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Abstract
Onlinemonitoring is the task of identifying complex temporal patternswhile incrementally processing streams of data-carrying
events. Existing state-of-the-art monitors for first-order patterns, which may refer to and quantify over data values, can process
streams of modest velocity in real-time. We show how to scale up first-order monitoring to substantially higher velocities by
slicing the stream, based on the events’ data values, into substreams that can be monitored independently. Because monitoring
is not embarrassingly parallel in general, slicing can lead to data duplication. To reduce this overhead, we adapt hash-based
partitioning techniques from databases to the monitoring setting. We implement these techniques in an automatic data slicer
based on Apache Flink and empirically evaluate its performance using two tools—MonPoly and DejaVu—to monitor the
substreams. Our evaluation attests to substantial scalability improvements for both tools.

Keywords Runtime verification · Online monitoring · Temporal logic · Data parallelism

1 Introduction

In large-scale software systems,millions of events occur each
second [25,41]. Identifying instances of interesting patterns
in these high-velocity data streams is a central challenge in
the area of runtime verification and monitoring. Often, this
search must be performed online given the systems’ continu-
ous operation and the massive amounts of data they produce.

An online monitor takes as input a pattern and a stream
of data, which it consumes incrementally, and it detects
and outputs matches with the pattern. The specification lan-
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guage for patterns significantly influences the monitor’s time
and space complexity. For propositional languages, such as
metric temporal logic ormetric dynamic logic, existing state-
of-the-art monitors are capable of handlingmillions of events
per second in real time on commodity hardware [9,16,46,47].
Propositional languages, however, are severely limited in
their expressiveness. Since they regard events as atomic,
they cannot formulate dependencies between the data val-
ues stored in events. First-order languages, such as metric
first-order temporal logic (MFOTL) [14], do not have this
limitation. Various online monitors [6,8,14,17,36,48,50] can
handle first-order languages for event streams, but only with
modest velocities.

We improve the scalability of online first-order moni-
tors using parallelization. There are two basic approaches
regarding what to parallelize. Task parallelism adapts the
monitoring algorithm to evaluate multiple subpatterns in par-
allel. The amount of parallelization offered is limited by
the number of subpatterns of a given input pattern. The
alternative is data parallelism, where multiple copies of the
monitoring algorithm are run unchanged as a black box, in
parallel, on different portions of the input data stream.

In this article we focus on data parallelism, which is
attractive for several reasons. As it is a black-box approach,
data parallelism allows us to reuse existing monitors, which
implement heavily optimized sequential algorithms. It also
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offers a virtually unbounded amount of parallelization,
especially on high-volume and high-velocity data streams.
Finally, it caters for the use of general-purpose libraries for
data-parallel stream processing. These libraries deal with
common challenges in high-performance computing, such
as deployment on computing clusters, fault-tolerance, and
back-pressure induced by velocity spikes.

Data parallelism has previously been used to scale up the
offline monitoring of systems (Sect. 2), which is performed
after the systems completed their execution. Yet neither
offline nor online monitoring is an embarrassingly parallel
task in general. Thus, in some cases, the monitors execut-
ing in parallel must synchronize. Alternatively, careful data
duplication across these monitors allows for a non-blocking
parallel architecture. An important contribution of priorwork
on scalable offline monitoring is the development of a (data)
slicing framework [10]. The framework takes as input an
MFOTL formula (Sect. 3) and a splitting strategy that deter-
mines to which of the parallel monitors the data should be
sent. The framework’s output is a dispatcher that forwards
events to appropriate monitors and ensures that the overall
parallel architecture collectively produces exactly the same
results that a single monitor would produce.

The previous slicing framework has three severe limita-
tions. First, data can be sliced on only one free variable at
a time. Although it is possible to compose multiple single-
variable slices into multi-variable slices, this composition is
less expressive than simultaneously slicing on multiple vari-
ables. We explain the difference in Sect. 4.3. Second, the
user of the slicing framework must supply a splitting strat-
egy, even when it is obvious what the best strategy is for the
given formula. Third, the framework’s implementation uses
Google’s MapReduce library for parallel processing, which
restricts its applicability to just offline monitoring.

This article addresses all of the above limitations and
thereby makes the following contributions:

– We generalize the offline slicing framework [10] to sup-
port simultaneous slicing on multiple variables and we
also adapt it to online monitoring (Sect. 4).

– We instantiate the slicing framework with an auto-
matic splitting strategy (Sect. 5) inspired by hash-based
partitioning and the hypercube algorithm [3,38]. This
algorithm has previously been used to parallelize rela-
tional join operators in databases. Skew, which is the
presence of frequently occurring values, can cause imbal-
ances in hash-based partitioning. Our automatic strategy
also addresses this issue by separately handling events
with frequently occurring values, using another database
technique that we adapt to the monitoring setting.

– We implement our new slicing framework using the
Apache Flink [4] stream processing engine (Sect. 6). We
use both MonPoly [14,15] and DejaVu [36] as black-

box monitors for the slices. A particular challenge was
to efficiently checkpoint MonPoly’s state within Flink
to achieve fault-tolerance. (We do not address fault-
tolerance and skew for DejaVu.)

– We evaluate the slicing framework and automatic strat-
egy selection on both real-world data based on Nokia’s
data collection campaign [13] and synthetic data exer-
cising difficult cases (Sect. 7). We show that the overall
parallel architecture substantially improves the through-
put. Although the optimality of the hypercube approach
in terms of a balanced data distribution is out of reach for
general MFOTL formulas, we demonstrate that our auto-
matic splitting results in balanced slices and improved
monitoring performance.

An earlier version of this work was presented at RV
2018 [51]. This article extends the conference paper with
detailedproofs of the slicing framework’s correctness (Sect. 4)
and a significantly expanded description of the automatic
strategy selection algorithm (Sect. 5). This includes back-
ground information on the standard hypercube algorithm
from databases (Sect. 5.1), which we build upon. Moreover,
we have integrated DejaVu as a second black-box monitor in
addition toMonPoly in ourApache Flink-based implementa-
tion (Sect. 6). This demonstrates our framework’s generality.
Finally, we (re-)evaluate both versions of the resulting par-
allel online monitor (Sect. 7). For both, higher parallelism
yields significantly improved performance.

All theorems stated in this article, namely those establish-
ing our slicing framework’s correctness, have been mechani-
cally checked using the Isabelle proof assistant. Additionally,
we provide detailed proofs in this article for the benefit
of readers not familiar with Isabelle. Both our implemen-
tation [53] and formalization [55] are publicly available.
The formal verification of an MFOTL monitor modeled
after MonPoly has been addressed in a separate line of
work [11,54].

2 Related work

Our work builds on the slicing framework introduced by
Basin et al. [10]. This framework ensures the sound and com-
plete slicing of the event stream with respect to MFOTL
formulas. It prescribes the use of composable operators,
called slicers, that slice data associated with a single free
variable, or slice data based on time. As explained in the
introduction, we have generalized their data slicers to operate
simultaneously on all free variables in a formula. Moreover,
the use of MapReduce in the original framework’s imple-
mentation limited it to offline monitoring. In contrast, our
Apache Flink implementation supports online monitoring.
Finally, our implementation extends the framework with an
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automatic strategy selection that results in a balanced load
distribution for the slices in our empirical evaluation.

Barre et al. [5], Bianculli et al. [22], and Bersani et al. [21]
use task parallelism over subformulas to parallelize proposi-
tional offline monitors. The degree of parallelization in these
approaches is limited by the formula’s size.

Parametric trace slicing [50] lifts propositionalmonitoring
toparametric specifications.To this end, a tracewith paramet-
ric events is split into propositional sliceswith events grouped
by their parameter instances, which can be monitored inde-
pendently. Parametric trace slicing considers only non-metric
policies with top-level universal quantification. Barringer
et al. [6] generalize this approach tomore complex properties
expressed using quantified event automata (QEA). Reger and
Rydeheard [48] delimit the sliceable fragment of first-order
linear temporal logic (FO-LTL) that admits a sound appli-
cation of parametric trace slicing. The fragment prohibits
deeply nested quantification and using the “next” operator.
These restrictions originate from the time model used, in
which time-points consist of exactly one event. Hence, when
an event is removed from a slice, information about that
time-point is lost. Our time model, based on sequences of
time-stamped sets of events, avoids such pitfalls. Parametric
trace slicing produces an exponential number of proposi-
tional slices (in the domain’s size), whereas we use as many
slices as there are parallel monitors available.

Kuhtz and Finkbeiner [39] show that the LTL monitoring
problem belongs to the complexity class AC1(logDCFL) and
hence can be efficiently parallelized. However, the Boolean
circuits used to establish the lower bound must be built for
each trace in advance, which limits these results to offline
monitoring. A similar limitation applies to the work by Bun-
dala and Ouaknine [23] and Feng et al. [31], who study
variants of MTL and TPTL.

Complex event processing (CEP) systems analyze streams
by recognizing composite events as (temporal) patterns
built from simple events. These systems allow for ample
parallelism. However, their languages are often based on
SQL extensions without a clear semantics. An exception is
BeepBeep [33,34]: a multi-threaded stream processor that
supports LTL-FO+, a first-order variant of LTL. The paral-
lelism in BeepBeep must, however, be arranged manually by
the user.

Event stream processing systems have been extensively
studied in the database community. We focus on the most
closely related works. The hypercube algorithm (also known
as the shares algorithm) was proposed by Afrati and Ull-
man [3] in the context of MapReduce. The algorithm is
similar to the triangle counting algorithm by Suri and Vassil-
vitskii [56] and can be traced back to the parallel evaluation
of datalog queries [32]. The hypercube algorithm is optimal
for conjunctive queries with one communication round on
skew-free databases [20], which do not contain heavy hitters

(data values that occur more frequently than a fixed thresh-
old).

The hypercube algorithm and other hash-based partition-
ing schemes are sensitive to skew. Rivetti et al. [49] suggest
applying a greedy balancing strategy after identifying heavy
hitters. This approach is restricted to conjunctive queries
where all relations share a common join key. Joglekar et
al. [37] improve asymptotically over the hypercube algorithm
by usingmultiple communication rounds. Nasir et al. [42,43]
balance skew for associative streamoperatorswithout explic-
itly identifyingheavyhitters.Vitorovic et al. [58] combine the
hash-based hypercube, prone to heavy hitters, with random
partitioning [44], resilient to heavy hitters. Their combina-
tion only applies to conjunctive queries and limits the impact
of skew without improving the worst-case performance. All
these approaches are unsuitable for handlingMFOTL formu-
las. Instead we follow a hypercube variant that is worst-case
optimal in the presence of skew [38]. The heavy hitters must
be known in advance in this approach. In contrast to the ear-
lier algorithm by Beame et al. [19], it is sufficient to consider
the heavy hitters of each attribute in isolation.

3 Metric first-order temporal logic

Webriefly recall the syntax and semantics of our specification
language, metric first-order temporal logic (MFOTL) [14].

We fix a set of names E and for simplicity assume a single
infinitedomainDof values. The names r ∈ Ehave associated
arities ι(r) ∈ N. An event r(d1, . . . , dι(r)) is an element of
E×D

∗. We call 1, . . . , ι(r) the attributes of the name r . We
further fix an infinite set V of variables, such that V, D, and
E are pairwise disjoint. Let I be the set of nonempty intervals
[a, b) := {x ∈ N | a ≤ x < b}, where a ∈ N, b ∈ N ∪ {∞}
and a < b. Formulas ϕ are constructed inductively, where ti ,
r , x , and I range over V ∪ D, E, V, and I, respectively:

ϕ ::= r(t1, . . . , tι(r)) | t1 ≈ t2 | ¬ϕ | ϕ ∨ ϕ | ∃x .ϕ |
I ϕ | I ϕ | ϕSIϕ | ϕUIϕ.

Along with the Boolean operators, MFOTL includes the
metric past and future temporal operators  (previous), S
(since), (next), and U (until), which may be nested freely.
We define other standard operators in terms of this mini-
mal syntax: truth 
 := ∃x . x ≈ x , falsehood ⊥ := ¬
,
inequality t1 �≈ t2 := ¬(t1 ≈ t2), conjunction ϕ ∧ ψ :=
¬(¬ϕ ∨¬ψ), universal quantification ∀x . ϕ := ¬(∃x . ¬ϕ),
eventually I ϕ := 
UIϕ, always I ϕ := ¬I ¬ϕ,
once I ϕ := 
SIϕ, and historically (always in the past)
I ϕ := ¬I ¬ϕ. We write V (ϕ) for the set of free vari-
ables of the formula ϕ.

MFOTL formulas are interpreted over streams of time-
stamped events. We group finite sets of events that happen
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Fig. 1 Semantics of MFOTL

concurrently (from the event source’s point of view) into
databases. An (event) stream ρ is an infinite sequence
(τi , Di )i∈N of databases Di with associated time-stamps τi .
We assume discrete time-stamps, modeled as natural num-
bers τ ∈ N. The event source may use a finer notion of
time than the one used for time-stamps: databases at differ-
ent indices i �= j may have the same time-stamp τi = τ j .
The sequence of time-stamps must be non-strictly increas-
ing (∀i . τi ≤ τi+1) and always eventually strictly increasing
(∀τ. ∃i . τ < τi ).

The relation v, i |�ρ ϕ (Fig. 1) defines the satisfaction of
the formula ϕ for a valuation v at an index i with respect to
the stream ρ = (τi , Di )i∈N. The valuation v is a mapping
V (ϕ) → D, assigning domain elements to the free variables
of ϕ. Overloading notation, v is also the extension of v to
the domain V (ϕ) ∪ D, setting v(t) = t whenever t ∈ D. We
write v[x �→ y] for the function equal to v, except that x is
mapped to y.

LetS be the set of streams.Although satisfaction is defined
over streams, a monitor will always receive only a finite
stream prefix. We write P for the set of prefixes and � for
the usual prefix order on streams and prefixes. For a prefix π

and i < |π |, π [i] denotes π ’s i-th element.

4 Slicing framework

We introduce a general framework for parallel online moni-
toringbasedon slicing.Basin et al. [10] provide operators that
split finite logs offline into independently monitorable slices,
based on the events’ data values and time-stamps. Each slice
contains only a subset of the events from the original trace,
which reduces the computational effort required to monitor
the slice.We adapt this idea to online monitoring. Our frame-
work is abstract. We start with a characterization of an online
monitor’s input–output behavior (Sect. 4.1). Slicing’s funda-
mental property is that it preserves this behavior (Sect. 4.2).
We then refine the framework and focus on the data in the
events, since slicing with respect to time is more suitable for
offline monitoring (Sect. 4.3).

4.1 Monitor functions

Abstractly, a monitor function M ∈ P → O maps stream
prefixes to verdict outputs from some set O. A monitor
is an algorithm that implements a monitor function. An
online monitor receives incremental updates of a stream
prefix and computes the corresponding verdicts. We con-
sider time-stamped databases to be the atomic units of the
online monitor’s input. The monitor may produce the ver-
dicts incrementally, too. To represent this behavior at the
level of monitor functions, we assume that verdict outputs
are equipped with a partial order �, where o1 � o2 means
that o2 provides more (or the same) information as o1. We
also assume thatM is amonotonemap from the poset 〈P,�〉,
i.e., stream prefixes ordered by the prefix relation, to the
poset 〈O,�〉. This captures the intuition that as the monitor
function receives more input, it produces more output, and,
depending on the partial order�, it does not retract previous
verdicts.

The standard application of monitors for runtime verifica-
tion is detecting violations of a safety property of the form
∀x1 . . . xn . ϕ. To do this, one can monitor the negation
¬ϕ to obtain the valuations of the variables x1, . . . , xn that
satisfy the negation. Such valuations correspond to the vio-
lations of the initial safety property. We call monitors that
output valuations of the free variables informative.

Intuitively, the verdict of an informative monitor function
Mϕ is a set of tuples (v, i), where v is a valuation of the free
variables of the MFOTL formula ϕ and i is an index in the
event stream.Wecall these tuples satisfying valuations. Thus,
we instantiate 〈O,�〉 with 〈(V (ϕ) → D)× N,⊆〉 when we
workwith an informativemonitor function. By using the sub-
set relation as the partial order on verdicts, the granularity at
which an online implementation can incrementally output its
verdict is at the level of satisfying valuations. The following
definition makes the above intuition more precise.

Definition 1 An informative monitor functionMϕ for ϕ is a
monotone function 〈P,�〉 → 〈(V (ϕ) → D) × N,⊆〉 satis-
fying

Soundness ∀π, v, i . (v, i) ∈Mϕ(π)

�⇒ ∀ρ � π. v, i |�ρ ϕ

Completeness ∀π, ρ, v, i . π � ρ ∧ (∀ρ′ � π. v, i |�ρ′ ϕ)

�⇒ ∃π ′ � ρ. (v, i) ∈Mϕ(π ′)

Soundness restricts the output to valuations that are satis-
fied independently of future events: the monitor may output
a tuple (v, i) only if it is a satisfying valuation for all streams
ρ extending the prefix π . This property is sometimes called
impartiality [40]. Our definition of completeness is a weak
form of anticipation [40]: once a valuation v is satisfied at
an index i on every possible extension of the prefix π , the
monitor must eventually output this fact. However, we allow
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Fig. 2 The parallelized monitor function J
(
λk. Mk(S(π)k)

)
, assuming

K = {1, . . . , k}

the output to be delayed, which is generally necessary for for-
mulas with future modalities. The delay may be unbounded
with respect to either time or the number of databases alone.
We therefore require that for any choice of the infinite stream
extension ρ � π , there is another prefix π ′ � ρ such that
Mϕ(π ′) contains the satisfying valuation (v, i). Informative
monitor functions are not unique because the output delay is
not fixed.

As concrete examples, the MonPoly monitor [15] imple-
ments an informative monitor function for a practically
relevant fragment of MFOTL [14]. MonPoly’s output delay
depends only on the future operators’ intervals in the moni-
tored formula. The DejaVu monitor [36] internally computes
an informative monitor function for a past-only fragment of
MFOTL, where all intervals are [0,∞). It represents val-
uations as binary decision diagrams (BDDs), but does not
output them. Instead, DejaVu’s verdicts consist only of the
indices where violations occurred. Since DejaVu does not
support future operators, its verdict output is never delayed.

We briefly compare our informative monitor functions
with another common type of monitor functions from the
literature whereO is the set {?,⊥,
} and the partial order�
is the reflexive closure of {(?,⊥), (?,
)} [18,45]. The verdict
⊥ means that the monitored prefix is a bad prefix, i.e., all its
infinite extensions violate the formula. Similarly, 
 denotes
a good prefix, while ? indicates an inconclusive result. Every
nonempty result fromMϕ(π) corresponds to a⊥ verdict for
the formula∀x1 . . . xn .¬ϕ (due to soundness), whereas an
empty result could either mean ? or 
.

4.2 Abstract slicing

Parallelizing a monitor should not affect its input–output
behavior. We formulate this correctness requirement abstra-
ctly using the notion of a slicer for a monitor function. The
slicer specifies how to split a streamprefix into independently
monitorable substreams, called slices, and how to combine
the verdict outputs of the parallel submonitors into a single
verdict.

Definition 2 A slicer for a monitor function M ∈ P → O

is a tuple (K , M, S, J ), where K is a set of slice identifiers,
the submonitor family M ∈ K → (P→ O) is a K -indexed
family of monitor functions, the splitter S ∈ P → (K →

P) splits prefixes into K -indexed slices, and the joiner J ∈
(K → O) → O combines K -indexed verdicts into a single
one, satisfying:

Monotonicity ∀π1, π2, k. π1 � π2 �⇒ S(π1)k � S(π2)k .
Correctness ∀π. J

(
λk. Mk(S(π)k)

) =M(π).

For an input prefix π , let S(π) denote the collection of its
slices. Each slice is identified by an element k ∈ K , whichwe
write as a subscript. We require the splitter S to be monotone
so that the submonitors Mk , whichmay differ from themoni-
tor functionM, can process the sliced prefixes incrementally.
Composing the splitter, the corresponding submonitor for
each slice, and the joiner as shown in Fig. 2 yields the par-
allelized monitor function J

(
λk. Mk(S(π)k)

)
. This function

is correct if and only if it computes the same verdicts asM.
For example, parametric trace slicing [48,50] can be seen

as a particular slicer for monitor functions that arise from
sliceable FO-LTL formulas [48, Section 4]. Thereby, K is
theCartesian product of finite domains for the formulas’ vari-
ables. The elements of K are thus valuations and the splitter
is defined as the restriction of the trace to the values occurring
in the valuation. The submonitor Mk is a propositional LTL
monitor and the joiner simply takes the union of the results
(which may be marked with the valuation).

The splitter S as defined above is overly general. A con-
crete instance of S may determine each event’s assignment
to slices based on all previous events. In practice, we would
like an efficient implementation of S. For example, paramet-
ric trace slicing determines the target slice for an event by
inspecting events individually (and not as part of the entire
prefix). We call a splitter with this property event-separable.
Event-separable splitters are desirable because they cater for
a parallel implementation of the splitter itself.

Definition 3 A splitter S is called event-separable if there is
a function Ŝ ∈ (E × D

∗) → P(K ) such that S(π)k[i] =
(τi , {e ∈ Di | k ∈ Ŝ(e)}), for all π ∈ P, k ∈ K , and i < |π |.
Lemma 1 Assume that S is event-separable. Then π1 � π2

implies S(π1)k � S(π2)k for all k ∈ K.

Proof Fix an event-separable splitter S with the correspond-
ing function Ŝ (*). Fix two prefixes π1 = (τi , Di )i<|π1| and
π2 = (τ ′i , D′i )i<|π2|, with π1 � π2. We thus have τi = τ ′i and
Di = D′i for all i < |π1| (**). Fix k ∈ K .We show S(π1)k �
S(π2)k pointwise by showing S(π1)k[i] = S(π2)k[i] for all
i < |π1|. To do so we calculate:

S(π1)k[i] (∗)= (τi , {e ∈ Di | k ∈ Ŝ(e)})
(∗∗)= (τ ′i , {e ∈ D′i | k ∈ Ŝ(e)}) (∗)= S(π2)k[i]. ��

We also call a slicer with an event-separable splitter event-
separable.We identify an event-separable slicer (K , M, S, J )

with (K , M, Ŝ, J ), where Ŝ is the function fromDefinition 3.
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4.3 Joint data slicer

We now describe an event-separable slicer for informative
monitor functions Mϕ . Our joint data slicer distributes
events according to the valuations they induce in the for-
mula. Recall that the output ofMϕ consists of all valuations
that satisfy the formula ϕ at some index. For a given valu-
ation, only a subset of the events is relevant to evaluate the
formula. We would like to evaluate ϕ separately for each
valuation to determine whether it is satisfied by that valua-
tion, as this would allows us to exclude some events from
each slice. However, there are infinitely many valuations in
the presence of infinite domains. Therefore, the joint data
slicer uses finitely many (possibly overlapping) slices asso-
ciated with sets of valuations, which taken together cover all
possible valuations.

We assume without loss of generality that the bound vari-
ables in ϕ are disjoint from the free variables V (ϕ). Given an
event e = r(d1, . . . , dι(r)), the setmatches(ϕ, e) contains all
valuations v ∈ V (ϕ) → D for which there is a subformula
r(t1, . . . , tι(r)) in ϕ where v(ti ) = di for all i ∈ {1, . . . , ι(r)}.
Intuitively, v is inmatches(ϕ, e) if the event e is possibly rel-
evant for evaluating ϕ over the valuation v.

Definition 4 Letϕ be anMFOTL formula and f ∈ (V (ϕ)→
D) → P(K ) be a mapping from valuations to nonempty sets
of slice identifiers. The joint data slicer for ϕ with splitting
strategy f is the tuple (K , λk. Mϕ, Ŝf , J f ), where 1

Ŝf (e) =
⋃

v∈matches(ϕ,e)
f (v),

J f (s) =
⋃

k∈K (sk ∩ ({v | k ∈ f (v)} × N)).

The splitting strategy f associates valuations to slices
(more precisely, slice identifiers). Accordingly, Ŝf assigns
the event e to all slices k for which there exists v ∈
matches(ϕ, e), i.e., a valuation v for which emay be relevant,
with k ∈ f (v). The joiner J f takes the union of the verdicts
from all slices, keeping only those verdicts that the corre-
sponding slice is responsible for.Note that {v | k ∈ f (v)}×N
is the set of all verdicts whose valuation is associated with
the slice k.

The following example demonstrates why the intersec-
tion in the definition of J f is needed for some formulas, for
example those involving equality. Intuitively, these formulas
may be satisfied if and only if certain events are absent. The
problem occurs if the input prefix contains these events, but
a slice does not.

Example 1 Consider the formula ϕ = x ≈ a∧¬P(x), where
a is a constant, and consider a stream ρ with the prefix π =
1 Recall that s is a family of K -indexed verdicts, so sk denotes the
verdict for slice k.

〈(0, {P(a)})〉. Obviously, v, 0 �|�ρ ϕ for all v. However, the
event P(a) will be omitted from each slice k that does not
have an associated valuation mapping x to a. (A splitting
strategy with such a slice exists whenever |K | ≥ 2.) Hence
v[x �→ a], 0 |�ρ′ ϕ for all v and all extensions ρ′ of the
slice Sf (π)k to a stream. The result will be unsound if we
do not filter the erroneous satisfying valuations v[x �→ a]
that are necessarily output by the k-th submonitor (due to its
completeness).

We show next that M f
ϕ (π) = J f

(
λk. Mϕ(Sf (π)k)

)
, the

parallelized monitor that uses the joint data slicer, is an infor-
mative monitor function, i.e., it is monotone, sound, and
complete. As a first step, given a formula ϕ and a set of
valuations R, we define the formula’s relevant events with
respect to R as Eϕ(R) = {e | R ∩ matches(ϕ, e) �= {}}.
The following lemma justifies this name: if we restrict the
databases in a stream to (a superset of) the formula’s relevant
events with respect to R, the satisfying valuations within R
remain unchanged.

Lemma 2 Fix a formula ϕ, a stream ρ = (τi , Di )i∈N, a set
of valuations R, and a set of events E, with Eϕ(R) ⊆ E. Let
σ = (τi , Di ∩ E)i∈N. Then v, i |�ρ ϕ ⇐⇒ v, i |�σ ϕ for
all v ∈ R and i ∈ N.

Proof Proof by structural induction over the formula ϕ, gen-
eralizing over v, R, and i . We only show the base cases,
which are the most interesting ones, and the step case for
∃. The other step cases all follow easily from the induction
hypothesis because the evaluation only depends on the evalu-
ation of the recursive subformulas (covered by the induction
hypothesis) and the time-stamps in the streams. Note that the
latter are the same in ρ and σ .

Case ϕ = r(t1, . . . , tn) with n = ι(r): We have for any
v ∈ R:

v, i |�ρ ϕ ⇐⇒ r(v(t1), . . . , v(tn)) ∈ Di

∗⇐⇒ r(v(t1), . . . , v(tn)) ∈ Di ∩ E

⇐⇒ v, i |�σ ϕ.

The step marked with ∗ is justified as follows. Either
r(v(t1), . . . , v(tn)) /∈ Di , and both sides of ⇐⇒ are
false.Otherwise, r(v(t1), . . . , v(tn)) ∈ Di ,which implies
that v ∈ matches(ϕ, (r(v(t1), . . . , v(tn))). This in turn
implies that r(v(t1), . . . , v(tn)) ∈ Eϕ(R) ⊆ E using the
fact that v ∈ R and the lemma’s assumption.
Case ϕ = t1 ≈ t2: We have for any v ∈ R:
v, i |�ρ ϕ ⇐⇒ v(t1) = v(t2) ⇐⇒ v, i |�σ ϕ.
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Case ϕ = ∃x . ψ : We have for any v ∈ R:

v, i |�ρ ϕ ⇐⇒ ∃z ∈ D. v[x �→ z], i |�ρ ψ

∗⇐⇒ ∃z ∈ D. v[x �→ z], i |�σ ψ

⇐⇒ v, i |�σ ϕ.

The step marked with ∗ is justified using the induction
hypothesis for the formulaψ , namely, v[x �→ z], i |�ρ ϕ

⇐⇒ v[x �→ z], i |�σ ϕ, for all z ∈ D. Note that we have
instantiated the parameters v and R by v[x �→ z] and
{v[x �→ z] | v ∈ R}, respectively. ��

The relevant events provide an alternative characteriza-
tion of the joint data slicer’s splitter: Sf (π)k[i] = (τi , Di ∩
Eϕ({v | k ∈ f (v)})), for all π = (τi , Di )i<|π | and i < |π |.

Theorem 1 The function M f
ϕ (π) = J f

(
λk. Mϕ(Sf (π)k)

)

is an informative monitor function.

Proof The monotonicity ofM f
ϕ follows directly fromMϕ’s

monotonicity. For soundness, fix i , v, and π and assume
(v, i) ∈ M f

ϕ (π). Then, by M f
ϕ ’s definition, we obtain a

slice identifier k ∈ f (v) such that (v, i) ∈ Mϕ(Sf (π)k).
From Mϕ’s soundness, we have v, i |�σ ϕ for all σ �
Sf (π)k . Let ρ be some stream extending π , i.e., ρ � π .
Using the alternative characterization of Sf and Lemma 2
with R instantiated to {v | k ∈ f (v)}, we deduce v, i |�ρ ϕ.

For completeness, fix i , v, π , and ρ = (τi , Di )i∈N, where
π � ρ (i.e., π = (τi , Di )i<|π |), and ∀ρ′ � π. v, i |�ρ′ ϕ.
As f (v) is nonempty, let k ∈ f (v) be some slice identifier.
We first show that for all σ = (τ ′i , D′i )i∈N with σ � Sf (π)k
we have v, i |�σ ϕ. For i < |π |, we have τ ′i = τi and D′i =
Di∩Eϕ({v | k ∈ f (v)})via Sf ’s alternative characterization.
Let the stream ρ′ = (τ ′i , Ei )i∈N, where Ei = Di for i < |π |
and Ei = D′i otherwise, and let the stream σ ′ = (τ ′i , Ei ∩
Eϕ({v | k ∈ f (v)}))i∈N. We calculate using Lemma 2 with
R = {v | k ∈ f (v)}:

v, i |�σ ϕ
Lemma 2⇐⇒ v, i |�σ ′ ϕ

Lemma 2⇐⇒ v, i |�ρ′ ϕ.

Because ρ′ � π , we have v, i |�ρ′ ϕ by our assumption, and
thus v, i |�σ ϕ. Now, we can apply Mϕ’s completeness to
the stream σ = (τi , Di ∩ Eϕ({v | k ∈ f (v)})i∈N, to obtain
a π ′′ such that π ′′ � σ ′′ and (v, i) ∈ Mϕ(π ′′). Taking
π ′ = (τi , Di )i<|π ′′|, we have π ′ � ρ and π ′′ = Sf (π ′)k . By
the definition of M f

ϕ , we conclude that (v, i) ∈M f
ϕ (π ′). ��

Themonitor functionsMϕ andM f
ϕ may differ. However,

both are informative, i.e., they produce correct verdicts (and
eventually all verdicts by completeness) for the formula ϕ.
Yet theymay output verdictswith different delays. In general,
the joint data slicer is only a slicer forM f

ϕ but not for Mϕ .

Corollary 1 The joint data slicer (K , λk. Mϕ, Ŝf , J f ) is a

slicer for M f
ϕ .

Proof Monotonicity follows from Lemma 1; correctness fol-
lows from M f

ϕ ’s definition. ��
The joint data slicer is also a slicer for the original monitor

functionMϕ , i.e., it produces the same output as the original
monitor function, under an additional assumption on Mϕ .

Definition 5 A monitor function is sliceable if for any pre-
fix π = (τi , Di )i<|π |, set of valuations R, and v ∈ R, we
have (v, i) ∈ Mϕ((τi , Di ∩ Eϕ(R))i<|π |) ⇐⇒ (v, i) ∈
Mϕ(π).

This assumption is satisfied byMonPoly’s and DejaVu’s con-
crete monitor functions: The indices at which these monitors
output satisfying valuations depend only on the sequence of
time-stamps, which slicing does not affect. It follows from
Lemma 2 that they are sliceable.

Theorem 2 The joint data slicer (K , λk. Mϕ, Ŝf , J f ) is a
slicer for Mϕ , ifMϕ is sliceable.

Proof Monotonicity follows from Lemma 1. For correct-
ness, we must show that (v, i) ∈ M f

ϕ (π) if and only if
(v, i) ∈Mϕ(π), for an arbitrary v and i . This follows from

the definition of M f
ϕ , the sliceability assumption, and that

f (v) is nonempty. ��
Example 2 Consider the formula P(x, y)∧¬[0,5](P(y, x)
∨Q(x, y)).Weapply the joint data slicerwith K = {1, 2} and
a splitting strategy f that maps the valuation 〈x = 5, y = 7〉
to the first slice and all other valuations to the second
slice. We obtain the following slices for the prefix π =
〈(11, {P(7, 5)}), (12, {P(5, 1), Q(7, 5)}), (21, {P(5, 7),
Q(5, 7)})〉:

Sf (π)1 = 〈(11, {P(7, 5)}), (12, {}),
(21, {P(5, 7), Q(5, 7)})〉

Sf (π)2 = 〈(11, {P(7, 5)}), (12, {P(5, 1), Q(7, 5)}),
(21, {P(5, 7)})〉.

The events P(5, 7) and P(7, 5) are duplicated across the
slices because both 〈x = 5, y = 7〉 and 〈x = 7, y = 5〉
are matching valuations for either event. The joiner is crucial
for the slicer’s correctness in this example. Because of the
subformula P(y, x), the first slice receives the event P(7, 5)
but not the event Q(7, 5), which is sent to the second slice
instead. This results in the spurious verdict 〈x = 7, y = 5〉
at index 0, which the joiner’s intersection filters out.

The data slicer used in the offline slicing framework [10]
is defined for a single free variable x and a collection
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Fig. 3 Safe formulas ( (ϕ) abbreviates
otherwise)

(Sk)k∈K of slicing sets covering the domain:
⋃

k∈K Sk = D.
This single variable slicer is a special case of our joint data
slicer. To see this, define f (v) to be the set of all k with
v(x) ∈ Sk . At least one such k must exist because the Sk
cover the domain. In contrast, some instances of the joint
data slicer cannot be simulated by composing single vari-
able slicers. This limitation affects formulas where the same
predicate symbol appears in multiple atoms that each miss
at least one free variable to slice on. As a result, single vari-
able slicers are ineffective for some formulas as they add
unnecessary data duplication.

Example 3 Consider the formula P(x) ∧  P(y) and the
splitting strategy that maps v to the slice (v(x)
mod 2, v(y) mod 2) such that there are four slices in total.
Any single variable slicer will send each P event to all slices,
and this extends to their composition. The joint data slicer
sends each event P(d) to exactly three slices, excluding the
slice (z, z), where (z mod 2) �= (d mod 2). This example
generalizes to other splitting strategies as we show in Exam-
ple 7 in Sect. 5.3.

Finally, we revisit the intersectionwith {v | k ∈ f (v)}×N

in the definition of J f . Examples 1 and 2 demonstrate the
need for it in general. A valid question is for which formu-
las and splitting strategies can the intersection be omitted,
i.e., when can we replace J f with J ′(s) = ⋃

k∈K sk? For
example, this replacement is necessary when using DejaVu
as a submonitor (see Sect. 6). We give a sufficient condition
stemming from the following lemma. The lemma ensures
that a formula’s satisfying valuations on streams restricted
to relevant events with respect to a given set of valuations R
come from precisely this set of valuations R.

Lemma 3 Let ϕ be a formula and R �= {} a nonempty set of
valuations. Assume that

1. the formulaϕ is safe, i.e., satisfies the predicate sf defined
in Fig. 3;

2. no subformula of the form x ≈ a or a ≈ x, where x ∈ V

and a ∈ D, occurs in ϕ;

3. no event name occurs twice in ϕ; and
4. for all v1 ∈ R, v2 ∈ R, and v satisfying v(x) = v1(x) ∨

v(x) = v2(x) for all x ∈ V (ϕ), we have v ∈ R.

If v, i |�ρ ϕ for some i ∈ N, a valuation v, and a stream
ρ = (τi , Di )i∈N with Di ⊆ Eϕ(R) for all i ∈ N, then v ∈ R.

Proof (Sketch) By induction on the structure of safe formu-
las. The base cases are straightforward using the assumptions
(2) and (3). Note that safe formulas only allow negation to
occur in formulas of the form (¬ϕ)∧ψ (i.e., ¬(ϕ ∨ (¬ψ)),
(¬ϕ)SIψ , and (¬ϕ)UIψ with all the free variables of the
negated subformula¬ϕ being contained in the free variables
of ψ . This ensures that the satisfying valuations of these for-
mulas are a subset of the satisfying valuations ofψ , allowing
for a straightforward use of the induction hypothesis. The
caseϕ∧ψ (where both subformulas are not negated), requires
joining the satisfying valuations of ϕ and ψ . Condition (4)
makes sure that this join operation produces a valuation in
R. ��
The safety assumption requires that any negated subformula
is guarded by a non-negated subformula, such that ϕ can be
monitored using finite relations [14,54]. (Safe formulas are
called monitorable in these references.) The safety assump-
tion is standard for monitors operating on finite tables. For
instance, the MonPoly monitor only supports safe formu-
las [14]. In contrast, DejaVu supports unsafe formulas for
the past-only non-metric fragment of MFOTL [36]. Observe
that condition (2) of Lemma 3 rules out the formula from
Example 1. We conclude this section with J ′’s main prop-
erty.

Theorem 3 Let ϕ be a formula and f the joint data slicer’s
splitting strategy. Let R(k) = {v | k ∈ f (v)}andassume that
f makes R(k) nonempty for all k ∈ K. Under the assump-
tions (1)–(3) of Lemma 3 on ϕ, and assumption (4) on R(k)
for all k ∈ K, we have:

J f
(
λk. Mϕ(Sf (π)k)

) = J ′
(
λk. Mϕ(Sf (π)k)

)
.

Proof The left-to-right inclusion is obvious. For the right-
to-left inclusion, assume (v, i) ∈ J ′

(
λk. Mϕ(Sf (π)k)

)
.

Then, obtain k ∈ K such that (v, i) ∈ Mϕ(Sf (π)k). By
the monitor function Mϕ’s soundness, we have v, i |�ρ ϕ

for all ρ � Sf (π)k . Taking any ρ = (τi , Di )i∈N satisfying
Di ⊆ Eϕ(R(k)) for all i (note that this is precisely what
ρ � Sf (π)k ensures for i < |π |) and applying Lemma 3, we
have v ∈ R(k) and thus (v, i) ∈ J f

(
λk. Mϕ(Sf (π)k)

)
. ��

5 Automatic slicing

The joint data slicer is parameterized by a splitting strategy.
Ideally, the chosen strategy optimally utilizes the available
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computing resources: computation costs should be evenly
distributed and any overhead kept low. In this section, we
present our approach to automatically selecting a suitable
strategy. It is inspired by results from database theory and
leverages stream statistics to optimize the submonitors’ event
rates, i.e., the number of events in a time period.

In online monitoring, the monitor’s throughput must be
high enough to process the incoming events with bounded
delay, especially if its buffering capacity is limited. The
goal of slicing is to supply the submonitors with substreams
that can be monitored more efficiently than the entire event
stream. Under the assumption that slicing and the com-
munication to the submonitors do not pose a bottleneck,
the parallel monitor will thus achieve a higher throughput
than the sequential monitor. Another related benefit is the
improved worst-case latency in the presence of bursty event
streams, where the events are not distributed evenly in time.
Low latency is important in online monitoring to obtain
timely verdicts.

The key problem we solve is to find a splitting strategy
that achieves the above goal. Ideally, the improvements in
throughput and worst-case latency scale with the number of
submonitors. To approximate this ideal within our slicing
framework, the splitting strategy should minimize the event
rates observed by a fixed number of submonitors. This in
turn maximizes the parallel monitor’s throughput if we make
the simplifying assumption that the submonitors’ through-
put solely depends on their input event rate. Under the same
assumption, the submonitors require less memory.We do not
optimize the communication cost in this article. However, the
number of slices is a parameter that affects the communica-
tion cost due to data duplication.

5.1 Recap of the hypercube algorithm

Our automatic splitting strategy is based on the observation
that the hypercube algorithm [3,32,56], which is used to par-
allelize relational queries in databases, can be generalized to
the online monitoring of MFOTL formulas.

We start by recalling the standard notion of full conjunc-
tive queries [1], which represent a substantially less expres-
sive language than MFOTL. The computational properties
of conjunctive queries are well understood. In particular,
researchers have devised and analyzed (near-)optimal dis-
tributed algorithms for computing conjunctive queries [2,3,
19,20,37,38]. Afterwards, we focus on the hypercube algo-
rithm and recall previous results. The terminology we use
has been adjusted slightly to match the monitoring setting.

A database instance (or database for short) represents a
finite set of events. This coincides with the definition that we
previously gave for the stream elements in MFOTL’s seman-
tics. In the database context, we also call the names r ∈ E

relation names. A relation D(r) in a database D is the set

of all events in D with the name r . Its size |D(r)| is the car-
dinality of the set D(r). The degree of a value d ∈ D with
respect to an attribute i ∈ {1, . . . , ι(r)} of the relation name
r is the number of events r(d1, . . . , dι(r)) ∈ D with di = d.

A query q is a syntactic expression in a given query lan-
guage. It defines a mapping q(D) from databases D to finite
sets of valuations over some finite set of variables V (q) ⊂ V.
An atom is an expression r(y1, . . . , yι(r)), where r ∈ E,
and the variables yi are elements of V. The image of an
atom a = r(y1, . . . , yι(r)) under a valuation v is the event
v(a) = r(v(y1), . . . , v(yι(r))). We write V (a) for the set of
variables {y1, . . . , yι(r)}. A full conjunctive query q is a finite
set of atoms. Such a query maps to valuations that have as
their domain the variables occurring in the query’s atoms,
i.e., V (q) = ⋃

a∈q V (a). The semantics of q is then given
by

q(D) = {v ∈ V (q) → D | ∀a ∈ q. v(a) ∈ D}.

Note that we overload q above and refer to it both as a set
(denoting the query’s syntax) and as a mapping (denoting the
query’s semantics). In the following, we assume that there is
a linear ordering x1, . . . , xn on the variables V (q).

The basic hypercube algorithm [3] computes a full
conjunctive query q on a distributed, MapReduce-like
system [28] with p parallel workers. The algorithm is
parametrized by the number of workers p and by the share
pi ∈ N for each variable xi in q, where i ∈ {1, . . . , n}. Each
worker is assigned a unique coordinate vector (x1, . . . , xn) ∈
[p1] × · · · × [pn], where [p] := {0, . . . , p − 1} for p ∈ N.
Initially, the events of the database D are assumed to be dis-
tributed evenly (but in an unspecified manner) over the p
workers. The algorithm proceeds as follows.

1. Hash functions hi ∈ D→ [pi ] are chosen randomly and
independently for all i ∈ {1, . . . , n}. The hash functions
are known to all workers.

2. In the map phase, each worker computes for every event
e in its local partition a set of workers T (e), represented
by their coordinates, to which it sends the event:

T (e) =
⋃

v∈matches(q,e)
{(h1(v(x1)), . . . , hn(v(xn)))},

(1)

where matches(q, e) = {v | ∃a ∈ q. v(a) = e}. The set
T (e) can be computed by determining for every a ∈ q
the unique va ∈ V (a) → D with va(a) = e (if it exists).
Each partial valuation va fixes the coordinates hi (va(xi ))
for all xi ∈ V (a), while for the remaining coordinate
components xi /∈ V (a), every possible combination of
the coordinates in [pi ] must be considered. (We assume
for simplicity that the hash functions are surjective.)
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3. In the reduce phase, the workers evaluate q locally on the
events that they received in the first phase. The query’s
result is the union of all local results, which may option-
ally be sent to a centralized worker.

In general, the basic hypercube algorithm duplicates
events, namely those matching an atom that does not con-
tain a variable xi with pi > 1. The total number of
events that each worker receives (and on which it com-
putes q) depends on the input database and the shares.
Beame et al. [20] analyze the maximum worst-case load
of the workers, given fixed relation sizes and shares. They
define the load as the total size of the messages (in bits)
received by a worker before the algorithm’s reduce phase.
Based on the number of workers p, Beame et al. distin-
guish between skewed and skew-free databases. A database
is skewed if it contains heavy hitters, which are values whose
degree with respect to some attribute i and relation name r
exceeds |D(r)|/p. For skew-free databases, they show that
the maximum load generated by the hypercube algorithm is
asymptotically bounded (up to a factor polylogarithmic in
p) by L = ∑

a∈q |D(r)|/(∏xi∈V (a) pi
)
with high probabil-

ity. (In fact, they prove the bound for a more general notion
of skew-free databases.)

Beame et al. [20] also show that the shares can be
optimized using linear programming. The input to the opti-
mization is the full conjunctive query and the relation sizes of
the database onwhich the query should be computed. Using a
single round of communication and the optimized shares, the
hypercube algorithm matches the lower bound for the max-
imum load that is necessary to compute the query. A single
round of communication means that only one communica-
tion step is allowed after the initial communication phase.
Afterwards, each worker can only perform local computa-
tions. The lower bound holds under the assumption that p
workers can send arbitrary messages over private channels,
have unbounded computational power, and have access to a
common source of randomness.

However, optimizing the shares with linear programming
does not yield integer values in general. As an alternative,
Chu et al. [26] propose a simple exhaustive search over all
possible integer shares, selecting the shares that minimize L .
We present a modified version of their algorithm in Sect. 5.3
(Algorithm 2).

Example 4 (adapted from [20]) Consider the star queryqS =
{P(x1, x2), Q(x1, x3), R(x1, x4)} and a skew-free database
D with |D(P)| = |D(Q)| = |D(R)| = m. The opti-
mal shares for the hypercube algorithm with p workers are
p1 = p and p2 = p3 = 1. This results in eachworker receiv-
ing approximately 3m/p events. For the triangle query qT =
{P(x1, x2), Q(x2, x3), R(x3, x1)} on the same database as
before, the optimal shares are p1 = p2 = p3 = p1/3. Thus

each worker receives approximately 3m/p2/3 events. If p is
not a cubic number, we must approximate p1/3 by a combi-
nation of integers. E.g. for p = 16, the algorithm by Chu et
al. selects p1 = 4 and p2 = p3 = 2 (or a permutation of
these numbers).

Next, we show how the events are distributed to the work-
ers for qT . We assume p = 64 (hence p1 = p2 = p3 = 4)
and simplify the hash functions to h(x) = x mod 4 for the
purpose of this example. The slices are thus identified by
three coordinates between 0 and 3, with one coordinate for
each variable x1, x2, and x3.

event e target slices T (e)

P(0, 1) 010, 011, 012, 013
P(1, 1) 110, 111, 112, 113

event e target slices T (e)

Q(1, 7) 013, 113, 213, 313
R(7, 0) 003, 013, 023, 033

The events P(0, 1), Q(1, 7), and R(7, 0) are sent to the
worker with coordinates 013. This ensures that the valua-
tion 〈x1 = 0, x2 = 1, x3 = 7〉 ∈ qT (D) is produced by at
least this worker.

When the database is skewed, i.e., it contains heavy hit-
ters, the basic hypercube algorithm sketched above is not
optimal: applying a hash function hi with share pi > 1 to a
heavy hitter does not distribute the value evenly over the coor-
dinates [pi ]. Koutris et al. [38] propose an extension, which
we simply call the hypercube algorithm, that is worst-case
optimal also for skewed databases. Our automatic splitting
strategy adjusts this algorithm to the online monitoring set-
ting (Algorithm 1 in Sect. 5.3). Koutris et al. assume that all
heavy hitters in the database are known in addition to the
relation sizes. In the database setting, as well as in offline
monitoring, this is a reasonable assumption since computing
statistics is asymptotically dominated by querying.

In the hypercube algorithm, a copy of the basic algo-
rithm is executed in parallel for every subset H ⊆ V (q)

of the query’s variables. Each copy uses its own set of shares
pH ,i and hash functions hH ,i , but with the constraint that
pH ,i = 1 if xi ∈ H . A valuation v is heavy in variable
x if there exists an atom a = r(y1, . . . , yι(r)) ∈ q and i
where yi = x and v(x) is a heavy hitter in the attribute i of
r . We write heavy(q, v) for the set of variables in which v

is heavy. The event e is processed by those instances of the
basic hypercube algorithm that are associated with the vari-
able sets heavy(q, v) for which there exists an atom a ∈ q
with v(a) = e. For every H , the corresponding shares can
be optimized as in the basic hypercube algorithm by consid-
ering the residual query qH , which is obtained from q by
removing all occurrences of variables in H .

Example 5 Suppose that the database D from Example 4 is
skewed. We analyze the optimal shares for the triangle query
qT and instances of the basic hypercube algorithm for the
variable subsets H1 = {}, H2 = {x1}, H3 = {x1, x2}, and
H4 = {x1, x2, x3}. If no variable has a heavy hitter (H1), the
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shares from Example 4 apply. The remaining variable sets
have symmetric solutions. For the algorithm instance H2, the
optimal shares are pH2,1 = 1 and pH2,2 = pH2,3 = p1/2.
Each worker then receives at most 1/p1/2 of the events for
which only x is assigned a heavy hitter. For the algorithm
instance H3, the optimal shares are pH3,1 = pH3,2 = 1 and
pH3,3 = p, so at most 1/p of the corresponding events are
sent to theworkers. Finally for the algorithm instance H4, one
must broadcast the events to all workers. Note that there can
be at most p different heavy hitters per attribute. Therefore,
there are at most 3p2 events to which the set H4 applies. The
overall fraction of events received by each worker is asymp-
totically equal to the maximum of the three cases, which is
O(1/p1/2).

5.2 Stream statistics for slicing

To adapt the hypercube algorithm to the monitoring set-
ting, we first generalize the notions of relation size and
heavy hitters to event streams. Our automatic splitting strat-
egy is selected based on these statistics. Since streams are
unbounded, we consider non-overlapping time intervals of a
fixed size Δ. Non-overlapping means that all intervals begin
at multiples θ · Δ. We call θ ∈ N the interval’s time index.
The interval size Δ is a parameter of our model.

The choice of Δ represents a tradeoff. Larger values
smooth out irregularities in the stream and thus reduce the
variability of the characteristics. The downside is lower pre-
cision, which can impact monitoring latency. For example,
consider a stream where the events are spaced uniformly and
can be monitored without additional latency. In the worst-
case input with the same event rate, all events in an interval
arrive simultaneously, such that one of the events is delayed
by the combined processing time of all events. The larger Δ

is, the larger is the difference between this maximal latency
and the best case.

Recall that an event stream (τi , Di )i∈N is an infinite
sequence of time-stamped databases. Given an arbitrary
event stream and time index θ , the r-event rate γθ (r) is the
average number of events with name r ∈ E and a time-stamp
in the interval Iθ = [θ ·Δ, (θ + 1) ·Δ) per time unit, i.e.,

γθ (r) = 1

Δ
·

∑

τi ∈ Iθ

|Di (r)|.

As before, Di (r) denotes the set of events with the name r in
the database Di . The event rate at time θ is γθ =∑

r∈E γθ (r),
and the relative r-event rate is γ ′θ (r) = γθ (r)/γθ . For all
names r ∈ E and attributes i ∈ {1, . . . , ι(r)}, the frequency
Fθ (d, r , i) of d ∈ D is

Fθ (d, r , i) = 1

Δ
·

∑

τ j ∈ Iθ

|{r(d1, . . . , dι(r)) ∈ Dj | di = d}|.

The frequency indicates how often the value d occurs on
average in the i-th attribute of r . The set of heavy hitters
at time θ is Hθ (r , i) = {d ∈ D | Fθ (d, r , i) > γθ (r)/p},
where p ∈ N − {0} is a fixed parameter. This follows the
definition of heavy hitters for databases from the previous
subsection: heavy hitters are those values whose frequency
exceeds the threshold γθ (r)/p. For slicing, we set p = |K |,
the number of slices.

Example 6 Let Δ = 2 and |K | = 2. Given the prefix

of some event stream, we can infer the following stream
statistics: γ0(A) = 3

2 , γ0(B) = γ1(A) = γ1 = 1
2 ,

γ1(B) = 0, γ0 = 2, H0(A, 1) = {}, H0(B, 1) = {7}, and
H1(A, 1) = {1}.

Let f ∈ (V (ϕ) → D) → P(K ) be a splitting strategy as
in Definition 4. The load λθ (k, f ) of the slice identified by
k ∈ K is the average rate of events in that slice relative to γθ ,
i.e.,

λθ (k, f ) = 1

Δ · γθ

·
∑

τi ∈ Iθ

|{e ∈ Di | k ∈ Ŝf (e)}|.

The maximum load λθ ( f ) is taken over all slices, λθ ( f ) =
maxk∈K λθ (k, f ).

We consider the problemof finding a splitting strategy that
minimizes themaximum load for all event streamswith given
relative r -event rates, heavy hitters, and number of submon-
itors. Since these rates and the load are relative to the overall
event rate γθ , we thus maximize the throughput of the paral-
lelized monitor and the utilization of the submonitors. We do
not aim at optimal splitting strategies for arbitrary MFOTL
formulas. Instead, we are interested in heuristics providing
strategies that are effective in practice. Moreover, we restrict
our discussion to event streamswith constant relative r -event
rates and heavy hitters (constant with respect to θ ). Equiva-
lently, the choice of the splitting strategy applies to a single
interval of size Δ. We therefore omit the index θ and write
γ (r), λ( f ), and so forth. We have started to address time-
varying statistics in a separate work [52].

5.3 Slicing using the hypercube algorithm

We instantiate our joint data slicer (Sect. 4.2) with a strategy
that is derived from the hypercube algorithm for database
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queries (Sect. 5.1). Observe that monitoring an MFOTL
formula without any temporal operators corresponds to
evaluating a database query for each index in the event
stream. In this case, the subproblem of computing the sat-
isfying valuations at any given index on parallel workers
(i.e., submonitors) is solved by the hypercube algorithm.
We show below that the mapping phase of the algorithm
can be rephrased as a splitting strategy for the joint data
slicer. Since we have established this slicer’s correctness
for all MFOTL formulas, we can thus apply the hyper-
cube approach to temporal formulas and event streams,
too.

Recall that several copies of the basic hypercube algo-
rithm are executed in its heavy hitter-aware extension. Each
copy sends the event e to a set T (e) of workers (Equation
(1) in Sect. 5.1), which depends on the query q. We will
now run all copies in parallel on a single set K of workers.
For every variable subset H ⊆ V (q), we assume a bijection
ξH : [pH ,1] × · · · × [pH ,n] → K . We can then describe
the mapping phase of the extended algorithm by the single
equation

T ′(e) =
⋃

v∈matches(q,e)
{ξH (hH ,1(v(x1)), . . . , hH ,n(v(xn))) |

H = heavy(q, v)},

such that e is sent to the workers in T ′(e). Note that the right-
hand side of the equation has the same structure as the one
for the joint data slicer Ŝf (e) in Definition 4 once we replace
matches(q, e) with matches(ϕ, e). Both these sets contain
the valuations for which the event e is potentially relevant,
i.e., for which the containment in the query result and the
satisfaction of the formula ϕ, respectively, may depend on e.

To complete the transition from queries to MFOTL for-
mulas, we determine the equivalent of heavy(q, v) for ϕ.
Recall that the set heavy(q, v) contains a variable x if the
image of an atom in the query q under v contains a heavy
hitter in the corresponding relation. The variable is treated
differently because it might not be possible to distribute
the relation evenly by hashing the variable. We see that
heavy(q, v) depends on the heavy hitters in all events e with
v ∈ matches(q, e). Let heavyvar(ϕ, x) be the union of all
H(r , i) for which there is a subformula r(y1, . . . , yι(r)) in
ϕ with yi = x . We then define heavy(ϕ, v) as {x | v(x) ∈
heavyvar(ϕ, x)}.

The following set is nonempty and thus a valid splitting
strategy (see Definition 4):

f (v) = {ξH (hH ,1(v(x1)), . . . , hH ,n(v(xn))) |
H = heavy(ϕ, v)}.

We call f the hypercube strategy for ϕ given hH , j , ξH , and
H.

Input: ϕ with free variables x1, . . . , xn ; (hH ,i )H ,i , (ξH )H ,
(heavyvar(ϕ, xi ))i ; event e = r(d1, . . . , dι(r))

Output: slice identifiers T =⋃
v∈matches(ϕ,e) f (v)

1 T ← {};
2 foreach subformula r ′(y1, . . . , yι(r)) of ϕ do
3 if r = r ′ then // compute partial valuation v induced by e
4 v ← 〈〉;
5 for i ← 1 to ι(r) do
6 if yi ∈ V then
7 if v �= ⊥ ∧ (v(yi ) = ⊥ ∨ v(yi ) = di ) then

v ← v[yi �→ di ] else v ←⊥;
8 else if yi �= di then
9 v ←⊥;

10 end
11 end
12 if v �= ⊥ then // recursively enumerate slices for each

heavy(ϕ, v′) where v′ extends v

13 T ← T ∪ AllHeavy(v, {}, 1);
14 end
15 end
16 end

17 Function AllHeavy(v, H, i) is
18 if i > n then // recursively enumerate slices for each v′

extending v

19 return AllExtensions(v, H, 〈〉, 1)
20 else if v(xi ) = ⊥ ∧ heavyvar(ϕ, xi ) �= {} then // unknown if

xi is a heavy hitter because it is not assigned
21 return AllHeavy(v, H, i + 1) ∪ AllHeavy(v, H ∪ {xi },

i + 1)
22 else if v(xi ) ∈ heavyvar(ϕ, xi ) then
23 return AllHeavy(v, H ∪ {xi }, i + 1)
24 else
25 return AllHeavy(v, H, i + 1)
26 end
27 end

28 Function AllExtensions(v, H, t , i) is
29 if i > n then
30 return {ξH (t)}
31 else if v(xi ) = ⊥ then // xi not assigned: consider all

coordinates
32 return

⋃
z∈codom(hH ,i )

AllExtensions(v, H, t[i �→ z],
i + 1)

33 else
34 return AllExtensions(v, H, t[i �→ hH ,i (v(xi ))], i + 1)
35 end
36 end

Algorithm 1 Hypercube Strategy

Algorithm 1 outputs the slice identifiers to which the joint
data slicer (Sect. 4.3) sends a given event according to the
hypercube strategy f . We write 〈〉 for the partial map that
is undefined everywhere and codom(h) for h’s codomain.
Concretely, Algorithm 1 computes the union of f (v′) for
all v′ matching the event. To this end, it computes a partial
valuation v for each of the formula’s predicates by match-
ing the event with the predicate. The valuation v assigns
values to those variables that occur in the predicate. The algo-
rithm subsequently iterates over all full valuations v′ (which
assign to all free variables) that extend v. This is done in
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two steps because the set of these valuations may be infinite.
First, the algorithm iterates over all H = heavy(ϕ, v′), of
which there are finitely many. We skip those sets H that con-
tain a variable x with heavyvar(ϕ, x) = {} because there
is no valuation v′ where H = heavy(ϕ, v′). Second, for
each H , the algorithm constructs the finite set of coordinates
(hH ,1(v

′(x1)), . . . , hH ,n(v
′(xn))) directly by enumerating

the codomain of hH , j if x j is not assigned by v.
What remains is to choose the hash functions hH , j and the

mappings ξH . As with databases, we select hH , j uniformly
at random with a given codomain [pH , j ]. The shares pH , j

thus parametrize a randomized family of splitting strategies.
We select the hash functions anew for every run of the par-
allel monitor, such that they are independent of the input
trace. The mappings ξH can be arbitrary; in practice, we map
coordinates to slice identifiers in [p]:

ξH (x1, x2, . . . , xn) =
x1 + pH ,1 · (x2 + pH ,2 · (· · · (xn−1 + pH ,n−1 · xn))).

Example 7 Assume that there are no heavy hitters in the event
stream and that p = q2 for some q ∈ N. Let ϕ = P(x1) ∧
 P(x2)with shares p1 = p2 = q. We conceptually arrange
the slices in a square with side length q. Each P event is
assigned to one coordinate in the square’s first dimension
by the first atom, and to another coordinate in the second
dimension by the second atom. Each coordinate is associated
with q slices, and there is a single slice that agrees on both
coordinates. Therefore, 2q − 1 slices receive the event. The
load is approximately λ = (2q − 1)/q2. The average event
rate per slice is lower than the event rate of the input stream
if λ < 1, i.e., q ≥ 2. This improves over any combination of
single variable slicers (see Sect. 4.3).

Example 8 We extend the triangle query qT and the database
from Example 5 to the formula ϕ = (([0,10] P(x1, x2)) ∧
Q(x2, x3)) ∧ ¬[0,10] R(x3, x1) and some event stream
with γ (P) = γ (Q) = γ (R) = m, having H(P, 1) =
{0} as the only heavy hitter. We can reuse the optimal
shares from Example 5 because qT and ϕ consist of the
same atoms, and the stream statistics correspond to the
database statistics. Let p = 64. We simplify the hash func-
tions to the modulus (e.g., h{x1},2(x) = x mod 8, since
p{x1},2 = p1/2 = 8). Before applying the mappings ξH ,
we obtain the following assignment of events to coordinate
vectors (hH ,1(v(x1)), hH ,2(v(x2)), hH ,3(v(x3))). Note that
there are no coordinates for all other H , since heavyvar(ϕ, x)
is nonempty only for x = x1.

event coordinates for H = {} coordinates for H = {x1}
P(0, 1) — 010, 011, 012, 013,

014, 015, 016, 017
P(1, 1) 110, 111, 112, 113 —
Q(1, 7) 013, 113, 213, 313 017
R(7, 0) — 007, 017, 027, 037,

047, 057, 067, 077

If these events are within 10 time units of each other, the
valuation 〈x1 = 0, x2 = 1, x3 = 7〉 will be recognized
successfully as satisfying: the events P(0, 1), Q(1, 7), and
R(7, 0) are all part of the slicewith the identifier ξ{x1}(017) =
57.

We apply an additional optimization to the hash functions.
The shares for two variable subsets H1 �= H2 may be equal
and hence there is no need to distinguish them. This occurs
if the variables in the symmetric difference of H1 and H2

receive a share of 1. If we choose the hash functions inde-
pendently, however, there is a large probability that the slice
sets computed with H1 and H2 differ for a given event. We
reduce this unnecessary event duplication by using the same
hash functions for H1 and H2, as shown in Example 9 below.

Example 9 Let ϕ = P(x1)∧ Q(x1, x2), p{},1 = p{x2},1 = 2,
and pH ,2 = 1 for all H . Assume that the attribute x1 of either
event has no heavy hitters. If h{},1 and h{x2},1 are independent
hash functions, the events are duplicated with probability
1/2. If h{},1 = h{x2},1, each event is sent to only one of the
two slices, which reduces the expected maximum load by a
third.

We can transfer the load analysis by Beame et al. [20,
Theorem 3.2] and Koutris et al. [38, Theorem 2] from the
database setting to ours. This allows us to use the algorithm
of Chu et al. [26] to optimize the shares. The transfer is
based on the following observation: applying our hypercube
strategy algorithm to an interval of an event stream incurs the
same load as using the hypercube algorithm (Sect. 5.1) on the
database constructed from that interval. This database is the
(multiset) union of all databases in the stream that belong to
the interval.2 Therefore, relation sizes correspond to r -event
rates γ (r). We overapproximate the load by summarizing the
partial loads induced for each choice of the variable set H .We
further simplify the analysis by using the rate γ (r) for each
H , even though only a subset of the r -events may be sliced
according to this H . Let r(y1, . . . , yι(r)) ≤ ϕ denote the fact
that r(y1, . . . , yι(r)) is a subformula of ϕ. Themaximum load
λ is bounded from above by

2 We use multisets because events may be repeated at different indices.
The upper bound from Beame et al. [20] extends to multisets.
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Input: ϕ with free variables x1, . . . , xn ; number of submonitors
p, relative event rates (γ ′(r))r

Output: parameters (hH ,i )H ,i for the hypercube strategy

1 foreach H ⊆ V (ϕ) do // search for best shares
2 pH ← (1, . . . , 1);
3 OptimizeShares(H, 1, p, (1, . . . , 1));
4 end
5 foreach q ∈ {pH | H ⊆ V (ϕ)} do // share hash functions among

equal variable subsets
6 for i ← 1 to n do
7 h ← RandomHash(qi );
8 foreach H ⊆ V (ϕ), pH = q do hH ,i ← h ;
9 end

10 end

11 Procedure OptimizeShares(H, i , p, c) is
12 if i ≤ n then
13 if xi ∈ H then
14 OptimizeShares(H, i + 1, p, c[i �→ 1]); // pH ,i is

always 1 if xi ∈ H
15 else
16 for c← 1 to p do OptimizeShares(H, i + 1, "p/c#,

c[i �→ c]) ;
17 end
18 else
19 if Cost(c) < Cost(pH ) ∨ (Cost(c) = Cost(pH ) ∧

maxi ci < maxi pH ,i ) then pH ← c;
20 end
21 end

Algorithm 2 Hypercube Optimization

λ̂ = 1

γ
·

∑

H⊆V (ϕ),
r(y1,...,yι(r))≤ϕ

γ (r)
∏

xi∈{y1,...,yι(r)}∩V pH ,i

=
∑

H⊆V (ϕ),
r(y1,...,yι(r))≤ϕ

γ ′(r)
∏

xi∈{y1,...,yι(r)}∩V pH ,i

with high probability over the random choice of the hash
function, up to a factor logarithmic in p. (We divide by γ

because we have defined the load relative to γ .)
Algorithm 2 optimizes the shares and selects the hash

functions. For each H ⊆ V (ϕ), it first iterates over all valid
share vectors pH = (pH ,1, . . . , pH ,n), where a share vec-
tor is called valid if

∏
1≤i≤n pH ,i ≤ p, and pH ,i = 1 for

all xi ∈ H . Note that we allow the shares’ product to be
smaller than p, which may be beneficial if p cannot be fac-
torized optimally [26]. The maximal number of submonitors
p is the input to the optimization, together with the rela-
tive r -event rates γ ′(r). We choose the share vector with the
smallest value for

Cost(pH ) =
∑

r(y1,...,yι(r))∈ϕ

γ ′(r)
∏

xi∈{y1,...,yι(r)}∩V pH ,i
,

therebyminimizing λ̂. We adopt a heuristic by Chu et al. [26]
and break ties by choosing the vector with smallest maxi-
mumsharemaxi pH ,i . This favors amore even distribution of
shares to increase resilience against heavy hitters that are not
accounted for in the statistics provided. Once the shares have
been computed, Algorithm 2 samples random hash functions
RandomHash(q) with codomain[q]. It implements the opti-
mizationmentioned above, where the hash functionswith the
same codomain are reused.

5.4 Discussion

Algorithm 1, which computes the hypercube strategy, iter-
ates over all combinations of the formula’s predicates with
the subsets of its free variables. For each combination, it enu-
merates up to p slice identifiers. Therefore, Algorithm 1’s
complexity is bounded by O(|ϕ| · 2n · n · p), where |ϕ| is the
size of the formula ϕ and n is the number of free variables in
ϕ. We assume n, p ≥ 1 and that all operations that involve
D and slice identifiers in [p] are computed in O(1) time,
including the hash functions. The linear factor p is unavoid-
able: events may need to be broadcast to all p slices, e.g.,
if their arity is zero. The exponential complexity in n stems
from the generic treatment of heavy hitters.

A possible optimization is to enumerate only subsets of
those variables xi which have a share pH ,i > 1 for some
H . This does not decrease the complexity for all formulas
though. By bounding the number of possible share combi-
nations with product q from above by nlog2 q , we find that
Algorithm2’s complexity is in O(|ϕ|·(4n ·n+2n · p·nlog2 p)).
The 4n factor can be improved to 2n by avoiding the inner-
most loop in line 8 and by iterating over the list of pH
in lexicographic order instead (lines 5–10). We omit this
optimization for clarity. Note that Algorithm 2 runs only
once when the monitor is initialized, whereas Algorithm 1 is
invoked for every event.

Theminimum possible load achieved using the hypercube
strategy depends on the pattern of free variables in the for-
mula’s atoms. A detailed discussion is provided by Koutris
et al. [38]. The ideal case is a formula in which all atoms
with a significant event count share a variable, together with
a stream that never assigns a heavy hitter to that variable.
Then the load per slice is 1/p. Atoms with missing vari-
ables, and equivalently variables with heavy hitters, increase
the fraction to 1/pz for some exponent z > 1.

The (worst-case) optimality of the hypercube algorithm
for conjunctive queries does not extend to full MFOTL. This
already becomes evident for simple non-temporal formulas
with disjunctions, such as P(x1, x2) ∧ (Q(x1) ∨ Q(x2)).
If γ (P) = γ (Q) and in the absence of heavy hitters, our
approach will have load (

√
p + 1

2 )/p ≈ 1/
√
p with p sub-

monitors. However, the formula is equivalent to (P(x1, x2)∧
Q(x1))∨ (P(x1, x2)∧Q(x2)), and thus we can process each
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disjunct independently. By using the optimal hypercube strat-
egy for each disjunct (with shares p1 = p and p2 = p,
respectively), we would obtain a total load of 2/p, which is
asymptotically better. The load can be further improved to
3/(2p) by using the same hash function for x1 in the first
and x2 in the second disjunct, such that the Q events are not
duplicated.

Overall, it is unclear how this technique can be general-
ized to MFOTL formulas with arbitrarily nested temporal
operators. In general, optimality for arbitrary formulas is out
of reach because it would require us to decide MFOTL: if
the formula is contradictory, the best possible slicer simply
drops all events. We therefore settle for a more pragmatic
solution and only focus on syntactic aspects of the formulas’
structure.

We assumed that the submonitors’ throughput does not
depend on the events. It was therefore sufficient to minimize
the load to optimize the throughput. This simplification is
not always appropriate for monitors like MonPoly. The rea-
son is that MonPoly constructs intermediate results, whose
size depends on the monitor’s input and which affects the
complexity of further operations inside the monitor. It might
be possible to achieve even higher throughput by taking the
events’ distribution and its impact on the monitoring perfor-
mance into account. We leave such optimizations for future
work.

In contrast to offline monitoring, stream statistics (such as
γ (r) and H(r , i)) cannot be obtained for the entire stream.
Still, our approach assumes that these statistics are already
available before the start of monitoring. In practice, this is
a reasonable assumption since organizations have access to
historical data that can serve as a good source of representa-
tive stream statistics before staring online monitoring.

Moreover, the statistics may change over time. In this
case, one must obtain stream statistics during monitoring.
This can be done using approximate algorithms [27], which
have minimal impact on monitoring’s performance. Further-
more a reasonable extension of the slicing framework is to
adaptively modify the splitting strategy whenever the statis-
tics change significantly. Thus, the monitor could start with
a default strategy and refine it as more data is processed.
(Event-separable slicers as defined in Sect. 4.2 cannot be
adaptive because they must behave uniformly on the event
stream.)We have alreadymade first steps towards computing
stream statistics online [30] and performing adaptive slic-
ing [52].

Our approach affects only the event rate, but not the index
rate, which is the number of databases per unit of time. The
index rate impacts the performance ofmonitors such asMon-
Poly because each database triggers an update step. For a
syntactic fragment of MFOTL, MonPoly reduces the num-
ber of update steps skipping empty databases [10]. In this
case, we could already filter empty databases in the splitter.

6 Implementation

We implemented a parallel online monitoring framework
based on the joint data slicer and built on top of the Apache
Flink stream processing framework. The source code con-
sists of roughly 3100 lines of Java and Scala and is publicly
available [53]. Given a formula, our framework instantiates
a parallel online monitor, which then reads events from a
TCP socket or a text file, monitors the events in parallel, and
writes all satisfying valuations to an output socket or file.
The parallel monitor delegates the monitoring of individual
slices to external tools, called submonitors. Our implemen-
tation supports the tools MonPoly [15] and DejaVu [36] as
submonitors.

To instantiate a parallel online monitor, our framework
uses the Flink API to construct a dataflow graph, whose
nodes are stream operators. These operators retrieve data
streams from external sources, apply processing functions to
stream elements, and output the elements to sinks. Operators
can execute in parallel. Stream elements can be partitioned
according to user-specified keys. At runtime, Flink deploys
the graph to a distributed computing cluster. We chose Flink
for its low latency stream processing and its support for
fault-tolerant computing. Fault tolerance is ensured using
a distributed checkpointing mechanism [24]. The system
recovers from failures by restarting from regularly created
checkpoints. Operators must therefore expose their state to
the framework to enable checkpointing.

The inputs to our monitoring framework are the formula,
the number and type of parallel submonitors, the stream
statistics for the shares’ optimization, and the heavy hitter
values. The framework precomputes the shares using Algo-
rithm 2 and creates a parallelmonitor instance as the dataflow
graph shown inFig. 4,where each node is labeledwith a Flink
operator (e.g., flatMap) and a description of its function-
ality.

During the dataflow’s execution, the input events are read,
line by line, as strings. We support both MonPoly’s and
DejaVu’s input formats, as well as the CSV format used in
the RV competition [7]. The parser then converts the input
lines into an internal datatype that stores the event name and
the list of data values. The parser’s results are flattened into
a stream of single events because a single line in MonPoly’s
format may describe several events at once.

After parsing, the splitter computes the set of target slices
for each event. To do so, it executes Algorithm 1 using the
optimized shares, precomputed by the framework, and heavy
hitter sets as well as the heavy hitter values. For each event
and each of its target slices, a copy of the event is sent to the
next operator along with the target slice identifier. Then, the
stream is partitioned into slices based on the slice identifiers
and the slices are sent to the parallel submonitors.
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Fig. 4 Our parallel online monitor’s dataflow graph

Weuse the customexternalProcessoperator in each
parallel flow. This operator is responsible for initiating and
interacting with an external process, in our case MonPoly or
DejaVu. The operator prints, in MonPoly or DejaVu format,
onedatabase at a time to the standard input of the external pro-
cess. (For DejaVu, which expects exactly one event at a time,
empty databases are encoded as an event with a name that
does not occur in the formula.) The operator simultaneously
reads verdicts from the standard output of the process and
applies the intersection from J f ’s definition (Definition 4),
thereby filtering the monitor’s output. Finally, all remaining
verdicts are combined into a single stream, which is written
to an output socket or file.

The above communication with the external process is
asynchronous with respect to the Flink pipeline, which pre-
vents these operations from blocking other operators. Flink’s
AsyncWaitOperator supports asynchronous requests to
external processes, but it does not manage their state. To
optionally provide fault-tolerance, we must checkpoint the
submonitors’ states because they summarize the events seen
so far. Our implementation of the externalProcess
operator extends the AsyncWaitOperatorwith an inter-
face to retrieve and restore an external state.

We have extended MonPoly with control commands that
implement the interface for retrieving and restoring an exter-
nal state.WheneverFlink instructs theexternalProcess
operator to create a checkpoint, the operator first waits until
all prior events have been processed. Then, the command for
saving the state is sent to the external process. In response,
MonPoly writes its state to a temporary file. The part of the
monitor’s output received after the checkpoint instruction’s
arrival at the externalProcess operator is also included
in the checkpoint. This ensures that no output is lost when
other operators create their own checkpoint concurrently.We
did not implement a state interface for DejaVu, since we
opted to use DejaVu in a black-box manner to demonstrate
our framework’s generality. Therefore, our parallel monitor
is currently not fault-tolerant if DejaVu is used as a submon-
itor. We conjecture that implementing the state interface in
DejaVu is possible with modest effort.

DejaVu monitors closed formulas only and reports violat-
ing instead of satisfying valuations. Therefore, when using
DejaVu, our framework first closes the input formula ϕ by
adding a prefix of existential quantifiers. Then it negates the

closed formula before passing it to the parallel monitor. Thus
it ensures that DejaVu’s output is consistent with MonPoly’s
output whenever they are used as submonitors within our
framework. The splitter uses the original formula ϕ because
it is only effective if there are free variables. As the out-
put of DejaVu consists only of the violating indices for the
closed and negated formula, we cannot compute the inter-
section from J f ’s definition with ϕ’s valuations. Hence, we
must use the simplified joiner J ′, which is correct under the
assumptions ofTheorem3.This limits the applicability of our
approach using DejaVu to monitor certain formulas, and we
cannot account for heavy hitters because otherwise the hyper-
cube strategy would not satisfy condition (4) of Lemma 3.

The parts of the dataflow preceding the submonitors
currently operate sequentially. This is a bottleneck that lim-
its scalability, since all input events must be processed
sequentially by the splitter. Despite this limitation of our
implementation, the splitter and the surrounding operators
could be parallelized too: Our splitter processes events sep-
arately because it implements the event-separable joint data
slicer (Sect. 4.2). A parallel splitter would be particularly
effective if the event source itself is distributed. However, we
must ensure that events arrive at the submonitors in chrono-
logical order. This order is no longer guaranteed if the splitter
is partitioned into concurrent tasks. In a separate line of
work [12], we propose a possible solution that buffers and
reorders events before forwarding them to each submonitor.

7 Evaluation

We structure our evaluation to answer the following research
questions,which assess the scalability, practicality, overhead,
and generality of our framework.
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RQfrm: Howdoes ourmonitor scale for different formulas?
RQrate: How does our monitor scale with respect to the

index rate and the event rate?
RQstats: Can knowledge about the relative event rates

improve performance?
RQskew: Can knowledge about heavy hitter values improve

performance?
RQreal: Are the scalability improvements applicable to

real-world monitoring use cases?
RQoh: How much overhead is incurred by using our

framework? Specifically, how does it compare to
the standalone tools MonPoly and DejaVu?

RQft: Howmuchoverhead is incurred by supporting fault
tolerance (FT)?

RQgen: Can our framework scale with different submoni-
tors?

The scalability (RQfrm and RQrate) of our framework is its
ability to handle growing event rates by using more submon-
itors. This includes the framework’s ability to leverage its
knowledge about the event stream to further improve moni-
toring performance (RQstats and RQskew). The framework is
practical (RQreal) if it can be used in a real-world setting, i.e.,
to scalably monitor a real event stream. The overhead of the
framework is the fraction of its time and memory usage that
is not spent on running the submonitors (RQoh and RQft).
Finally, the framework’s generality is its ability to be used
with different first-order (sub)monitors (RQgen).

To answer the above questions,we organize our evaluation
into two families of experiments, each monitoring a different
type of input stream, either synthetic or real-world. The syn-
thetic streams are used to analyze the effects of individual
parameters, such as the event rate, whereas the real-world
streams attest to our framework’s ability to scalably solve
realistic problems. Figure 5 summarizes the parameters used
for each experiment, which we explain next.

Synthetic Experiments. In the experiments with synthetic
streams (Fig. 5), we monitor the three formulas star, lin-
ear, and triangle and their past-only, non-metric variants
star-past, linear-past, and triangle-past (Fig. 6). Different
occurrence patterns of free variables in the formulas are
used to test RQfrm. The formulas cover common patterns
in database queries [20], which we additionally extend with
temporal operators.

We focus on variable occurrence patterns over other
formula features (e.g., formula size) since they affect our
framework directly, rather than just the submonitors.

We have implemented a stream generator tailored to each
of the three formulas. The generator takes a random seed
and synthesizes streams with configurable characteristics.
Specifically, the synthesized streams on average have con-

stant characteristics across all time indices θ . The streams
contain binary events labeled with P,Q, or R and have con-
figurable event rates and index rates. This setup allows us to
test RQrate.

Figure 5 summarizes the event rates used in our exper-
iments. Note that we evaluate only those combinations of
event rates and number of submonitors that do not take too
long to execute. Specifically, we limit individual monitoring
runs to 5 minutes of total execution time. For example, in the
SyntheticMonPoly. experiments, we monitor the star formula
with the standalone MonPoly instance on streams with event
rates up to 20,000 (denoted as 20k in Fig. 5).

To test RQstats and RQskew, the generator can also synthe-
size streams with configurable relative event rates (γ ′θ (P),
γ ′θ (Q), γ ′θ (R)) and force some event attribute values to be
heavy hitters. Attribute values are sampled from two pos-
sible types of distributions. Non-heavy hitter values are
selected uniformly at random from the set {0, 1, . . . , 109−1};
heavy hitter values are drawn from a Zipf distribution. The
Zipf distribution’s probability mass function is p(x) =
x−z/

∑109
n=1 n−z for x ∈ {1, 2, . . . , 109}, i.e., the larger the

exponent z > 0 is, the fewer values have a large relative
frequency. To prevent excessive monitor output, all Zipf-
distributed values of R events are increased by 106. The
distribution type (uniform or Zipf) and the exponent z are
defined per variable x (the exponent is thus denoted zx ) and
can be supplied as inputs to the generator.

All synthetic streams in our experiments are generated
with relative event rates γ ′θ (P) = 0.01 and γ ′θ (Q) =
γ ′θ (R) = 0.495 and with attribute values sampled uniformly
at random. In the Syntheticheavy hitters experiments (Fig. 5),
we also generate streams with heavy hitter values in valua-
tions of variable a in the star formula and variable b in the
linear and triangle formulas, with their Zipf exponents set
to 2.

Real-world Experiments. To test RQreal, we use logs from
Nokia’s Data Collection Campaign [13]. The campaign col-
lected data from the mobile phones of 180 participants and
propagated the data between three databases, db1, db2, and
db3. The phones uploaded the data directly to db1, then a
synchronization script script1 periodically copied the data
from db1 to db2. Next, db2’s triggers anonymized and
copied the data to db3. The participants could query and
delete their own data from db1. Deletions were propagated
to all databases.

To obtain streams suitable for online monitoring, we have
developed a tool (called replayer) that replays log events and
simulates the event rate at the log creation time, which is cap-
tured by the events’ time-stamps. The tool can also replay the
log proportionally faster than its event rate, which is useful
for evaluating the monitor’s performance while retaining the
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Fig. 5 Summary of parameters used in our experiments

Fig. 6 MFOTL formulas used in the evaluation

log’s other characteristics. Since the log from the campaign
spans a year, to evaluate our tool in a reasonable amount of
time, we pick a one day fragment with a high average event
rate from the log, starting at time-stamp 1,282,921,200. We
use the replayer to accelerate the fragment up to 5000 times.
The fragment contains roughly 9.5 million events with an
average event rate of 110 events per second. Using the accel-
eration, we have subjected our tool to streams of over half a
million events per second. The logs used [57] and the scripts
that synthesize and replay streams [53] are publicly available.

We monitor the formulas insert, delete, and custom
(Fig. 6). The formulas insert and delete come from Nokia’s
DataCollectionCampaign,where theyproved to be challeng-
ing to monitor. Specifically, the two formulas are the negated
versions of the ins-1-2 and del-1-2 formulas from Basin et
al.’s formalization [13], which require a large amount of
memory when monitored by a single MonPoly instance. We
used our knowledge of the data set also to craft the past-only,
non-metric custom formula with an expensive temporal join
involving the (very frequently occurring) insert event.

Since we monitor only a one day fragment of the Nokia
log, we must initialize our monitor with the appropriate state
to obtain the correct output. Therefore, we monitor each
formula once on the part of the log preceding the chosen frag-
ment and spanning an appropriate amount of time as defined
by each formula’s temporal reach. We store the monitor’s

state obtained at the end of the proceeding fragment and ini-
tialize the monitor with the stored state in the experiments.

We have additionally computed the relative event rates for
all events, and identified all heavy hitter values in the one day
fragment of the Nokia log. We run our framework both with
and without this information to answer RQstats and RQskew.

Monitors. To test RQoh and RQgen, we use MonPoly and
DejaVu as parallel submonitors within our framework, and
also as standalone monitors for comparison. To accommo-
date DejaVu, which implements a slightly different monitor
function than MonPoly, we need to adapt the parameters
of our two families of experiments (see the SyntheticDejaVu

and NokiaDejaVu experiments in Fig. 5). First, we use the
formulas star-past, linear-past, triangle-past, and custom
(Fig. 6), which belong to the past-only non-metric fragment
of MFOTL supported by DejaVu. The formulas are closed
and negated prior to invoking DejaVu, since it only monitors
closed formulas and just reports violations. DejaVu expects
input streams without time-stamps and with databases con-
taining exactly one event. Thus, we modify the streams in
our experiments accordingly: each database with more than
one event is linearized, i.e., translated into a sequence of sin-
gleton databases with all time-stamps set to 0. The verdicts
of the used formulas are not affected by this transformation.
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Moreover, we run the experiments both with and without
Flink’s fault tolerance mechanism to determine its impact on
performance (RQft). This is only done when MonPoly is the
submonitor, since DejaVu does not support checkpointing.

Measurements. We ran all our experiments on a server with
two sockets, each containing twelve Intel Xeon 2.20GHz
CPU cores with hyperthreading, which effectively gives us
48 independent computation threads.

To assess our framework’s scalability, we measure the
(maximal) latency and throughput achieved during our exper-
iments. Latency is the difference between the time a monitor
consumes an event and the time it is done processing it.
Throughput is the number of events that a monitor processes
in a unit of time. We use the wall-clock time values pro-
vided by the UNIX time command to measure the total
execution time, i.e., the time between the moment when the
replayer starts emitting events to themonitor and themoment
the monitor processes the last emitted event. We also mea-
sure the execution time and maximal memory usage of each
submonitor. To measure the latency during execution, our
replayer injects a special event, called a latency marker, into
the stream. Every second, the replayer generates a latency
marker, which is tagged with the current time. The marker
is then propagated by our framework, preserving its order
with respect to the databases containing other events from
the input stream. We measure the latency at the framework’s
output by comparing the current time with the time in the
marker’s tag. Besides measuring the current latency, we also
calculate the maximum latency up to the current point in the
experiment.

Since MonPoly’s unit of input is a database of events
(rather than a single event), it does not perform any pro-
cessing before it receives an entire database. Its particular
input format allows MonPoly to detect that the currently
received database is complete only once the first event from
the next database is received. This means that our latency
measurements as described above would treat the times-
tamp difference between two consecutive databases in the
input as the monitor’s processing latency. Thus, we task our
replayer to additionally send watermark events as part of the
input, signaling to MonPoly whenever the currently received
database is complete. This effectively allows us to measure
the monitor’s exact processing time latency, excluding any
delay introduced by the delays already present in the input.

When the latency is higher than one second, the latency
marker gets delayed too and a timely value cannot be pro-
duced. Flink reports zeros for the current latency in this case,
whileweconsider the latest non-zerovalue.This significantly
reduces the noise in our measurements.

In addition to online experiments, where we use our
replayer to simulate event streams, we also execute all our
synthetic experiments offline. Specifically, we directly sup-

ply the monitored log as a file to the monitor. The monitor
consumes the log at a rate defined by its current processing
speed. We can then calculate our framework’s throughput
as the ratio of the total number of events and the measured
offline execution time. The stage [29] (offline or online) at
which we run our monitor in each of the experiments is spec-
ified in Fig. 5.

Sincewe focus on performancemeasurements, we discard
the tool’s output during all of our experiments. Each run of a
monitor with a specific configuration is repeated three times
and the collected metrics are averaged to minimize the noise
in the measurements.

Results. Figure 7 shows the results of using our framework
with MonPoly to monitor synthetic streams. We show the
results when fault tolerance is enabled, since they are less
favorable for our framework. Plots labeledwithToolN denote
that our framework used N instances of Tool as submonitors.
Omitting the number of submonitors indicates a standalone
run of the Tool. Our experiments demonstrate our frame-
work’s low overhead (RQoh): a standalone run of a Tool
exhibits the same performance as a run of our framework
with one submonitor (Tool1).

Figure 7a shows the achieved throughput (top), the maxi-
mum latency (middle), and the maximal memory consump-
tion across all submonitors (bottom) when monitoring the
formula star with different numbers of submonitors. For
example, our tool exhibits a latency of 27s for an event rate of
15,000 events per second if a single submonitor is used. Sim-
ilar latency is exhibited with 4 submonitors whenmonitoring
events rates above 45,000 events per second. In contrast,
using 16 submonitors achieves sub-second latency for all
event rates in our experiments. With an increasing number
of submonitors, each submonitor receives fewer events and
hence uses less memory, while collectively the submonitors
handle larger throughput. This experiment answers RQrate:
our tool handles significantly higher event rates by using
more parallel submonitors.

Figure 7b shows the achieved throughput (top), the maxi-
mum latency (middle), and the maximal memory consump-
tion (bottom) of our tool when monitoring star, triangle,
and linear formulas using 4 submonitors. The plots show
six graphs, where each graph shows the results of monitor-
ing one of the three formulas over a stream with an index
rate of either 1 or 1000. Since the index rate affects the per-
formance of MonPoly [14], the overall framework is also
affected (RQrate). The event rate gain due to parallel mon-
itoring depends on the variable occurrence patterns in the
monitored formula (RQfrm). Namely, the variable pattern in
the star formula is the one that exhibits the best scalability
due to variable a’s occurrence in all the formula’s atoms.

In the experiments described so far, we did not supply our
framework with the relative event rates for the event names
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(a) (b) (c)

Fig. 7 SyntheticMonPoly experiments: monitoring synthetic streams with MonPoly and with fault tolerance

(a) (b) (c)

Fig. 8 SyntheticDejaVu experiments: monitoring synthetic streams with DejaVu and without fault tolerance
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Fig. 9 NokiaMonPoly experiments: monitoring the real-world stream with MonPoly

Fig. 10 NokiaDejaVu experiments: monitoring the real-world stream with MonPoly and DejaVu

in the stream. Figure 7c positively answers RQstats by show-
ing that our tool’s performance substantially increases when
using 4 and 8 submonitors and when the statistics about the
stream are known in advance. We use ToolNstats to denote that
our framework runs Tool on N submonitors with relative
event rates provided ahead of time.

Figure 8 shows the results of the same experiments as in
Fig. 7 but now using our framework with DejaVu as the sub-
monitor. Fault tolerance was disabled in these experiments.
Similarly as before, the experiments show that our framework
can handle higher event rates by using more parallel sub-
monitors (RQrate). Regarding RQgen, our results demonstrate
improved throughput, latency, and memory consumption
with two different first-order monitors. Both Figs. 7a, 8a
answer RQoh: they show that our framework achieves better
performance thanMonPoly and DejaVu on their own, except

when only a single submonitor is used, where it exhibits
essentially the same performance.

Figure 9 summarizes the results of using our framework
with MonPoly to monitor the real-world log from the Nokia
case study (RQreal). The event and index rates are defined by
the log; we only control the acceleration used by the replayer.
As we anticipated earlier, the custom formula is the hard-
est to monitor (top right plot), followed by the delete, and
insert formulas, respectively. The other plots focus on the
delete formula as it comes from the real use case and was
not crafted by us. In contrast to the synthetic experiments,
our framework’s performance does not improve beyond 4
submonitors. However, if one considers the acceleration (up
to 5000) and the log’s average event rate (110 events per
second), our framework can process event rates higher than
500,000 events per second on average. At this point, the cen-
tralized parsing and slicing become the main performance

123



206 J. Schneider et al.

(a) (b) (c)

Fig. 11 Syntheticheavy hitters experiments: impact of the skew and skew information on parallel monitoring

bottleneck, which explains the marginal performance gains
beyond 4 submonitors.

The top left and middle plots in Fig. 9 contrast the per-
formance overhead for fault tolerance (RQft). The maximal
latency is most visibly affected when the framework uses
a single submonitor. The bottom three plots show how the
latency changes over time during monitoring. These plots
correspond to three individual runs while monitoring the
delete formula. The leftmost plot shows the monitoring of
the formula with respect to the stream sped up 1000 times,
with fault tolerance disabled. The middle and rightmost plots
show runswith fault tolerance enabled for the accelerations of
1000 and 2000. The regularly occurring spikes in the latency
graphs are caused by Flink’s state snapshot algorithm, which
is invoked every 10s.

Figure 10 compares the performance of our framework
using MonPoly and DejaVu as submonitors when moni-
toring the custom formula on the log from the Nokia case
study. Namely, MonPoly has lower maximum latency and
in both cases our framework improves the latency (RQgen)
when more submonitors are used. Figure 10’s right-most
plot shows how our framework improves DejaVu’s current
latency when monitoring the custom formula. The regular
increases in latency seen in each run are due to DejaVu’s
internal garbage collection, which tries to reduce its memory
usage when storing previously seen parameter values [35].

Interestingly, using our framework with a single sub-
monitor (MonPoly1) and without fault-tolerance lowers the
maximum latency compared to a standalone run of Mon-
Poly (top left plots in Figs. 9 and 10). We conjecture that
this results from the more efficient parsing and filtering of
irrelevant events in our framework.

Finally, Fig. 11a shows the number of events sent per
submonitor when no skew is present in the stream. In the
presence of skew, the event distribution is much less uniform
(Fig. 11b). When our framework is aware of the variables in
the formula whose instantiations in the stream are skewed, it
can balance the events evenly (Fig. 11c), effectively reducing
the maximum load of the submonitors (RQskew).

8 Conclusion and future work

Our work takes a substantial step towards efficient, parallel
online monitoring of event streams with respect to policies
written in expressive first-order languages. This entailed gen-
eralizing the offline slicing framework [10] to support online
monitoring and the simultaneous slicing with respect to all
free variables in the formula. Our work also builds a bridge to
related research on query processing for databases and data
streams.Weadaptedhash-basedpartitioning techniques from
databases to obtain an automatic splitting strategy.We imple-
mented a general approach to automatic slicing in Apache
Flink and instantiated it with two existing tools for moni-
toring events with data, namely MonPoly and DejaVu. Our
results demonstrate a significant performance improvement.
For example, 16-fold parallelization allows us to increase the
event rate from 10,000 to 75,000, while retaining sub-second
maximum latency (Fig. 7a).

In this article, we assumed that the stream’s statistics
are fixed. However, the automatic splitting strategy can be
dynamically reconfigured by redistributing the submonitors’
states coupled with the online collection of the statistics.
We have already made some progress in implementing this
extension and analyzing the tradeoff between the reconfig-
uration costs and the cost of using an imperfect splitting
strategy [30,52].We also plan to refine our automatic splitting
strategy to account explicitly for communication costs and
to evaluate our approach in a distributed cluster. To achieve
maximal scalability, it will be necessary to parallelize the
splitter and to process events frommultiple independent input
streams [12].
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Schneider, J., Traytel, D.: A formally verified, optimized monitor
for metric first-order dynamic logic. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) IJCAR 2020, LNCS, vol. 12166, pp.
432–453. Springer (2020)
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