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Abstract. We propose an approach to monitoring IT systems offline,
where system actions are logged in a distributed file system and subse-
quently checked for compliance against policies formulated in an expres-
sive temporal logic. The novelty of our approach is that monitoring is
parallelized so that it scales to large logs. Our technical contributions com-
prise a formal framework for slicing logs, an algorithmic realization based
onMapReduce, and a high-performance implementation. We evaluate our
approach analytically and experimentally, proving the soundness and com-
pleteness of our slicing techniques and demonstrating its practical feasibil-
ity and efficiency on real-world logs with 400GB of relevant data.

1 Introduction

Data owners, such as individuals and companies, are increasingly concerned
that their private data, collected and shared by IT systems, is used only for
the purposes for which it was collected. Conversely, those parties responsible
for collecting and managing such data must increasingly follow regulations on
how it is processed. For example, US hospitals must follow the US Health Insur-
ance Portability and Accountability Act (HIPAA) and financial services must
conform to the Sarbanes-Oxley Act (SOX), and these laws even stipulate the
use of mechanisms in IT system for monitoring system behavior. Although var-
ious monitoring approaches have been developed for different expressive policy
specification languages, such as [9, 10, 13, 15, 18], they do not scale to checking
compliance of large-scale IT systems like cloud-based services and systems that
process machine-generated data. These systems typically log terabytes or even
petabytes of system actions each day. Existing monitoring approaches fail to
cope with such enormous quantities of logged data.

In this paper, we propose a scalable approach to offline monitoring, where
system components log their actions and monitors inspect the logs to identify
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policy violations. Given a policy, our solution works by decomposing the logs into
small parts, called slices, that can be independently analyzed. We can therefore
parallelize and distribute the monitoring process over multiple computers.

One of the main challenges is to generate the slices without weakening the
guarantees provided by monitoring. In particular, the slices must be sound and
complete for the given policy and logged data. That means that only actual
violations are reported and every violation is reported by at least one monitor.
Furthermore, slicing should be effective, i.e., producing the slices should be fast
and the slices should be small. We provide a framework for obtaining slices with
these properties. In particular, our framework lays the foundations for slicing
logs, where logs are represented as temporal structures and policies are given as
formulas in metric first-order temporal logic (MFOTL) [8, 9]. Although we use
temporal structures for representing logs and MFOTL as a policy specification
language, the underlying principles of our slicing framework are general and
apply to other representations of logs and other logic-based policy languages.

Within our theoretical slicing framework, we define orthogonal methods to
generate sound and complete slices. The first method constructs slices for check-
ing system compliance for specific entities, such as all users whose login name
starts with the letter “A.” Note that it is not sufficient to consider just the ac-
tions of these users to check their compliance; other users’ actions might also be
relevant and must also be included in a slice to be sound. The second method
checks system compliance during a specific time period, such as a particular
week. In addition to these two basic methods for slicing with respect to data
and time, we describe slicing by filtering, which discards parts of a slice to speed
up monitoring. Finally, we show that slicing is compositional. We can therefore
obtain new, more powerful slicing methods by composing existing methods.

We demonstrate how to employ the MapReduce framework [12] to parallelize
and distribute the slicing and monitoring tasks. We propose algorithms, for both
slicing and filtering. Moreover, we explain how to flexibly combine slicing and
filtering. As required by MapReduce, we define map and reduce functions that
constitute the backbone of the algorithmic realization of our slicing framework.
The map function realizes slicing and the reduce function realizes monitoring.
MapReduce runs in its map phase and in its reduce phase multiple instances of
the respective function in parallel, where each instance is responsible for a part
of the logged data. Splitting and parallelizing the workload this way enables
monitoring to scale in the high-performance implementation of our approach.

We deploy and evaluate our monitoring solution in a real-world setting, where
we check the compliance of more than 35,000 computers, producing approxi-
mately 1TB of log data each day. The policies considered concern the updating
of system configurations and access to sensitive resources. We successfully mon-
itor the relevant actions logged by these computers. The log consist of several
billion log entries from a two year period, requiring 0.4TB of storage. The moni-
toring takes just a few hours, using only 1,000 machines in a MapReduce cluster.

Overall, we see our contributions as follows. First, we provide a framework for
splitting logs into slices for monitoring. Second, we give a scalable algorithmic
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realization of our framework for monitoring large logs in an offline setting. Both
our framework and our algorithmic realization support compositional slicing.
Finally, with our case study, we show that the approach is effective and scales
well. In particular, our deployment and the evaluation demonstrate the feasibility
of checking compliance in large-scale IT systems.

We proceed as follows. In Section 2, we give background on MFOTL and
monitoring. In Section 3, we describe our approach to slicing and monitoring,
including its algorithmic realization in MapReduce. In Section 4, we experimen-
tally evaluate our approach. We discuss related work in Section 5 before drawing
conclusions in Section 6. Additional details, including proofs and pseudo code
omitted due to space restrictions, are given in the full version of this paper,
which is available from the authors or their webpages.

2 Preliminaries

In this section, we explain how we use MFOTL to represent system requirements,
and how we monitor a single stream of logged system actions.

Specification Language. We give just a brief overview of MFOTL; further de-
tails can be found in the paper’s full version. MFOTL is similar to propositional
real-time logics like MTL [2]. However, as it is a first-order logic, MFOTL’s syn-
tax is defined with respect to a signature. Furthermore, instead of timed words,
its models are temporal structures (D̄, τ̄), where D̄ = (D0,D1, . . . ) is a sequence
of structures and τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers. As is usual, a
structure D over a signature S (without function symbols) consists of a domain
|D| �= ∅ and interpretations cD ∈ |D| and rD ⊆ |D|ι(r), for each constant symbol
c and predicate symbol r of the signature S, where ι(r) denotes r’s arity.

The formulas over the signature S are given by the grammar

ϕ ::= t1≈ t2
∣
∣t1≺ t2

∣
∣r(t1, . . . , tι(r))

∣
∣¬ϕ∣∣ϕ ∨ ϕ ∣

∣ ∃x. ϕ∣∣�I ϕ
∣
∣�I ϕ

∣
∣ϕ SI ϕ

∣
∣ϕ UI ϕ ,

where t1, t2, . . . are variables or constant symbols of S, r a predicate symbol of S,
x a variable, and I an interval [a, b) ⊆ N. The temporal operators�I (“previous”),�I (“next”), SI (“since”), and UI (“until”) require the satisfaction of a formula
within a particular time interval in the past or future. An operator’s subscript I
specifies this time interval.MFOTL’s satisfaction relation |= is defined as expected
for (i) a time point i ∈ N, (ii) a valuation v interpreting the variables, and (iii) a
temporal structure (D̄, τ̄ ). We call the indices of the τis and Dis time points and
the τis timestamps. In particular, τi is the timestamp at time point i ∈ N.

We use standard terminology and syntactic sugar, see e.g., [3,14]. For instance,
we use terms like free variable and atomic formula, and abbreviations such as

�I ϕ := true SI ϕ (“once”), �I ϕ := true UI ϕ (“eventually”), �I ϕ := ¬ �I ¬ϕ
(“historically”), and �I ϕ := ¬ �I ¬ϕ (“always”), where true := ∃x. x ≈ x.
Intuitively, the formula �I ϕ states that ϕ holds at some time point in the
past within the time window I and �I ϕ states that ϕ holds at all time points
in the past within the time window I. The corresponding future operators are

�I and �I . We also use non-metric operators like �ϕ := �[0,∞) ϕ. To omit
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parentheses, we use the standard conventions about the binding strength of
logical connectives, e.g., Boolean operators bind stronger than temporal ones
and unary operators bind stronger than binary ones.

Throughout the paper, we make the following assumptions when not stated
otherwise. First, formulas and temporal structures are over the signature S con-
sisting of the sets C and R of constant and predicate symbols, and the function
ι assigns an arity to each predicate symbol. Second, the set of variables is V .
Third, the structures’ domain is D and constant symbols are interpreted iden-
tically in all structures. The set of all these temporal structures is T. Finally,
without loss of generality, variables are quantified at most once in a formula and
quantified variables are disjoint from the formula’s free variables.

Monitoring. We use MFOTL to check the policy compliance of a stream of
system actions as follows [8]. Policies are given as MFOTL formulas of the form
�ψ. For illustration, consider the policy stating that SSH connections must last
no longer than 24 hours. This can be formalized in MFOTL as

�∀c. ∀s. ssh login(c, s) → �[0,25) ssh logout(c, s) , (P0 )

where we assume that time units are in hours and the signature consists of the
two binary predicate symbols ssh login and ssh logout . We also assume that the
system actions are logged. In particular, the ith entry in the stream of logged
actions consists of the performed actions and a timestamp τi that records the
time when the actions occurred. For checking compliance with respect to the
formula (P0 ), we assume that the logged actions are the logins and logouts,
with the parameters specifying the computer’s name and the session identifier.

The corresponding temporal structure (D̄, τ̄) for such a stream of logged SSH
login and logout actions is as follows. The domain of D̄ contains all possible
computer names and session identifiers. The ith structure in D̄ contains the
relations ssh loginDi and ssh logoutDi , where (1) (c, s) ∈ ssh loginDi iff there is
a logged login action in the ith entry of the stream with the parameter values c
and s, and (2) (c, s) ∈ ssh logoutDi iff there is a logged logout action in the ith
entry of the stream with the parameter values c and s. The ith timestamp in τ̄ is
simply the timestamp τi of the ith log entry. This generalizes straightforwardly
to an arbitrary stream of logged actions, where the kind of actions correspond
to the predicate symbols specified by the temporal structure’s signature and the
actions’ parameter values are elements from the temporal structure’s domain.

In practice, we can only monitor finite prefixes of temporal structures to de-
tect policy violations. However, to ease our exposition, we require that temporal
structures, and thus also logs, describe infinite streams of system actions. We use
the monitoring tool MONPOLY [7] to check whether a stream of system actions
complies with a policy formalized in MFOTL. It implements the monitoring al-
gorithm in [9]. MONPOLY iteratively processes the temporal structure (D̄, τ̄)
representing a stream of logged actions, either offline or online, and outputs the
policy violations. Formally, for a formula �ψ, a policy violation is a pair (v, τ)
of a valuation v and a timestamp τ such that (D̄, τ̄ , v, i) |= ¬ψ, for some time
point i with τi = τ . The formula ψ may contain free variables and the valua-
tion v interprets these variables. As MONPOLY searches for all combinations of
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timepoints and interpretations of the free variables for which a given stream of
logged actions violates the policy, in practice we drop the outer universal quan-
tifications in the policy’s MFOTL formalization to obtain additional information
about the violations. For instance, if we remove the universal quantification over
s in the formula (P0 ), then the valuation v in each policy violation (v, τ) specifies
a session identifier of an SSH connection that lasted 25 hours or more.

In general, we assume that the subformula ψ of �ψ formalizing the given
policy is bounded, i.e., the interval I of every temporal operator UI occurring
in ψ is finite. Since ψ is bounded, the monitor only needs to process a finite
prefix of (D̄, τ̄ ) ∈ T when determining the valuations satisfying ¬ψ at any given
time point. To effectively determine all these valuations, we also assume here
that predicate symbols have finite interpretations in (D̄, τ̄ ), that is, the relation
rDj is finite, for every predicate symbol r and every j ∈ N. Furthermore, we
require that ¬ψ can be rewritten to a formula that is temporal safe-range [9], a
generalization of the standard notion of safe-range database queries [1]. In our
SSH example, the rewritten formula of (P0 ) without the outermost temporal
operator and quantifiers is ssh login(c, s) ∧ ¬ �[0,25) ssh logout(c, s).

3 Log Slicing

In Section 3.1, we present the logical foundation of our slicing framework. A
slicer splits the temporal structure to be monitored into slices. We introduce
the notions of soundness and completeness for individual slices relative to sets of
possible violations, called restrictions. We show that soundness and completeness
of each individual slice in a set are sufficient to find all violations of a given policy,
provided that the restrictions are chosen appropriately. We also show that slicing
is compositional. In Section 3.2, we present concrete instances of slicers and in
Section 3.3, we present an algorithmic realization of our slicing framework.

3.1 Slicing Foundations

Slices. Slicing entails splitting a temporal structure, which represents a stream
of logged actions, into multiple temporal structures. Each such temporal struc-
ture contains only a subset of the logged actions. Formally, a slice is defined as
follows.

Definition 1. Let s : [0, �)→N be a strictly increasing function, with �∈N∪{∞}.
The temporal structure (D̄′, τ̄ ′) ∈ T is a slice of (D̄, τ̄ ) ∈ T (with respect to the
function s) if τ ′i = τs(i) and rD

′
i ⊆ rDs(i) , for all i ∈ [0, �) and all r ∈ R.

Recall that the logged system actions at a time point i ∈ N are represented as
the elements in Di’s relations r

Di , with r ∈ R. The function s determines which
time points of the temporal structure (D̄, τ̄ ) are in the slice (D̄′, τ̄ ′). For the
time points present in the slice, some actions may be ignored since rD

′
i ⊆ rDs(i) ,

for i ∈ [0, �). Note that the domain of the function s may be finite or infinite.
If its domain is infinite, i.e. when � = ∞, we require that each action in the
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slice is an action of the original stream of actions, i.e. rD
′
i ⊆ rDs(i) , for each

i ∈ N. If s’s domain is finite, i.e. when � ∈ N, we relax this requirement by
not imposing any restrictions on the structures D′

i and the timestamps τ ′i with
i ≥ �. In this case, the suffix of the slice starting at time point � is ignored
when monitoring the slice.

To meaningfully monitor slices independently, we require that slices are sound
and complete. Intuitively, this means that at least one of the monitored slices
violates the given policy if and only if the original temporal structure violates
the policy. We define these requirements in Definition 2 below, relative to a set
R ⊆ ((V → D)× N), called a restriction. We use R to denote the set of all such
restrictions and say that a violation (v, t) is permitted by R ∈ R if (v, t) ∈ R.

Definition 2. Let ϕ be a formula and R ∈ R.
(i) (D̄′, τ̄ ′) ∈ T is R-sound for (D̄, τ̄ ) ∈ T and ϕ if for all pairs (v, t) permitted

by R, it holds that (D̄, τ̄ , v, i) |= ϕ, for all i ∈ N with τi = t, implies
(D̄′, τ̄ ′, v, j) |= ϕ, for all j ∈ N with τ ′j = t.

(ii) (D̄′, τ̄ ′) ∈ T is R-complete for (D̄, τ̄) ∈ T and ϕ if for all pairs (v, t)
permitted by R, it holds that (D̄, τ̄ , v, i) �|= ϕ, for some i ∈ N with τi = t,
implies (D̄′, τ̄ ′, v, j) �|= ϕ, for some j ∈ N with τ ′j = t.

We equip each slice with a restriction. The original temporal structure is
equipped with the non-restrictive restriction R0 := ((V → D)× N), which per-
mits any pair (v, t).

Slicers. We call a mechanism that splits a temporal structure into slices a slicer.
Additionally, a slicer equips the resulting slices with restrictions. In Definition 3,
we give requirements that the slices and their restrictions must fulfill. In The-
orem 4, we show that these requirements suffice to ensure that monitoring the
slices is equivalent to monitoring the original temporal structure.

Definition 3. A slicer sϕ for the formula ϕ is a function that maps (D̄, τ̄ ) ∈ T
and R ∈ R to a family of temporal structures (D̄k, τ̄k)k∈K and a family of
restrictions (Rk)k∈K that satisfy the following conditions.
(S1) (Rk)k∈K refines R, i.e.,

⋃

k∈K Rk = R.

(S2) (D̄k, τ̄k) is Rk-sound for (D̄, τ̄) and ϕ, for all k ∈ K.
(S3) (D̄k, τ̄k) is Rk-complete for (D̄, τ̄ ) and ϕ, for all k ∈ K.

Theorem 4. Let sϕ be a slicer for the formula ϕ. Assume that sϕ maps (D̄, τ̄ ) ∈
T and R ∈ R to the family of temporal structures (D̄k, τ̄k)k∈K and the family
of restrictions (Rk)k∈K . The following conditions are equivalent.
(1) (D̄, τ̄ , v, i) |= ϕ, for all valuations v and i ∈ N with (v, τi) ∈ R.
(2) (D̄k, τ̄k, v, i) |= ϕ, for all k ∈ K, valuations v, and i ∈ N with (v, τi) ∈ Rk.

Composition. We define next an operation for composing slicers. Theorem 6
shows that the composition of slicers is again a slicer. Hence we can restrict our-
selves to a few basic slicers, which we provide in Section 3.2 and their algorithmic
realization in Section 3.3. By composition, we obtain more powerful slicers, which
may be needed to obtain slices of manageable size from very large logs.
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Definition 5. Let sϕ and s′ϕ be slicers for the formula ϕ. The combination

s′ϕ ◦k̂ sϕ for the index k̂ is the function that maps (D̄, τ̄ ) ∈ T and R ∈ R to
the following families of temporal structures and restrictions, assuming that sϕ
maps (D̄, τ̄) and R to (D̄k, τ̄k)k∈K and (Rk)k∈K

– If k̂ �∈ K then s′ϕ ◦k̂ sϕ returns (D̄k, τ̄k)k∈K and (Rk)k∈K .

– If k̂ ∈ K then s′ϕ ◦k̂ sϕ returns (D̄k, τ̄k)k∈K′′ and (Rk)k∈K′′ , where K ′′ :=
(K \ {k̂}) ∪ K ′ and (D̄k, τ̄k)k∈K′ and (Rk)k∈K′ are the families returned by

s′ϕ for the input (D̄k̂, τ̄ k̂) and Rk̂, assuming K ∩K ′ = ∅.

Intuitively, we first apply the slicer sϕ. The index k̂ specifies which of the ob-

tained slices should be sliced further. If there is no k̂th slice, the second slicer
s′ϕ does nothing. Otherwise, we use s′ϕ to make the k̂th slice smaller. Note that
by combing the slicer sϕ with different indices, we can slice all of sϕ’s outputs
further. Note too that an algorithmic realization of the function s′ϕ ◦k̂ sϕ need
not necessarily compute the output of sϕ before applying s′ϕ.

Theorem 6. The combination s′ϕ ◦k̂ sϕ of the slicers sϕ and s′ϕ for the formula
ϕ is a slicer for the formula ϕ.

3.2 Basic Slicers

We now introduce three basic slicers. Due to space limitations, we focus on just
one of them. The full version of the paper provides details on the other two.

Slicing Data. Data slicers split the relations of a temporal structure. We call
the resulting slices data slices. Formally, (D̄′, τ̄ ′) ∈ T is a data slice of (D̄, τ̄ ) ∈ T
if (D̄′, τ̄ ′) is a slice of (D̄, τ̄ ), where the function s : [0, �) → N in Definition 1 is
the identity function and � = ∞. In the following, we introduce data slicers that
return sound and complete slices relative to a restriction.

In a nutshell, a data slicer takes as input a formula ϕ, a slicing variable x,
which is a free variable in ϕ, and slicing sets, which are sets of possible values for
x. It constructs one slice for each slicing set. The slicing sets can be chosen freely,
and can overlap, as long as their union covers all possible values for x. Intuitively,
each slice excludes those elements of the relations interpreting the predicate
symbols that are irrelevant to determining ϕ’s truth value when x takes values
from the slicing set. For values outside of the slicing set, the formula may evaluate
to a different truth value on the slice than on the original temporal structure.

We begin by defining the slices output by our data slicer.

Definition 7. Let ϕ be a formula, x ∈ V , (D̄, τ̄ ) ∈ T, and S ⊆ D a slicing set.
The (ϕ, x, S)-slice of (D̄, τ̄) is the data slice (D̄′, τ̄ ′), where the relations are as
follows. For all r ∈R, i∈N, and ā∈D

ι(r), it holds that ā∈ rD′
i iff ā∈ rDi and

there is an atomic subformula of ϕ of the form r(t̄) such that for every j with
1≤j≤ ι(r), at least one of the following conditions is satisfied.
(D1) tj is the variable x and aj ∈ S.
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(D2) tj is a variable y different from x.

(D3) tj is a constant symbol c with cD̄ = aj.

Intuitively, the conditions (D1) to (D3) ensure that a slice contains the tuples
from the relations interpreting the predicate symbols that are sufficient to eval-
uate ϕ when x takes values from the slicing set. For this, it suffices to consider
only atomic subformulas of ϕ with a predicate symbol. Every item of a tuple
from the symbol’s interpretation must satisfy at least one of the conditions. If
the subformula includes the slicing variable, then only values from the slicing
set are relevant (D1). If it includes another variable, then all possible values are
relevant (D2). Finally, if it includes a constant symbol, then the interpretation
of the constant symbol is relevant (D3).

The following example illustrates Definition 7. It also demonstrates that the
choice of the slicing variable can influence how lean the slices are and how much
overhead the slicing causes in terms of duplicated log data. Ideally, each logged
action appears in at most one slice. However, this is not generally the case and
a logged action can appear in multiple slices. In the worst case, each slice ends
up being the original temporal structure.

Example 8. Let ϕ be the formula ssh login(c, s) → �[0,6) notify(reg server, s),
where c and s are variables and reg server is a constant symbol, which is in-
terpreted by the domain element 0 ∈ D, with D = N. The formula ϕ ex-
presses that a notification of the session identifier of an SSH login must be
sent to the registration server within 5 time units. Assume that at time point
0 the relations of D0 of the original temporal structure (D̄, τ̄ ) for the predicate
symbols ssh login and notify are ssh loginD0 = {(1, 1), (1, 2), (3, 3), (4, 4)} and
notifyD0 ={(0, 1), (0, 2), (0, 3), (0, 4)}.

We slice on the variable c. For the slicing set S = {1, 2}, the (ϕ, c, S)-slice

contains the structure D′
0 with ssh loginD′

0 = {(1, 1), (1, 2)} and notifyD′
0 =

{(0, 1), (0, 2), (0, 3), (0, 4)}. For the predicate symbol ssh login , only those tuples
are included where the first parameter takes values from the slicing set. This is
because the first parameter occurs as the slicing variable c in the formula. For
the predicate symbol notify , those tuples are included where the first parameter
is 0 because the constant symbol 0 occurs in the formula.

For the slicing set S′ = {3, 4}, the (ϕ, c, S′)-slice contains the structure D′′
0

with ssh loginD′′
0 = {(3, 3), (4, 4)} and notifyD′′

0 = {(0, 1), (0, 2), (0, 3), (0, 4)}.
The tuples in the relation for the predicate symbol notify are duplicated in all
slices because the first element of the tuples, 0, occurs as a constant symbol in
the formula. The condition (D3) in Definition 7 is therefore always satisfied and
the tuple is included.

Next, we slice on the variable s instead of c. For the slicing set S, the (ϕ, s, S)-

slice contains the structure D′
0 with ssh loginD′

0 = {(1, 1), (1, 2)} and notifyD′
0 =

{(0, 1), (0, 2)}. For both of the predicate symbols ssh login and notify , only those
tuples are included where the second parameter takes values from the slicing set
S. This is because the second parameter occurs as the slicing variable s in the
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formula. For the slicing set S, the (ϕ, s, S′)-slice contains the structure D′′
0 with

ssh loginD′′
0 = {(3, 3), (4, 4)} and notifyD′′

0 = {(0, 3), (0, 4)}.
According to Definition 9 and Theorem 10 below, a data slicer is a slicer that

splits a temporal structure into a family of (ϕ, x, S)-slices. Furthermore, it refines
the given restriction with respect to the given slicing sets.

Definition 9. Let ϕ be a formula, x ∈ V a variable, and (Sk)k∈K a family of
slicing sets. The data slicer dϕ,x,(Sk)k∈K

is the function that maps a temporal

structure (D̄, τ̄) ∈ T and a restriction R ∈ R to the family of temporal struc-
tures (D̄k, τ̄k)k∈K and the family of restrictions (Rk)k∈K , where (D̄k, τ̄k) is the
(ϕ, x, S′k)-slice of (D̄, τ̄), with S′k := Sk ∩ {v(x) | (v, t) ∈ R, for some t ∈ N},
and Rk = {(v, t) ∈ R | v(x) ∈ Sk}, for each k ∈ K.

Theorem 10. A data slicer dϕ,x,(Sk)k∈K
is a slicer for the formula ϕ if the

slicing variable x is not bound in ϕ and
⋃

k∈K Sk = D.

Slicing Time. Another possibility is to slice a temporal structure along its
temporal dimension. A time slice contains all the logged actions over a sufficiently
large time interval to determine the policy violations over a given time period.
We obtain this time interval from the formula’s temporal operators and their
intervals. Due to space limitations, we refer to the full version of the paper for the
details of how we produce the time slices, and the soundness and completeness
guarantees when monitoring these slices independently. Instead, we illustrate
time slicing by the following example.

Example 11. Recall the formula (P0 ) from Section 2. We can split a log into
time slices that are equivalent to the original log over 1-day periods. However,
to evaluate the formula over a 1-day period, each time slice must also include the
log entries of the next 24 hours. This is because the formula’s temporal operator

�[0,25) refers to SSH logout events up to 24 hours into the future from a time
point. Hence each time point would be monitored twice: once when checking
compliance for a specific day and also in the slice for checking compliance of the
previous day. If we split the log into time slices that are equivalent to the original
log over 1-week periods then 6/7 of the time points are monitored once and
1/7 are monitored twice. This longer period produces less monitoring overhead.
However, less parallelization is possible.

Filtering. Removing time points in which all the structures’ relations are
empty from a temporal structure can significantly speed up monitoring. Empty
relations can, for example, originate from the application of a data slicer. Fil-
tering empty time points is sound and complete for the formula (P0 ) from Sec-
tion 2. However, in general, this is not the case. For instance, for the formula
�∀x. p(x) → �[0,1) ¬q(x) the filtering of empty time points prior to monitoring
is not sound. We refer again to the paper’s full version for details, including the
identification of a fragment for which it is safe to filter empty time points.
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3.3 Parallel Implementation

Our slicing framework establishes the theoretical foundations for splitting logs
into parts that can be monitored independently in a sound and complete fash-
ion. We now explain how we exploit this in a concrete technical framework for
parallelizing computations, the MapReduce framework [12]. Using MapReduce,
we monitor a log corresponding to a temporal structure in three phases: map,
shuffle, and reduce.

In the map phase, the log is fragmented by MapReduce. For each log fragment,
we create a stream of log entries in a pointwise fashion. To this end, we implement
a collection of slicing functions realizing the slicers and the composition of slicers
within MapReduce. Each slicing function takes a single log entry (D, τ) as an
argument and returns (a) the structure D unmodified, (b) a structure D′ that
results from D by deleting actions (i.e., rD

′ ⊆ rD must hold for each r ∈ R), or
(c) the special symbol ⊥ indicating that the log entry shall be deleted. We also
associate a key with each log entry.

The shuffle phase reorganizes log entries into chunks, i.e., streams of key-
value pairs with matching keys and each value is a single log entry from the map
phase. Chunks can be viewed as slices in the sense of Definition 1. However, it
is important that the associated keys are chosen in the map phase in such a way
that the shuffle puts all log entries of one slice into the same chunk and that log
entries of different slices are put into different chunks.

In the reduce phase, we individually monitor each chunk produced during the
shuffle phase against the given policy and afterwards we combine the monitoring
results thereby yielding the set of all violations. Due to the one-to-one correspon-
dence between chunks and slices, Theorem 4 is applicable; hence no violations
are lost by monitoring the constructed chunks in this phase.

In each of the three phases, computations are parallelized by MapReduce. In
particular, the map and reduce phases comprise the parallel execution of multiple
instances of a map function and a reduce function, respectively. The full version
of the paper provides the details as well as pseudo code for the map, reduce, and
slicing functions. Note that the shuffle phase is built into MapReduce.

4 The Google Case Study

Scenario. We consider a setting with over 35,000 computers accessing sensitive
resources. These computers are used both within Google, connected directly to
the corporate network, and outside of Google, accessing Google’s network from
remote unsecured networks.

Google uses access-control mechanisms to minimize the risk of unauthorized
access to sensitive resources. In particular, computers must obtain time-limited
authentication tokens using a tool, which we call AUTH. Furthermore, the Se-
cure Shell protocol (SSH) is used to remotely login to servers. Additionally, to
minimize the risk of security exploits, computers must regularly update their
configuration and apply security patches according to a centrally managed con-
figuration. To do this, every computer regularly starts an update tool, which
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Table 1. Policy formalization

policy MFOTL formula

(P1 ) � ∀c.∀t. auth(c, t) → 1000 ≺ t

(P2 ) � ∀c.∀t. auth(c, t) → �[0,3d] �[0,0] upd success(c)

(P3 )

� ∀c.∀s. ssh login(c, s)∧(
�[1min,20min] net(c) ∧�[0,1d] �[0,0] net(c) → �[1min,20min] net(c)

) →
�[0,1d) �[0,0] ssh logout(c, s)

(P4 )
� ∀c.net(c) ∧ (

�[10min,20min] net(c)
) ∧ (

�[1d,2d] alive(c)
)∧

¬(
�[0,3d] �[0,0] upd success(c)

) → �[0,20min) �[0,0] upd connect(c)

(P5 )
� ∀c.upd connect(c) ∧ (

�[5min,20min] alive(c)
) →

�[0,30min) �[0,0] upd success(c) ∨ upd skip(c)

(P6 ) � ∀c.upd skip(c) → �[0,1d] �[0,0] upd success(c)

we call UPD, connects to a central server to download the latest centrally man-
aged configuration, and attempts to reconfigure and update itself. To prevent
over-loading the configuration server, if the computer has recently updated its
configuration then the update tool does not attempt to connect to the server.

Policies. The policies we consider specify restrictions on the authorization pro-
cess, SSH sessions, and the update process. All computers are intended to comply
with these policies. However, due to misconfiguration, server outages, hardware
failures, and the like, this is not always the case. The policies are as follows.
(P1 ) Entering credentials with the tool AUTH must take at least 1 second.

The motivation is that authentication with the tool AUTH should not be
automated. That is, the authentication credentials must be entered manually
and not by a script when executing the tool.

(P2 ) The tool AUTH may only be used if the computer has been updated to
the latest centrally-managed configuration within the last 3 days.

(P3 ) Long-running SSH sessions present a security risk. Therefore, they must
not last longer than 24 hours.

(P4 ) Each computer must be updated at least once every 3 days unless it is
turned off or not connected to the corporate network.

(P5 ) If a computer connects to the central configuration server and downloads
the new configuration, then it should successfully reconfigure itself within
the next 30 minutes.

(P6 ) If the tool UPD aborts the update process, claiming that the computer was
recently successfully updated, then this update must have occurred within
the last 24 hours.

Table 1 presents our formalization of these policies, where we use the predicate
symbols given in Table 2. We explain here the less obvious aspects of our formal-
ization. The variable c represents a computer, s represents an SSH session, and t
represents the time taken by a user to enter authentication credentials. In (P3 ),
we assume that if a computer is disconnected from the corporate network, then
the SSH session is closed. In (P4 ), because of the subformula �[1d,2d] alive(c), we
only consider computers that have recently been used. In particular, the subfor-
mula suppresses false positives stemming from newly installed computers, which
do not generate alive events prior to their installation. Similarly, we only require
an update of a computer if it is connected to the network for a given amount of
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Table 2. Predicate symbols and their interpretation

predicate symbol description

alive(c)
The computer c is running. This event is generated at least once every 20 minutes
when c is running but at most twice every 5 minutes.

net(c)
The computer c is connected to the corporate network. This event is generated at
least once every 20 minutes when c is connected to the corporate network but at
most once every 5 minutes.

auth(c, t)
The tool AUTH is invoked to obtain an authentication token on the computer c.
The second argument t indicates the time in milliseconds it took the user to enter
the authentication credentials.

upd start(c) The tool UPD started on the computer c.

upd connect(c)
The tool UPD on the computer c connected to the central server and downloaded
the latest configuration.

upd success(c) The tool UPD updated the configuration and applied patches on the computer c.

upd skip(c)
The tool UPD on the computer c terminated because it believes that the computer
was recently updated.

ssh login(c, s)
An SSH session with identifier s to the computer c was opened. We use the session
identifier s to match the login event with the corresponding logout event.

ssh logout(c, s) An SSH session with identifier s to the computer c was closed.

Table 3. Log statistics

event count
alive 16 B (15,912,852,267)
net 8 B (7,807,707,082)
auth 8M (7,926,789)
upd start 65M (65,458,956)
upd connect 46M (45,869,101)
upd success 32M (31,618,594)
upd skip 6M (5,960,195)
ssh login 1 B (1,114,022,780)
ssh logout 1 B (1,047,892,209)

Table 4. Monitor performance

policy runtime runtime memory
(overall) (per slice) (per slice)

median max cumulative median max
[hh:mm] [sec] [hh:mm] [days] [MB] [MB]

(P1) 2:04 169 0:46 21.4 6.1 6.1
(P2) 2:10 170 0:51 21.4 6.1 10.3
(P3) 11:56 170 10:40 22.7 7.1 510.2
(P4) 2:32 169 1:06 21.3 9.2 13.1
(P5) 2:28 168 1:01 21.3 6.1 6.1
(P6) 2:13 168 0:48 21.1 6.1 7.1

time. In (P5 ), since a computer can be turned off after downloading the latest
configuration but before modifying its local configuration, we only require a suc-
cessful update if the computer is still running 5 to 20 minutes after downloading
the new configuration.

Logs. The computers log entries describing their local system actions and upload
their logs to a log cluster. Approximately 1TB of log data is uploaded each day.
We restricted ourselves to log data that spans approximately two years. We
then processed the uploaded data to obtain a temporal structure consisting of
the events relevant for the policies considered. Since events occur concurrently,
we collapsed the temporal structure [8], that is, the structures at time points
with equal timestamps are merged into a single structure. By doing this, we
make the assumption that equally timestamped events happen simultaneously.
The size of the collapsed temporal structure is approximately 600MB per day on
average and 0.4TB for the two years, in a protocol buffers [16] format. It contains
approximately 77.2 million time points and 26 billion events, i.e., tuples in the
relations interpreting the predicate symbols. Table 3 presents a breakdown of
the numbers of the events in the temporal structure by predicate symbols.
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itor individual slices for (P3 )

Slicing and Monitoring. For each policy, we used 1,000 computers for slic-
ing and monitoring. Here we used Google’s MapReduce framework [12] and the
MONPOLY tool [7]. We split the collapsed temporal structure into 10,000 slices
so that each computer processed 10 slices on average. The decision to use 10
times more slices than computers makes the individual map and reduce com-
putations small. This has the advantage that if the monitoring of a slice fails
and must be restarted, then less computation is wasted. Furthermore, for slicing
and monitoring, we used the formulas in Table 1 without universally quantify-
ing over the variables c, t, and s. The resulting formulas fall into the fragment
that the MONPOLY tool handles and our slicing techniques from Section 3 are
applicable, i.e., they are sound and complete.

We employed data slicing with respect to the variable c, which occurs in all
the atomic subformulas with a predicate symbol, and filtering of empty time
points. We did not slice by time. Our implementation generates the primary
keys of the key-value pairs emitted by a mapper from c’s interpretation in an
event. Concretely, we apply the MurmurHash [25] function to this value and take
the remainder after dividing it by 10,000 (the number of slices). The values of the
key-value pairs emitted by the implemented mappers are log entries consisting
of a single event and a timestamp. Slices are generated with respect to the
conjunction of all policies. Figure 1 depicts the distribution of the size of the
slices. Note that generating the slices for each policy individually would result in
smaller slices and thus simplify the monitoring process. Note too that although
we use the same set of slices for all policies, each policy was checked separately
and the slices were generated during this check.

Evaluation. Figure 1 shows the distribution of the sizes of the slices in the
format used as input for MONPOLY. On the y-axis is the percentage of slices
whose size is less than or equal to the value on the x-axis. The median size of
a slice is 61MB and 99% of the slices have a size of at most 135MB. There are
three slices with sizes over 1GB and the largest slice is 1.8GB. Recall that we
used the same slicing method for all policies. The sum of the sizes of all slices
(0.6TB) is larger than the size of the collapsed temporal structure (0.4TB). Since
we slice by the computer (variable c), the slices do not overlap. However, some
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overhead results from timestamps and predicate symbol names being replicated
in multiple slices. Moreover, we consider the sizes of the slices in the more verbose
text-based MONPOLY format than the protocol buffers format.

Table 4 shows the performance of our monitoring solution. The second col-
umn shows for each policy the time for the entire MapReduce job, including
both slicing and monitoring, that is, the time from starting the MapReduce job
until the monitor finished on the last slice and its output was collected by the
corresponding reducer. Except for (P3 ), the slicing and monitoring took up to
2 1
2 hours. Slicing and monitoring (P3 ) took almost 12 hours. Table 4 also gives

details about the monitoring of the individual slices. The overhead of the MapRe-
duce framework and time necessary for slicing is small; most resources are spent
on monitoring the slices. The cumulative running times roughly amount to the
time necessary to monitor all slices sequentially on a single computer.

We first discuss the time taken to monitor the individual slices and then the
memory used. For (P3 ), Figure 2 shows on the y-axis the percentage of slices
for which the monitoring time is within the limit on the lower x-axis. We do not
give the curves for the other policies as they are similar to (P3 ). The similarities
indicate that for most slices the monitoring time does not vary much across the
considered policies. 99% of the slices are monitored within 8.2 minutes each and
do not need more than 35 MB of memory.

(P3 ) required substantially more time to monitor than the other formulas due
to the nesting of temporal operators. This additional overhead is particularly
pronounced on large slices and results in waiting for a few large slices that take
substantially longer to monitor than the rest. There are several options to deal
with such slices. We can stop the monitor after a timeout and ignore the slices and
any policy violations involving them. Note that the monitoring of the other slices
and the validity of violations found on them would be unaffected. Alternatively,
we can split large slices into smaller ones, either prior to monitoring or after
a timeout when monitoring a large slice. For (P3 ), we can slice further by the
variable c and also by s . We can also slice by time.

Due to the sensitive nature of the logged data, we do not report here on
the policy violations. However, we remark that monitoring a large population
of computers and aggregating the violations found can be used to identify sys-
tematic policy violations and policy violations due to system misconfiguration.
An example of the former is not letting a computer update after the weekend
before using it to access sensitive resources on a Monday; cf. (P2 ). An example
of the latter is that the monitoring helped determine when the update process
was not operating as expected for certain types of computers during a specific
time period. This information can be useful for identifying seemingly unrelated
changes in the configuration of other components in the IT infrastructure.

Given the amount of logged data and the modest computational power (1,000
computers in a MapReduce cluster), the monitoring times are in general low,
and reasonable even for (P3 ). The presented monitoring solution allows us to
cope with even larger logs and to speed-up the monitoring process by deploying
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additional slicing mechanisms provided by our general framework and by using
additional computers in a MapReduce cluster.

5 Related Work

This work builds upon and extends the work by Basin et al. [7–9], where a single
monitor is used to check system compliance with respect to policies expressed
in metric first-order temporal logic. By parallelizing and distributing the moni-
toring process, we overcome a central limitation of this prior work and enable it
to scale to logging scenarios that are substantially larger than those previously
considered [8], namely, approximately 100 times larger in terms of the number
of events and 50 times larger in the data volume.

For different logic-based specification languages, various monitoring algo-
rithms exist, e.g., [5, 6, 10, 11, 13, 15, 17–19, 23, 24]. These algorithms have
been developed with different applications in mind, such as intrusion detec-
tion [23], program verification [5], and checking temporal integrity constraints
for databases [11]. In principle, these algorithms can also be used to check com-
pliance of IT systems, where a single centralized monitor observes the system
online or checks the system logs offline. However, none of these algorithms, in-
cluding the one of Basin et al. [9], would scale to IT system of realistic size due
to the lack of parallelization.

Similar to our work, Barre et al. [4] monitor parts of a log in parallel and inde-
pendently of other log parts with a MapReduce framework. While we split the log
into multiple slices and evaluate the entire formula on these slices in parallel, they
evaluate the given formula inmultiple iterations ofMapReduce. All subformulas of
the same depth are evaluated in the sameMapReduce job and the results are used
to evaluate subformulas of a lower depth during anotherMapReduce job. The eval-
uation of a subformula is performed in both the map and the reduce phase. While
the evaluation in the map phase is parallelized for different time points of the log,
the results of the map phase for a subformula for the whole log are collected and
processed by a single reducer. The reducer therefore becomes a bottleneck and
their approach’s scalability remains unclear. Furthermore, in their experiments
they used a log with fewer than five million entries and performed monitoring on
a single computer with respect to formulas of a propositional temporal logic, which
is limited in its ability to express realistic policies.

Roşu and Chen [22] present a generic monitoring algorithm for parametric
specifications. They group logged events into slices by their parameter instances,
one slice for each parameter value in case of a single parameter and one slice for
each combination of values when the specification has multiple parameters. The
slices are then processed by a monitoring algorithm unaware of parameters. In
contrast to our work, they do not provide a solution for parallelizing the mon-
itoring process; they provide an algorithmic solution to generate the slices on-
line. We note that the extension of the temporal logic LTL with parameterized
propositions, as considered by Roşu and Chen, is less expressive than a first-
order extension like MFOTL, used in our work. Roşu and Chen also report on
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experiments with logs containing up to 155 million entries, all monitored on a sin-
gle computer. This is orders of magnitude smaller than the log in our case study.

6 Conclusion

We presented a scalable solution for checking compliance of IT systems, where
behavior is monitored offline and checked against policies. To achieve scalability,
we parallelize monitoring, supported by a framework for slicing logs and an
algorithmic realization within the MapReduce framework.

MapReduce is particularly well suited for implementing parallel monitoring.
It allows us to efficiently reorganize huge logs into slices. It also allocates and dis-
tributes the computations for monitoring the slices, accounting for the available
computational resources, the location of the logged data, failures, etc. Finally, ad-
ditional computers can easily be added to speedup the monitoring process when
splitting the log into more slices, thereby increasing the degree of parallelization.

Our slicing framework allows logs to be sliced in multiple dimensions by com-
posing different slicing methods. As future work, we will evaluate different possi-
bilities of obtaining a larger number of smaller slices that are equally expensive
to monitor. We also plan to adapt our approach to check system compliance
online. In this regard, there are extensions and alternatives to the MapReduce
framework for online data processing, such as S4 [21] and STORM [20], which
can potentially be used to obtain a scalable online monitoring solution.
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