
key component of this solution is a many-models-to-model
transformation which, given a security-design model and a
GUI model, automatically generates a GUI model that is
both security-aware and smart.

Thus, under this model-based development approach, il-
lustrated in Figure 1, the process of building a smart, security-
aware GUI has the following parts.

1. Software engineers specify both the application-data
model C and the security-design model Sc.

2. GUI designers specify the application GUI model Ge.

3. A many-models-to-model transformation automatically
generates a smart, security-aware GUI model Mg, s.)
from the security-design model S¢ and the GUI model
ge.

4. A code generator automatically produces the smart,
security-aware GUI from the smart, security-aware GUI
model M(gc’gc).

As a design methodology, our model-based approach has
three main advantages over traditional approaches to user
interface design. First, security engineers and GUI design-
ers can independently model what they know best. Sec-
ond, security engineers and GUI designers can independently
change their models, and these changes are automatically
propagated to the security-aware GUI models. Third, GUI
designers can use the generated security-aware GUI models

p R

GUI Designer \|_|/

Model Transformation

~~

=

Code Generation

Smart, security-aware GUL

Figure 1: Modeling a smart and security-aware GUI.

QT

Security Engincer U

to check that they are designing the right GUI to give the
(authorized) users access to the (intended) application data.

3. SSG: A SMART, SECURITY-AWARE GUI
BUILDER

SSG is a development environment, built using the Eclipse
framework, for generating smart, security-aware GUIs fol-
lowing the model-based approach described in Section 2. In
what follows, we describe the plugins included in SSG. All
of the plugins are publicly available at [3].

3.1 Data model editor

The data model GMF-editor allows users to graphically
model application data. This editor supports a simple lan-
guage, named ComponentUML, for modeling application
data. Essentially, this language provides a subset of UML
class models: entities can be related by associations and
may have attributes. Hence, the editor provides a concrete
graphical syntax for modeling entities, with their attributes
and association-ends.

3.2 Security-design model editor

The security-design model GMF-editor allows users to
model an application’s access control policy. This editor sup-
ports a language, named SecureUML+ComponentUML [2],
for modeling access control policies on ComponentUML re-
sources, i.e., on entities, their attributes and associations.
The policies that can be specified in SecureUML~+Compo-
nentUML are of two kinds: those that depend on static in-
formation, namely the assignments of users and permissions
to roles, and those that depend on dynamic information.
The actions that can be controlled in SecureUML+Compo-
nentUML are, e.g., those to ‘create’ and ‘delete’ entities, and
to ‘read’ and ‘update’ their attributes. SecureUML+Com-
ponentUML also provides composite actions, which group
primitive actions into a hierarchy of higher-level ones. The
composite actions are ‘read’, ‘update’, and ‘full access’ either
on entities or entity’s properties: for example, ‘full access’
on an attribute includes both ‘read’ and ‘update’ access on
this attribute.

3.3 GUI model editor

The GUI model GMF-editor allows users to model an ap-
plication’s graphical user interface. This editor supports a
language, named GUI [1, 3], for modeling the behavioral

properties of GUIs, namely what are the actions associated
to the different events that are supported by the GUIL In a
nutshell, this language can be used to model GUIs that con-
sist of widgets (buttons, entries, labels) that are displayed
inside containers (windows, combo-boxes), which are them-
selves widgets. Each widget has a set of events (e.g., on-click
and on-create), associated to it. These are the events sup-
ported by the widget. Each event is associated with a set of
actions: these are the actions triggered by the event. Events’
actions are of two types: widget actions (which are actions
on GUI widgets, e.g., open, close, focus, and set) and data
actions (which are actions on the application data). Both
widget and data actions may take parameters. Also, each
container has a (possibly empty) set of variables associated
to it: these variables hold information that can be used by
actions within this container.

3.4 GUI model generator

This QVT-generator automatically transforms a GUI model
and a security-design model (both sharing the same data
model) into a model of a new GUI The resulting model
has the same behavioral properties as the one modeled by
the given GUI model, except that it is now both smart and
security-aware with respect to the access control policy mod-
eled by the given security-design model. The new GUIs are
modeled using a language, named SecureUML+GUI, that
allows modeling the behavioral properties of GUIs along
with the information about which role can execute which
events on these GUIs.

3.5 Code generator

The JET-code generator automatically generates, from a
smart, security-aware GUI model, a full web application
consisting of a collection of PHP-web pages whose design
and behavior implements those modeled by the given smart,
security-aware GUI model. In particular, windows are im-
plemented as web pages. Thus, opening a window is imple-
mented as loading the corresponding page and closing a win-
dow is implemented as loading the previously visited page.
More interestingly, data actions (like ‘create’ or ‘delete’ enti-
ties and ‘update’ or ‘read’ their attributes) are implemented
as SQL queries or statements on a data-base implement-
ing the underlying data model; for convenience, the code
generator can also create this database for the user. Fi-
nally, permissions to execute events on widgets (like clicking
a button or creating an entry or a text box) are implemented
by appropriate conditional statements on the PHP-code re-
sponsible for interpreting those events.

4. REFERENCES

[1] D. Basin, M. Clavel, M. Egea, and M. Schlépfer.
Automatic generation of smart, security-aware GUI
models. In F. Massacci, D. Wallach, and N. Zannone,
editors, Proceedings of the 2nd International
Symposium on Engineering Secure Software and
Systems (ESSOS 2010), volume 5695 of LNCS, pages
201-217. Springer-Verlag, 2010.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security: From UML models to access control
infrastructures. ACM Transactions on Software
Engineering and Methodology, 15(1):39-91, 2006.

[3] B. S. Group. The SmartGUI Project.
http://www.bmlsoftware.com/, 2009.

