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ABSTRACT

In model-driven development, system designs are specified
using graphical modeling languages like UML and system
artifacts such as code and configuration data are automat-
ically generated from the models. Model-driven security is
a specialization of this paradigm, where system designs are
modeled together with their security requirements and secu-
rity infrastructures are directly generated from the models.

Over the past decade, we have explored different facets of
model-driven security. This research includes different mod-
eling languages, code generators, model analysis tools, and
even model transformations. For example, in multi-tier sys-
tems, we used model transformations to transform a security
policy, formulated for a system’s data model, to a security
policy governing the behavior of the system’s graphical user
interface. In this paper, we survey progress made, tool sup-
port, and case studies, which attest to the flexibility and
power of such a multi-faceted approach to building secure
systems.
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1. INTRODUCTION

Model building is at the heart of system design. This is
true in many engineering disciplines and is increasingly the
case in software engineering. But model building is not an
end in itself and certainly does not come for free: it takes
time and knowledge to build good models and effort to keep
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Figure 1: Use of Models in Model-Driven Security

them synchronized with end products. For this effort to be
worthwhile, there must be added value.

In this paper, we examine some of the advantages over
more traditional approaches to model building in the do-
main of security-critical systems. In particular, we survey
our work [32, 9, 5, 6, 15, 7, 18] over the past decade on
model-driven security. We show that models can be used
for the following four activities in the development of secure
systems:

A1l. Precisely documenting security requirements together
with design requirements.

A2. Analyzing security requirements.

A3. Model-based transformation, such as migrating secu-
rity policies on application data to policies for other
system layers or artifacts.

A4. Generating code, including complete, configured secu-
rity infrastructures.

Figure 1 depicts these activities and their interrelation-
ships. Designers specify security-design models that com-
bine security and design requirements (Al). As our model-
ing languages have a well-defined semantics, we can formally
analyze these designs (A2). When designing secure systems,
security may be relevant at different system layers or views.
Using model transformations, we can migrate a security pol-
icy from one model to other models (A3). Finally, we can
use tools to automatically generate code and other system
artifacts directly from the models (A4).

In the subsequent sections we explore these activities in
more detail. In doing so, we highlight the central and multi-
faceted role that models can play in developing secure sys-
tems. We also explain the development of our ideas, ad-
vances in tool support, and applications.

Organization. In Section 2 we introduce security-design
models and give examples. In Sections 3 and 4 we present
different ways to analyze and transform such models. In
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Figure 2: Model-languages and their Combination

Section 5 we describe SSG, a tool that supports the de-
sign, analysis, and transformation of security-design models
for developing security-aware GUIs for data-centric appli-
cations. In Section 6 we report on our experience applying
model-driven security in practice. Finally, we discuss related
work in Section 7 and draw conclusions in Section 8.

2. MODELING
2.1 Languages

Model-driven security is a specialization of model-driven
development, also called model-driven architecture [35], to
the domain of security. The crucial part of this special-
ization concerns the modeling language. Instead of adopt-
ing a one-language-fits-all approach, we proposed a general
schema for integrating security requirements into system de-
sign models. The main idea is to define security modeling
languages that are general in that they leave open the nature
of the protected resources, i.e., whether these resources are
data, business objects, processes, controller states, etc. Fig-
ure 2 provides examples of different security notions which
could be specified using a security modeling language (top-
left) that one might integrate with different design modeling
languages (bottom-left), resulting in a security-design mod-
eling language (right side). For example, one might combine
a modeling language for Role Base Access Control (RBAC)
with Class Diagrams, as indicated in bold in the figure. This
combination is made by defining a dialect (or “glue”), which
identifies elements of the design language as the protected
resources of the security language. In this way, we can flexi-
bly define languages for formulating different kinds of system
designs along with their security requirements.

In previous work, we defined a security modeling language
called Secure UML for modeling authorization policies based
on RBAC extended with constraints [9]. We initially com-
bined SecureUML with a design modeling language based
on class diagrams, called ComponentUML, and with a lan-
guage based on state diagrams, called ControllerUML. We
later [7] combined SecureUML with a language for modeling
graphical user interfaces for data-centric applications, called
ActionGUL

2.2 Example

We introduce an example, which we use in this paper
to illustrate the use of the modeling languages mentioned
above, namely, ComponentUML, SecureUML+Component-
UML, ActionGUI, and SecureUML~+ActionGUI. In subse-
quent sections we use this example to illustrate model-based
analysis and transformation techniques.

ComponentUML is a simple language for modeling com-
ponent-based systems. Essentially, it provides a subset of
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Figure 3: ComponentUML model for Employee.

UML class models: entities can be related by associations
and may have attributes and methods.

In Figure 3 we use ComponentUML to model the data
associated with a company’s employees. In our example,
an employee has a name, a surname, a salary, and a bank
account. Also, an employee may possibly have a supervi-
sor and may in turn supervise other employees. In the ter-
minology of ComponentUML, Employee is an entity; name,
surname, salary, and bank account are attributes, and su-
pervisedBy and supervises are association-ends.

We can refine this model by adding constraints (also called
invariants) to it. For example, we can specify that:

1. There is exactly one employee who has no supervisor.
2. Nobody is his (or her) own supervisor.

We use the Object Constraint Language (OCL) [36] to
add constraints to ComponentUML models. For example,
the above constraints can be formalized in OCL as follows:

(1) Employee.allInstances()
->one(ele.supervisedBy->isEmpty())

(2) Employee.allInstances()
->forAll(ele.supervisedBy->excludes(e))

SecureUML+ComponentUML is the combination of Secu-
reUML with ComponentUML. As already mentioned, Secure-
UML extends RBAC with authorization constraints, which
enable the specification of policies that depend on the sys-
tem state. SecureUML leaves open what the protected re-
sources are and which actions these resources offer to clients;
both of these depend on the primitives for constructing mod-
els in the associated system-design modeling language. In
the case of SecureUML+ComponentUML, the protected re-
sources are the entities, as well as their attributes, methods,
and association-ends. The actions that are offered to clients
are to create or delete entities, update or read the entity’s
properties, and execute the entity’s methods.

In Figure 4 we use SecureUML+ComponentUML to model
the company’s authorization policy for accessing the data as-
sociated with its employees, according to the employee data
model in Figure 3. In this example, permissions are assigned
to two non-disjoint sets of users: workers (any employee) and
supervisors (any employee who supervises other employees).
In the terminology of SecureUML, Worker and Supervisor
are roles. Permissions in SecureUML are granted upon satis-
faction of specific constraints, written in a simple extension
of OCL.! Namely:

!The variables self and caller are interpreted as follows:
self refers to the (root) resource being accessed and the
variable caller refers to the user accessing the resource.
In SecureUML+ComponentUML, the type of the variable
caller must be an entity in the given model. In this ex-
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Figure 4: SecureUML+ComponentUML model for
Employee.

1. A worker is granted the permission to read an em-
ployee’s salary (Employee:salary:AtomicRead), pro-
vided that it is its own salary (caller=self).

2. A supervisor is granted the permission to update an
employee’s salary (Employee:salary:AtomicUpdate),
provided that he supervises this employee (self.super-
visedBy->includes(caller)).

3. A supervisor is granted unrestricted permission to read
any employee’s salary (Employee:salary:AtomicRead),
since no constraint is associated to this permission.

Finally, in our model, the role Worker generalizes the role
Supervisor. This means that supervisors inherit all the
permissions granted to workers, along with their associated
authorization constraints.

Note that when modeling this authorization policy, our
modeler probably has in mind the invariant (2) as a con-
straint on the data model: nobody can be his own supervi-
sor. This prevents a (self-)supervisor from changing his own
salary. We will return to this point in Section 3.

ActionGUI is a language for modeling graphical user in-
terfaces (GUIs) for data-centric applications. In a nutshell,
a GUI consists of widgets, which may be containers (e.g.,
windows, combo-boxes, or tables) or basic widgets (e.g.,
buttons, labels, or entries). A widget may have a set of
associated events (e.g., entering or leaving a widget, creat-
ing a widget, or clicking on a widget.) Then, an event may
trigger a set of (possibly conditional) actions on the wid-
gets themselves (e.g., opening and closing a widget) or on
the application data (e.g., reading or updating an attribute).
Also, a widget may have associated variables which hold in-
formation to be used by the actions triggered by the events
associated to the widget.

In Figure 5 we use ActionGUI to model a window for up-
dating a (previously selected) employee’s salary. The win-
dow has an entry labelled salary, and a button labelled
update. In addition, it has a variable selectedEmployee,
that holds a reference to an instance of the entity Employee;
in this example, this is the employee whose salary will be
updated. Within the window model, the modeler can refer

ample, the type of the variable caller is Employee, which
means that the users accessing the resources will be employ-
ees, i.e., instances of the entity Employee.

<<variable>>
selectedEmployee

-type = Employee

W

[salary: ] [ |

<<event=>
updateEvent
-action = selectedEmployee:AtomicUpdate([salary.text])
-type = onClick

Figure 5: ActionGUI model for UpdateSalary win-
dow.

to the string input by the user in the entry salary using the
expression salary.text enclosed in square brackets. Notice
that the button update supports an event updateEvent. In
ActionGUI, each event has a type and, in our example, up-
dateEvent has the type onClick. In this example, when
the user clicks the update button, the salary of the se-
lectedEmployee is updated (selectedEmployee:salary:-
AtomicUpdate) using as the parameter the string typed by
the user in the entry salary ([salary.text]).

SecureUML+ActionGUT is the combination of SecureUML
with ActionGUI. It provides a language for modeling security-
aware GUIs. In the case of SecureUML+ActionGUI, the
protected resources are the widgets, and the actions that
are offered to clients are to execute the widgets’s events.

In Figure 6 we use SecureUML+ActionGUI to model the
authorization policy for executing the event updateEvent
supported by the button update in the window modeled in
Figure 5. In SecureUML+ActionGUI, authorization con-
straints are written using an extension of OCL where, as
in the case of SecureUML+ComponentUML, the variable
caller refers to the user who is accessing the resource (in
this case, executing the event). In this model, only super-
visors are granted permission to click on the update button
(update:onClick:AtomicExecute) and, furthermore, they
may only do this when they supervise the selectedEmployee
(selectedEmployee.supervisedBy->includes(caller)).

The SecureUML+ActionGUI model in Figure 6 raises a
number of “consistency” questions with respect to the Secu-
reUML+ComponentUML model in Figure 4. For example,
could a user who is not authorized to update the selected
employee’s salary still be permitted to click on the update
button? Alternatively, could a user with this authorization
fail to have permission to click on the update button? We
will return to these questions in Section 3. On a more prac-
tical level, a question that also arises is whether it would
be possible to automatically generate the model in Figure 6
from the models in Figures 4 and 5. We will explain how
this can be done in Section 4.

3. ANALYSIS

Security-design models are formal objects and therefore
one can reason about their properties. In our previous work,
we have proposed formal techniques to answer questions
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about the meaning of security-design models at two different
levels:

1. The models themselves. Here the questions are
about the elements that are contained in a model and
their relationships. For example, given a role, what
are the actions that a user in this role can perform?
Are there overlapping permissions for different roles?
Are there two roles that have permission to perform
the same set of actions?

2. The models’ instances. Here the questions are about
the scenarios that are consistent (or conformant) with
the model, i.e., about all the valid instances of the
model. For example, is there a scenario consistent with
the model in which someone satisfying a property P;
is allowed to perform an action on resources satisfying
some other property P>?

To answer questions about the models themselves in a se-
mantically precise and meaningful way, we proposed in [6]
a metamodel-based methodology consisting of: (i) formal-
izing these questions as queries in OCL, in the context of
the metamodel combining SecureUML with the design lan-
guage; and (ii) evaluating these OCL queries on the in-
stance of the metamodel which corresponds to the model
being analyzed. With respect to (i), [6] provides exam-
ples of non-trivial OCL queries about SecureUML~+Compo-
nentUML models. With respect to (ii), as reported in [13],
current OCL evaluators can automatically answer complex
queries about large collections (including up to a million
objects) in less than 5 seconds. For example, in [6], an
operation allAtomics() is defined in OCL that, given a
role, returns the collection of atomic actions that a user
in this role can perform upon the satisfaction of any asso-
ciated constraints. Thus, by evaluating the expression Su-
pervisor.allAtomics(), we can obtain all the atomic ac-
tions that supervisors are allowed to perform (again, upon
satisfaction of the associated constraints) according to the
model in Figure 4, namely, {Employee:salary:AtomicRead,
Employee:salary:AtomicUpdate}. Recall that the expres-
sion Supervisor.allAtomics() is to be evaluated on the
instance of the metamodel of SecureUML+ComponentUML
corresponding to the model in Figure 4.

To answer questions about the model instances that are
consistent with a given security-design model, we need to
go beyond simple query evaluation and resort to theorem-
proving techniques. Consider, for example, the access con-
trol policy model shown in Figure 4. Is the scenario in

which someone is allowed to change his own salary con-
sistent with this model? First, by querying the model as
explained above, we learn that only supervisors (i.e., users
in the role Supervisor) can change employees’ salaries (i.e.,
execute the action Employee:salary:AtomicUpdate). Sec-
ond, by querying this model again, we see that supervisors
can change employees’ salaries only when these employees
are under their supervision, as stated by the authorization
constraint

self.supervisedBy ->includes(caller)

which is associated to the permission SupervisorUpdate-
Salary. Therefore, we can rephrase our initial query as:
is there a scenario in which the following OCL expression
evaluates to true?

(3) Employee.alllnstances()->exists(self, caller|
self.supervisedBy->includes(caller)
and self=caller)

Recall that we intend to forbid self-supervision by imposing
the invariant (2) on the employee data model. To answer our
initial question (can someone change his own salary?) it is
therefore sufficient to prove that for any scenario consistent
with (2) then (3) must be false.

We currently answer such questions using a mapping from
OCL to first-order logic that we introduced in [14]. Using
this mapping, we can reformulate these questions as satisfi-
ability problems in first-order logic and use theorem-proving
tools (including SMT solvers, as reported in [14]) to auto-
matically answer them. In Appendix A we give the satisfi-
ability problem corresponding to this example, formulated
in the syntax of the SMT solver Yices [19]. The answer au-
tomatically provided by Yices is unsat. Hence (2) and (3)
cannot both be simultaneously true in any scenario of the
model shown in Figure 3.

Another interesting question that can be answered using
our mapping from OCL to first-order logic is the following: if
an employee has no supervisor, is it possible at all to update
his salary? This question can be rephrased as: is there a
scenario in which the following expression evaluates to true?

(4) Employee.alllnstances()->exists(self, caller|
and self.supervisedBy->includes(caller)
self.supervisedBy->isEmpty())

As before, the answer automatically provided by Yices is
unsat. Thus (4) cannot be true in any scenario of the model
shown in Figure 4.

4. TRANSFORMATION

In model-driven development, transformation is the way
of using models to produce other development artifacts. The
following types of transformations have been widely used in
the model-driven development community.

Generation of Code and Execution Artifacts: Models
may be mapped to code or other artifacts that af-
fect the system’s runtime behavior. When generating
code, the transformation function amounts to a kind
of translator or compiler. Examples of other artifacts
generated are deployment and configuration data (e.g.,
for access control on an application server, database,
firewall, operating system, etc.), which also affects the
system’s behavior.



Generation of Models: Models may be mapped to other
models. In particular, when multiple models serve as
input, one speaks of a many-models-to-model transfor-
mation. We will give an example of this shortly.

Generation of Test Cases: Test cases can be generated
from models, e.g., to test an access control policy.

Below we elaborate on the first two possibilities, which we
have pursued in model-driven security.

4.1 Code Generation

Originally [32, 8], we mainly used security-design models
for generating code along with deployment and configura-
tion data. We built translators that map models into access
control infrastructures for distributed object-based systems.
In particular, we built generators for systems conforming
to the Enterprise JavaBeans (EJB) standard and Microsoft
Enterprise Services for .NET. From models specifying secure
components and secure controllers we generated access con-
trol infrastructures for multi-tier web applications. These
ideas were integrated into several tools, both academic and
commercial, e.g., the ArcStyler tool [28] of Interactive Ob-
jects GmbH.

We briefly describe the ideas behind code generation for
security-design models in SecureUML~+ComponentUML for
an EJB platform. Given a model like that of Figure 4, our
code generator produces Java code and access control con-
figuration data stored in an XML configuration file (called
a deployment descriptor). A class like Employee, which rep-
resents a persistent entity, is transformed to an EJB com-
ponent of type entity bean with all necessary interfaces and
an implementation class. Namely, each method in the class
is transformed to a method declaration in the component
interface of the respective entity bean and a method stub in
the corresponding bean implementation class. Also, for each
attribute, “getter” and “setter” access methods are generated
for reading and writing the attribute value; association-ends
are handled analogously.

The above describes routine code generation for the design
part of a security-design model. For the security part, roles
and permissions are mapped into an EJB security infras-
tructure based on RBAC. In particular, our translator maps
the roles and permissions into XML formalizing which roles
have access to which actions on which resources. Autho-
rization constraints are translated to Java assertions that
check these constraints at run time. For example, in Fig-
ure 4, we would generate the following RBAC configuration
data for the permission WorkerReadSalary: anyone in the
roles Worker or Supervisor can read the attribute salary in
the Employee class, i.e., can execute the getter-method that
reads the value of the attribute salary. Moreover, given
the authorization constraint, we would generate an asser-
tion, placed at the start of this getter method, that checks
that the authenticated caller is the employee whose salary
is being read, when the caller belongs to the role Worker.

4.2 Model Transformation

It is also possible to transform models into other models.
Typically such transformations add details, specialize con-
structs, or change representations. An example of this is the
specialization of platform-independent models to platform-
specific models. In our work, we have explored a particular
application of model transformation: how to consistently

apply a security policy to multiple system layers. We see
this as an important part of building effective security in-
frastructures, as we shall now explain.

Security is often built redundantly into systems. For ex-
ample, in a web-application, access control may be enforced
at all tiers: at the web server, in the back-end databases,
and even in the GUI. There are good reasons for this. Re-
dundant security controls is an example of defense in depth
and is also necessary to prevent data access in unanticipated
ways, for example, directly from the database thereby cir-
cumventing the web application server. Note that access
control on the client is also important, but more from the
usability rather than the security perspective. Namely, al-
though client-side access control may be easy to circumvent,
it enhances usability by presenting honest users an appro-
priate view of their options: unauthorized options can be
suppressed and users can be prevented from entering states
where they are unauthorized to perform any action, e.g.,
where their actions will result in security exceptions thrown
by the application server or database.

This raises the following question: must one specify secu-
rity policies separately for each of these tiers? The answer
is “no” for many applications. Security can often be under-
stood in terms of the criticality of data and an access control
policy on data can be specified at the level of component
(class) models, as discussed in Section 2. Afterwards, an ac-
cess control policy modeled at the level of components may
be lifted to other tiers. When the tiers are also modeled,
this lifting can be accomplished using model transformation
techniques and in a precise and meaningful way.

In our previous work [37, 7, 18] we have taken such a
transformation-based approach to systematically lift secu-
rity policies specified on data to policies governing graphical
user interfaces. Under our proposal, the process of modeling
a security-aware GUI has the following four parts.

1. Software engineers specify the application-data model.
2. Security engineers specify the security-design model.
3. GUI designers specify the application GUI model.

4. A many-models-to-model transformation automatically
generates a security-aware GUI model from the secu-
rity model and the GUI model.

We have implemented this transformation-based approach
for generating security-aware GUIs using the Operational
Query/View/Transformation (QVT) engine [20]. The many-
models-to-model transformation at the core of this approach
is ultimately defined in terms of data actions, since data ac-
tions are both controlled by the security policy and triggered
by the events supported by the GUI.

Specifically, to generate a SecureUML~+ActionGUI model,
our model transformation proceeds in two steps.

Step 1: The model elements of the target model are cre-
ated using the elements from the two source mod-
els. In particular, each role in the (source) Secure-
UML+ComponentUML model is copied, along with
its generalization associations, to the (target) Secure-
UML+ActionGUI model. Afterwards, each widget in
the (source) ActionGUI model is copied, along with its
associated events and actions, to the (target) Secure-
UML+ActionGUI model.



Step 2: The permission assignments in the target model
are created. Namely, for each role and each event
in the (target) SecureUML+ActionGUI model, when
the users in the role are allowed to perform all the
data actions triggered by the event according to the
(source) SecureUML+ComponentUML model, then a
permission is created in the target model. This per-
mission grants access to the role to execute the event,
upon the satisfaction of the corresponding authoriza-
tion constraints.?

Consider, for example, the security-design model and the
GUI model shown in Figures 4 and 5. Using our many-
models-to-model transformation, we automatically generate
the security-aware GUI model shown in Figure 6. This
model includes both the roles Worker and Supervisor, as
well as the permission for the latter to execute the event
of type onClick on the update button. Recall that this
will trigger the action of updating the salary of the select-
edEmployee. So, as expected, this permission is constrained
by the following authorization: selectedEmployee.super-
visedBy->includes(caller). Hence, to be authorized to
click on the update button, the supervisor must be among
the supervisors of the selectedEmployee.

In general, model transformations support problem de-
composition during development where design aspects can
be separated into different models which are later composed.
As a methodology for designing security-aware GUIs, this
approach supports the consistent propagation of a security
policy from component models to GUI models and, via code
generation, to GUI implementations. This decomposition
also means that security engineers and GUI designers can in-
dependently model what they know best and maintain their
models independently.

S. TOOL SUPPORT

As part of our work, we have developed a software-deve-
lopment environment, called SSG [18] for building security-
aware graphical user interfaces for data-centric applications.
SSG provides tool support for the four activities depicted
in Figure 1: modeling, analysis, transformation, and gener-
ation.

SSG consists of a collection of plugins that have been de-
veloped for Eclipse. First, SSG contains three different edi-
tors for graphical modeling, which has been developed using
the Eclipse Graphical Modeling Framework. These are (i)
an editor for modeling application data using Component-
UML; (ii) an editor for modeling the application’s access
control policy on data using SecureUML+ComponentUML;
and (iii) an editor for modeling the application’s graphical
user interface using ActionGUI.

Second, SSG contains a plugin that allows modelers to use
OCL to query their SecureUML+ComponentUML models,
which corresponds to the first kind of model analysis de-
scribed in Section 3. This plugin includes an OCL parser
and an OCL evaluator [13], the latter serves to automati-
cally answer queries about the elements (roles, permissions,

2Notice, however, that for these authorization constraints to
be meaningful in the target model, they must also be trans-
formed. Essentially, the variable self, which in the (source)
SecureUML+ComponentUML refers to the data element be-
ing accessed by the user, must be replaced by the OCL ex-
pression that denotes, in the (source) ActionGUI model, the
subject of the action triggered by the event.

authorization constraints, actions, and resources) contained
in models and their relationships. Moreover, a plugin is
currently under construction to support the second kind of
model analysis described in Section 3, namely, queries about
the instances of SecureUML+ComponentUML models, us-
ing the mapping from OCL to first-order logic proposed
in [14].

Third, SSG contains a QVT transformation that auto-
matically performs the many-models-to-model transforma-
tion described in Section 4.2. It automatically transforms
an ActionGUI model and a SecureUML~+ComponentUML
model (both sharing the same ComponentUML data model)
into a SecureUML+ActionGUI model. The resulting model
has the same behavioral properties as the one modeled by
the given ActionGUI model, except that it is now security-
aware with respect to the access control policy modeled by
the SecureUML+ComponentUML model.

Finally, SSG includes a code generator, based on Java
Emitter Templates (JET) [21], that automatically gener-
ates a full web application from a SecureUML+ActionGUI
model. This application consists of a collection of PHP-web
pages whose design and behavior implement those specified
by the given model. In particular, windows are implemented
as web pages. Thus, opening a window is implemented as
loading the corresponding page and closing a window is im-
plemented as loading the previously visited page. More in-
terestingly, data actions (like creating or deleting entities
and updating or reading their attributes) are implemented
as MySQL statements on a data-base implementing the un-
derlying ComponentUML data model. The code generator
can also create this database for the user. Finally, permis-
sions to execute events on widgets (like clicking a button or
creating an entry or a text box) are implemented by condi-
tional statements in the PHP-code responsible for interpret-
ing those events. A key component of the SSG’s code gen-
erator is a MySQL code generator [22, 17] for OCL, which
translates into MySQL the OCL authorization constraints
in the given SecureUML+ActionGUI model.

6. EXPERIENCE

In [15] we report on an industrial pilot project for as-
sessing the benefits of model-driven security when applied
to concrete software development projects. The project’s
goal was to enhance a test report configuration utility, de-
veloped in-house, with an access control policy. We used
ComponentUML to model the functional requirements of
the utility, and SecureUML+ComponentUML to model its
access control policy. These requirements were provided to
us in a five-page document listing fifty clauses in plain En-
glish. For example, users could choose from a pool of avail-
able test report configurations, which may include private,
global, and default ones. Default configurations are in turn
associated with individual test programs or with families of
test programs. Since the permissions to create, edit, delete,
or apply report configurations depended both on the user’s
role and on the properties (including the ownership) of the
configurations, we extensively used OCL to formalize the
corresponding authorization constraints.

Our experience in this project was very positive. Our
security-design models helped us to understand (and dis-
cuss) the original requirements document by allowing us to
independently model each clause based on its principal con-
cern, whether functional or security-related. Their analysis



prompted us to refine those requirements that were ambigu-
ous, to eliminate those that were subsumed by others, and
to discover those that were simply missing. Moreover, the
models also provided a basis for refinement down to code.
Overall, the use of security-design modeling languages pro-
vided the focal point for integrating security engineering into
a model-driven software development process.

Another substantial case study was that of Lodderstedt
[31], who used the model-driven security approach to con-
struct secure web portals. As an extended example, he de-
veloped a secure version of the J2EE “Pet Store” applica-
tion, which is a prototypical e-commerce application that
demonstrates the use of the J2EE platform. The applica-
tion features web front-ends for shopping, administration,
and order processing. His application model consisted of 30
components and several front-end controllers. Lodderstedt
extended this model with an access control policy formaliz-
ing the principle of least privilege, where a user is given only
those access rights that are necessary to perform a job. The
modeled policy comprised six roles and 60 permissions, 15 of
which were restricted by authorization constraints. The cor-
responding infrastructure was generated automatically and
consisted of roughly 5,000 lines of XML (overall application:
13,000) and 2,000 lines of Java source code (overall appli-
cation: 20,000). This large expansion was due to the high
level of abstraction provided by the security-design model-
ing languages used. Clearly, this much information cannot
be managed practically at the source-code level.

7. RELATED WORK

Over the last decade, there has been substantial research
on model-driven security. Here we report on related work in
modeling, analysis, and transformation.

Modeling.

Numerous researchers have explored the use of UML-like
languages for modeling role-based access control policies [1,
12, 11, 39, 3] and different kinds of security-design mod-
els [29, 16]. In the language UMLsec [29], for example, UML
models are annotated with security requirements, such as
confidentiality or secure information flow. Another promi-
nent example is the Ponder specification language [16], which
supports the rule-based formalization of authorization poli-
cies. As in the case of SecureUML [9], privileges may be
organized similar to RBAC and rules can be restricted by
conditions expressed in a subset of OCL. Ponder policies can
be directly interpreted and enforced by a policy management
platform. Model-driven security has also been employed for
the development of secure XML databases [40, 24], secure
databases, and data warehouses [23].

There has also been much work on integrating security
requirements in process models and we mention several rep-
resentative examples. In [8], we have combined SecureUML
with a process design language to generate security archi-
tectures for distributed applications. SECTET [27, 4] is an
extensible framework for designing and managing security-
critical workflows based on web services. Finally, [43] de-
scribes a security policy and policy constraint modeling lan-
guage that captures security requirements for business pro-
cesses. In this work, security-annotated business processes
can be translated into platform-specific target languages,
such as XACML or AXIS2 security configurations.

Analysis.

There has been considerable work in analyzing the secu-
rity of system designs within the Formal Methods communi-
ties, e.g., [41, 10, 30] to name a few examples. Usually tradi-
tional formal methods are used, based on model checking or
theorem proving. Moreover, various groups have proposed
approaches and associated tools for directly reasoning about
access control policies [45, 46], including policies specified in
standardized languages such as XACML [25].

With respect to the analysis of UML models, our use of
OCL as a query language was inspired by [2] who used OCL
to query RBAC policies; see also [38, 42]. One of the in-
teresting challenges in our setting is that reasoning about
security-design models involves different kinds of deduction
problems as indicated in Section 3. This includes answering
queries on models, which amounts to querying a potentially
very large, but finite, scenario, and determining the exis-
tence of scenarios satisfying constraints, which calls for the-
orem proving or the use of constraint solvers. Model check-
ers or theorem provers are needed when reasoning about the
combination of SecureUML with dynamic process-oriented
models, such as those considered in [8].

Transformation.

Yie et al. [44] propose using model transformation-based
techniques to integrate requirements, including security, in
a model-driven software product line. In their setting, ab-
stract design models of the application and of its security
policy are built and refined using model transformation to
obtain an implementation model with Java Platform, En-
terprise Edition (JEE) security annotations. A related ap-
proach, using aspect-oriented programming, is outlined by
Fox and Jiirjens [26]. They propose to enrich a data model
with a security policy by performing a model transforma-
tion using the bidirectional object-oriented transformation
language (BOTL) [33, 34].

Finally, creating user interfaces is a common and time con-
suming task in application development. There have been
numerous proposals and tools that aim to reduce the effort
required to build effective, user-friendly graphical interfaces.
Surprisingly, there has been no prior research on the system-
atic design of GUIs whose functionality should adhere to the
security policy of the underlying application-data model.

8. PERSPECTIVE AND OUTLOOK

The ever-growing development and use of information and
communication technologies is a constant source of security
and reliability problems. Clearly we need better ways of
developing software systems and approaching software engi-
neering as a well-founded engineering discipline.

In model-driven development, models are the cornerstone
of software and system development and can be used to
abstract away irrelevant details, rigorously specify the in-
terplay between security and functional requirements, and
provide a basis for analysis and transformation. Proponents
of model-driven development have in the past been guilty
of making overambitious claims: positioning it as the Holy
Grail of software engineering where modeling completely re-
places programming in that systems are entirely generated
from high-level models, each one specifying a different view
of the same system. This vision is, of course, unrealizable
in its entirety for simple complexity-theoretic reasons. If
the modeling languages are sufficiently expressive then ba-



sic problems such as the consistency of the different mod-
els/views of a system becomes undecidable.

The original vision of model-driven security was to pro-
vide a way for software engineers to bridge the gap from
security and design requirements to systems by taking a
model-centric approach. This in turn necessitated bridg-
ing the gap between security modeling languages and design
modeling languages, leading to the notion of security-design
modeling languages, such as SecureUML+ComponentUML.
Model-driven security has enormous potential not because it
tackles the deep problem of synthesizing “business logic” but
rather the shallow yet often extremely wide problem of gen-
erating security infrastructure. This infrastructure can be
built from standard APIs and assertions and its complex-
ity lies, essentially, in getting the deployment information
right, despite the numerous details that must be considered.
Security-design models provide a clear, declarative, high-
level language for specifying these details. The strength of
security-design models also lies in their well-defined seman-
tics. This opens up a range of exploitation options and so
far we have only scratched the surface of what is possible.

Our past work has focused primarily on access control.
However, many systems have security requirements that go
beyond access control, for example, obligations on how data
must or must not be used once access is granted. We are
currently working on handling usage control policies in the
context of model-driven security. The challenge here is to
define modeling languages that are expressive enough to cap-
ture these policies, support their formal analysis, and pro-
vide a basis for generating infrastructures to enforce or, at
least, monitor these policies.

More generally, there are many challenging questions on
the analysis side. Here, our goal is to be able to analyze
the consistency of different system views. For example, sup-
pose that access control is implemented at multiple tiers (or
levels) of a system, e.g., at the middle tier implementing a
controller for a web-based application and at the back-end
persistence tier. If the policies for both of these tiers are for-
mally modeled, we would like to answer questions like “will
the controller ever enter a state in which the persistence
tier throws a security exception?” Note that with advances
in model transformations, perhaps such questions will some
day not even need to be asked, as we can uniformly map a
security policy across models of all tiers.

Ultimately we see model-driven security playing an impor-
tant role in the construction and certification of critical sys-
tems. For example, certification under the Common Criteria
requires models for the higher Evaluation Assurance Lev-
els. Model-driven security provides many of the ingredients
needed: models with a well-defined semantics, which can be
rigorously analyzed and have a clear link to code. As the
acceptance of model-driven development techniques spread,
and as they become better integrated with well-established
formal methods that support a detailed behavioral analysis,
such applications should become a reality.
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APPENDIX
A. ANALYZING ACCESS CONTROL

As discussed in Section 3, analyzing the scenarios that
are consistent with a given security-design model requires
reasoning about what is entailed by the model’s permissions
and associated constraints, as well as any invariants of the
underlying design model.

Our current approach to analyzing access-control scenar-
ios is based on a mapping from OCL to first-order logic [14].
In a nutshell, this mapping is defined recursively over the
structure of OCL expressions. Boolean expressions are trans-
lated to formulas, mirroring their logical structure; integer
expressions are basically copied. Collections are translated
to predicates, whose meaning is defined by auxiliary formu-
las generated by the mapping. Association-ends are trans-
lated to predicates, which are also defined by auxiliary for-
mulas. Finally, attributes are translated to uninterpreted
functions and classes are translated to predicates.

Based on this mapping, we can answer questions about the
consistency of a scenario satisfying a given property, with re-
spect to an access control policy model, using satisfiability
modulo theories (SMT) solvers. For example, given the ac-
cess control policy model of Figure 4, consider the property
of someone being able to change his own salary. We use the

SMT solver Yices [19] to analyze the consistency of scenarios
satisfying this property with respect to this model.

First, using our mapping, we formalize in Yices the infor-
mation contained in the (underlying) data model, i.e., the
model shown in Figure 3.

(define Employee::(-> int bool))
(define supervisedBy::(-> int int bool))
(define supervises::(-> int int bool))

; type properties of supervisedBy and supervises
(assert (forall (x::int) (forall (y::int)

(=> (supervisedBy x y) (Employee y)))))
(assert (forall (y::int) (forall (x::int)

(=> (supervises y x) (Employee x)))))

; multiplicity of supervisedBy
(assert (forall (x::int) (forall (y::int)
(=> (and (Employee x) (and (Employee y)
(supervisedBy x y)))
(forall (z::int)
(=> (and (Employee z)
(supervisedBy x z))

(=y 2N

; relationship between supervisedBy and supervises
(assert (forall (x::int) (forall (y::int)
(=> (supervisedBy x y) (supervises y x)))))
(assert (forall (x::int) (forall (y::int)
(=> (supervises y x) (supervisedBy x y)))))

; invariant: nobody is his (or her) own supervisor:
(assert (forall (x::int)
(=> (Employee x) (not (supervisedBy x x)))))

Second, we also use our mapping to formalize the OCL
expression stating that someone satisfies the contraint for
changing his own salary, namely:

Employee.allInstances()->exists(self, caller|
self.supervisedBy->includes(caller)
and self=caller)

The resulting assertion in Yices is the following;:

(assert (exists (self::int) (exists (caller::int)
(and (Employee self) (and (Employee caller)
(and (supervisedBy self caller)

(and (= self caller)

Finally, to check that the access control policy model pre-
vents anyone from changing his own salary, we check if all of
the above assertions are satisfiable. As expected, the answer
automatically provided by Yices is unsat.



