Testing Graph Databases with Synthesized Queries

Zijing Yin Si Liu David Basin

ETH Zurich ETH Zurich ETH Zurich

Switzerland Switzerland Switzerland
zijing.yin@inf.ethz.ch siliu@inf.ethz.ch basin@inf.ethz.ch

Abstract

Graph databases (GDBs) are increasingly used in many applications.
However, their advanced features make them prone to logic bugs.
Despite recent advances in GDB testing, a common limitation of
existing approaches is the lack of ground truth for their test oracles.
This results in both incorrectly identified bugs and overlooked bugs.

We introduce GQS (Graph Query Synthesis), the first automated
testing approach for detecting logic bugs in graph databases (GDBs)
based on an established ground truth. GQS starts by randomly
generating a graph and selecting a set of properties associated with
its elements, whose key-value pairs form the expected result set
serving as the ground truth. It then synthesizes a query intended to
retrieve these values from the graph. When the query is executed
on the graph by the GDB under test, any discrepancy between
the actual result set and the ground truth indicates a logic bug. To
extensively test a GDB, we develop novel techniques that synthesize
both syntactically and semantically complex queries.

We implement GQS in a tool that incorporates the first Cypher
query synthesizer specifically designed for testing GDBs. Overall,
we find 36 previously unknown bugs across four production GDBs,
of which 26 are logic bugs, with some remaining undetected for up
to five years. Additionally, our tool demonstrates superior effective-
ness in bug detection compared to the state-of-the-art testers.

CCS Concepts

« Information systems — Data management systems; « Soft-
ware and its engineering — Software testing and debugging.

1 Introduction

Graph databases (GDBs) are increasingly used across a variety of
modern applications. Unlike traditional relational databases, GDBs
are optimized for managing the storage and retrieval of graph-
structured data with nodes (e.g., users), relations (e.g., friendships),
and properties attached to them (e.g., names for users and “since
when” for friendships). This makes GDBs particularly well suited
for applications such as recommender systems, social networks,
and data mining [6], where intricate relationships and patterns in
large datasets must be rapidly discovered and analyzed.

Unfortunately, GDBs’ advanced features make them prone to
logic bugs, where they silently produce incorrect query results.
Figure 1 presents an example of a bug discovered in FalkorDB that
existed for four years. FalkorDB returns a result that is incorrect as
it has a wrong value in the a3 field. Such logic bugs are widely rec-
ognized as being more challenging to detect than database crashes
or exceptions [19, 47, 54, 62].

Related Work on GDB Testing. A key challenge in automatically
detecting logic bugs is to develop an effective test oracle for deter-
mining whether a GDB correctly answers a given query. Recent

research has produced excellent testers [16, 19, 22, 33, 61, 62] that
attempt to address this challenge. In line with the growing trend of
using randomized testing to effectively uncover system-level bugs
in general [23, 31] and relational databases in particular [20, 47, 54],
these tools all generate random graph data and queries to exercise
the GDB under test. To determine correctness, they rely on either
differential [34] or metamorphic [9] test oracles. A common limi-
tation of these efforts is the absence of ground truth for their test
oracles, resulting in both false positives (incorrectly identified bugs)
and false negatives (overlooked bugs).

Differential testers [16, 61] execute the same query on different
GDBs or across different versions of the same GDB. Individual exe-
cution results serve as an oracle for each other, and any discrepancy
suggests a bug. Consequently, bugs that arise from libraries shared
by multiple database implementations under test may be missed,
e.g., two query results are the same, but both are incorrect. In addi-
tion, false positives may occur when queries yield inconsistent yet
expected results for different GDBs (due to their intended designs
or implementations [35, 39]). For instance, the Grand tool [61] was
recently found to report a large number of false alarms [22, 62].

Metamorphic testers [19, 22, 33, 62] avoid false positives by de-
sign. They rewrite the originally generated query into a set of
semantically related new queries and then check if their outputs
maintain the same semantic relation, e.g., whether one result set is
equivalent to another [33], is a subset of another [19], or is a union
of multiple other result sets [22, 62]. However, many bugs can still
go unnoticed because these testers focus solely on the relationships
between the answers to different queries, rather than establishing
a ground truth for each individual query. For example, suppose the
query Q' is derived from the query Q based on the subset relation,
and their query result sets are R’ and R, respectively. While R” C R
passes the test, both result sets could be incorrect.

Additionally, metamorphic testers rely on oracles that may con-
strain the complexity of test queries, which is desirable to trigger
subtle logic bugs. For instance, GDBMeter [22] bases its test oracle
on a three-valued logic, which can be used only to filter clauses like
WHERE (in Cypher language [11]). Consequently, bugs not rooted in
incorrect predicate handling are likely to be overlooked.

Our Approach. We introduce GQS (Graph Query Synthesis), the
first automated testing approach for identifying logic bugs in GDBs
using an established ground truth. GQS begins by randomly gener-
ating a graph and selecting a set of properties associated with its
elements, whose key-value pairs constitute the expected result set
serving as the ground truth. It then synthesizes a complex query
aimed at retrieving these values from the graph. When the GDB
under test executes this query on the initially generated graph, any
discrepancy between the actual result set and the expected result
set reveals a logic bug.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

1| MATCH (n2)<

n@), (n3)-C[r2]1->(n4)-L[r31->(

o
c
=
=
—
=z
o
=

77777 ;};72 <> id, false] as al
WITH DISTINCT n2, r3, n3, n4, , endNode(r1) as a2, ho

MATCH (n2)<-[r4 :T10]1-(h0@),
) 1

. W

5| RETURN n2.id as , ré6.id as a4
6| // expected result: {a3:1, a4:16}
7| // actual result: {a3:4, a4:16} ¥k

Figure 1: A logic bug found in FalkorDB. The full bug-
triggering query in Cypher has various search patterns and
nested expressions (underlined), as well as different types of
clauses and cross-clause variable references (colored).

To effectively test GDBs and uncover their logic bugs, GQS syn-
thesizes test queries that are both syntactically and semantically
complex. These queries challenge GDBs beyond common user sce-
narios; while they may differ from typical usage patterns, they are
highly effective for increasing the likelihood of uncovering hidden
bugs related to query parsing, optimization, graph traversal, etc.
We generate these queries across four dimensions: (i) incorporating
diverse search patterns, (ii) generating deeply nested expressions
within a query, (iii) establishing highly correlated data dependen-
cies between different parts of the query, and (iv) utilizing a wide
range of language features, including various clauses and functions.

The query shown in Figure 1 is synthesized by GQS, which un-
covered a previously unknown logic bug in FalkorDB. This test
query incorporates various search patterns and deeply nested ex-
pressions, as underlined. Additionally, it utilizes a variety of clause
types, such as MATCH, UNWIND, and WITH, as well as functions like
endNode, and exhibits complex cross-clause dependencies (e.g., the
variable n5 is referenced in four different clauses), as highlighted.

Synthesizing complex GDB queries like that in Figure 1 from an
expected result set is, however, highly non-trivial. GQS addresses
this challenge by synthesizing queries in a stepwise manner, lever-
aging a collection of novel techniques. Specifically, we leverage
the chaining structure of graph queries to devise a synthesis plan
for the given expected result set, breaking the synthesis task into
individual steps, each corresponding to a specific clause in the final
query. In particular, these steps involve synthesizing queries that
go beyond the simple MATCH-RETURN structure, allowing for the
integration of a wider range of clauses and functions. For instance,
as shown in Figure 1, although the desired result includes only
n2.id and r6.id (line 5), additional synthesis steps are involved,
such as introducing more nodes and relations in the MATCH step
(line 1), distributing lists in the UNWIND step (line 2), and projecting
in the WITH step (line 3). This also facilitates creating rich data de-
pendencies across clauses, e.g., the referenced variables in the same
colors. To ensure the final query result remains consistent with the
ground truth, GQS schedules these additional synthesis steps in
a pairwise manner, for example by removing any extra nodes or
properties introduced earlier.

Additionally, we devise two techniques to enhance the complex-
ity of the synthesized clause at each individual step. First, through
pattern mutation, we instantiate the clause with varying search
patterns, such as the two MATCH steps (lines 1 and 4). Second, to
examine a wide range of expression features, including various

Zijing Yin, Si Liu, and David Basin

functions and operators, we construct branching and nested expres-
sions embedded within the clause, e.g., the WHERE predicate and the
endNode function (lines 4 and 3).

We implement our GQS approach in a tool that incorporates
the first Cypher query synthesizer tailored for extensively testing
GDBs for logic bugs. We chose Cypher as it is the most widely
adopted, fully-specified, graph query language [40], and it is used
by prominent GDBs like Neo4j [39] and Memgraph [35]. However,
our approach is general and can be adapted to test GDBs using
other query languages, as discussed in Section 7.

Contributions. Overall, we make the following contributions.

o At the conceptual level, we provide a novel approach to tackle
the test-oracle problem of detecting logic bugs in GDBs by
synthesizing test queries based on an established ground truth.

o Atthe technical level, we propose a stepwise synthesis approach
called GQS, incorporating novel techniques that ensure the
synthesized test queries are complex, thereby stressing GDBs.

o At the practical level, we realize GQS in an automated testing
tool and assess it on four extensively tested production GDBs
supporting Cypher queries: Neo4j, Memgraph, Kuzu [24], and
FalkorDB [12]. Our tool discovers 36 new bugs, including 26
logic bugs, where some remained latent for up to five years.
Compared to the state-of-the-art testers, our tool also exhibits
superior effectiveness in bug detection.

We have open-sourced our approach and synthesizer to support
further research on GDB testing and related applications.’

2 Background

2.1 GDBs and Labeled Property Graphs

Graph databases (GDBs) structure data as a graph G = (N,R),
where N denotes nodes (or objects) and R denotes relations (or re-
lationships). The nodes and relations are also associated with labels
or types, which define their categories. Furthermore, additional
information may be associated with them via properties. Following
the Cypher Reference [42], we define a property p as a key-value
pair (k,v). The key k is a tuple (e, n), where e € (N U R) specifies
the graph element, and n € Py, is the property name. Accordingly,
v € V is the value. The sets P, and V are domain dependent. This
structure, known as a labeled property graph (LPG) [8], is widely
used in GDBs such as Neo4j and Memgraph.

Example 2.1. Figure 2 illustrates an example of an LPG modeling
users’ movie preferences. Specifically, the node Nj labeled USER is
connected to two nodes, N2 and N3, labeled MOVIE, via relationships
Eq and Ey, both labeled LIKE. The nodes and relationships include
properties such as (Ny, genre) with the value [Drama, Romance]
and (Eq, rating) with the value 10.

Additionally, we define the expected result set, denoted as P =
{p1, P2, ---,Pn}, as a collection of properties attached to graph ele-
ments. This set serves as the ground truth for validating the query
results. For instance, the two properties in the above example form
an expected result set.

10ur repository is available at https://github.com/Graph-Query-Synthesis/GQS.

https://github.com/Graph-Query-Synthesis/GQS

© % N G A W o =

Testing Graph Databases with Synthesized Queries

Label Type Relationship Node
USER
LIKE name = 'Alice’

rating: 5, E

1
MOVIE Ep Ny rati';gf'}:o MOVIE

name = 'The Sound of Music' name = 'Titanic'
genres = [Drama, Musical] Propert genres = [Drama, Romance]
year=1965 Y year=1997

N3 N,

// Query 1:
MATCH (m:MOVIE) WHERE m.year=1997
RETURN m.name, m.year
// Query 2:
MATCH (p :USER)-[r :LIKEJ]->(m :MOVIE)
WHERE p.name = 'Alice' AND r.rating >= 8
UNWIND m.genres AS LikedGenre
WITH DISTINCT m.name as MovieName, m.year as Year
RETURN MovieName, Year

Figure 2: An example labeled property graph storing the
movies that users like (top) and two examples of Cypher
queries retrieving movie’s name and year (bottom).

2.2 The Cypher Query Language

Cypher [40] is the de facto query language for GDBs. A Cypher
query is structured as a sequence of clauses. Each clause takes as
input a table of intermediate status (an empty table if it is the first
clause), and produces a new table of intermediate status, serving as
the input to the next clause. The last clause’s output is the query
result. Each clause can also refer to the LPG when required, for
example, introducing graph elements to the table.

Cypher employs five main clauses to retrieve data, namely MATCH,
OPTIONAL MATCH, UNWIND, WITH, and RETURN. The MATCH clause
searches for the user-specified patterns in an LPG and introduces
the matching elements into the intermediate result. OPTIONAL MATCH
allows partial matching and fills in the missing parts of the pattern
with null values. The UNWIND clause expands a list into individual
rows, enabling subsequent clauses to perform operations on each
element within the list. The WITH clause allows manipulating the
intermediate result before passing it to the following clauses, for
example, introducing new variables through projections or remov-
ing existing variables in the intermediate table by excluding them
from the projection list. The RETURN clause has the same semantics
as WITH, but it is used as the final clause in queries.

Additionally, the UNION and CALL clauses can be combined with
the above clauses. The UNION clause connects two queries and com-
putes the union of their outputs; the CALL clause invokes database
engine procedures. Subclauses like WHERE, ORDER BY, SKIP, and
LIMIT function as refinement operations within clauses. For in-
stance, the WHERE clause adds constraints to the patterns described
in the MATCH clause or filters the results in the case of WITH; the
ORDER BY clause sorts results; the LIMIT and SKIP clauses truncate
result sets. These subclauses mirror SQL functionalities.

Example 2.2. Figure 2 shows two Cypher queries that retrieve
the same expected result set with keys (N, name) and (Na, year).
The first query employs a simple MATCH-RETURN structure. The sec-
ond query returns the same result, but incorporates more complex
features (aiming to exercise additional functionalities of query pro-
cessing). The MATCH clause (line 5), together with the WHERE clause
(line 6), searches for the movies liked by Alice and rated at least 8.
Note that variables, such as p and r, bind to the nodes and relations,

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

© |Initialization

Expected Result Set

Key Value
@ Establishing Ground Truth (N1,name) “Alice’
(Eq,rating) 10

(Np,genres) [Drama,Romance]

Clause 5 RETURN
Clause 3 ONWIND)]
Clause 2 OPT. MATCH

Search Pattern
Mutation

—
(S O==§ B) Hierarchical Expr. — 5 S
~O==8 87l Construction -

Clause Generation

S|

Step 1 MATCH

(D™
E

—l

Cross-Step "---|--
Dependencies

Synthesis Plan —_—

© Step-wise Query Synthesis @ Validation

Figure 3: The workflow of GQS.

such as the nodes with USER label and relations with LIKE type,
respectively. The UNWIND clause (line 7) then expands the list of
genres associated with the matching movies into individual rows
(two in this case: one row for Drama and the other row for Romance)
under the column LikedGenre. The WITH clause (line 8) projects the
node property like name as MovieName and removes duplicates with
the DISTINCT operator. Finally, the RETURN clause (line 9) returns
the query result.

Cypher also uses six additional clauses for writing data to the
database, including CREATE (for creating graph elements), SET (for
updating properties), MERGE (which acts as a combination of MATCH
and CREATE, allowing conditional actions depending on whether the
specified data already exists or is newly created), DELETE, DETACH
DELETE, and REMOVE (for removing graph elements or properties).
Unlike data retrieval clauses, which are utilized by test oracles to
determine if the GDB under test correctly answers a given query,
these clauses are mainly used for initializing or updating graphs.

Further details about these clauses can be found in the Cypher
Query Language Reference [42].

3 Graph Query Synthesis

In this section, we present GQS (Graph Query Synthesis), an auto-
mated testing approach for detecting logic bugs in GDBs. GQS is
unique in its ability to establish ground truth for complex graph
queries that are used to test these databases extensively.

3.1 Overview
Figure 3 illustrates GQS’s workflow, consisting of four main steps.

O Initialization. We begin by randomly generating a graph. For
instance, the graph in Figure 3 comprises five nodes and eight
relations. Additionally, labels and properties are randomly assigned
to the nodes and relations, and indexes are created for these labels
and properties. The graph is then loaded into the GDB under test.

® Establishing Ground Truth. We randomly select properties
from graph elements to form an expected result set, such as (N,
name), (E1, rating), and their corresponding values, which are
then stored in a table as key-value pairs. This serves as the ground

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

truth. Subsequently, we synthesize a graph query that is designed
to produce these key-value pairs as the result upon execution.

@ Step-wise Query Synthesis. We devise a synthesis plan con-
sisting of multiple steps to obtain the expected result set. Each step
focuses on synthesizing a part of the final query, such as the MATCH
clause in Step 1 and the RETURN clause in the last step, as shown
in Figure 3. To enhance the final query’s complexity, these steps
combine a variety of clauses, such as WITH, extending beyond the
simple MATCH-RETURN structure (see Section 3.2 for details).

These clauses also introduce nodes, properties, and aliases out-
side the expected result set. To guarantee that the final query result
still aligns with the set, we schedule these clauses in a pairwise
manner. For instance, the extra red node N4 added at Step 2 using
OPTIONAL MATCH is removed at Step 4 using WITH. Across different
steps, data dependencies are also established via variable references,
as illustrated by the colors and dashed lines in the figure, leading to
semantic connections between clauses (see Section 3.3 for details).

Based on the synthesis plan, concrete clauses are generated for
each step. To increase their complexity, we mutate search patterns
to explore a diverse set of query plans in the GDB engine, such as
graph traversal processes, as illustrated by the dashed arrows and
nodes in Clauses 1 and 2 (see Section 3.4). Furthermore, we embed
hierarchical expressions within the generated clause, incorporating
branching and nested structures, to examine GDB functions and
operators (see Section 3.5). Finally, we chain all the clauses together
to form the complete query.

@ Validation. As the final step, we execute the synthesized query
on the GDB under test. Any discrepancy between the actual execu-
tion result and the ground truth established at Step @ indicates the
presence of a logic bug.

The above four steps illustrate one iteration of our testing pro-
cess, which can be repeated. In subsequent iterations, we can either
proceed with Step @ to synthesize another graph query, potentially
with a different number of steps; continue with Step @ to generate
new queries for other extracted properties; or restart with Step @ to
create a new GDB, which may vary in size. These actions are chosen
randomly. Before testing begins, we configure both the number of
iterations and the number of synthesis steps per iteration.

At the core of our GQS approach is the synthesis of complex
queries from a given expected result set (Step ®). The remainder of
this section provides a detailed explanation of this process.

3.2 Integrating Diverse Clauses

To synthesize a query whose result is the established ground truth,
i.e., the expected result set, a simple MATCH-RETURN structure is suffi-
cient, as shown in the first query of Figure 2. However, to extensively
test the GDB, more complex queries are desirable. Therefore, GQS
incorporates additional clauses during query synthesis, distributing
them across steps. These additional clauses introduce diverse graph
elements and aliases beyond the expected result set, to build more
cross-step dependencies, enable different search patterns, etc. To
ensure the final query still retrieves the desired properties, GQS
schedules these clauses in a pairwise manner, e.g., by removing the
extra nodes or properties added earlier.

Zijing Yin, Si Liu, and David Basin

Table 1: Paired operations for adding and removing elements
and aliases, as well as expanding and truncating lists.

Notation Operation Clause
&t introduce elements (OPTIONAL) MATCH
E™ remove elements WITH, RETURN
At create aliases WITH, RETURN
A~ remove aliases WITH, RETURN
Lt expand lists UNWIND
L~ truncate lists WITH, RETURN

Based on the semantics of the five main clauses related to data re-
trieval [42], we devise the following three pairs of “add and subtract”
operations, as also illustrated in Table 1.

e Introduce/Remove Elements. Graph elements, such as nodes
and properties, are introduced using (OPTIONAL) MATCH clauses.
They can be removed using the WITH or the RETURN clause
by excluding them from the intermediate or final result set,
respectively.

Create/Remove Aliases. Aliases can be bound to expressions,
including those for property accesses (e.g., n2.id is bound to
the alias a3, as shown in Figure 1), and to existing elements,
serving as referenceable variables in the query. Both WITH and
RETURN clauses can create or remove these aliases.
Expand/Truncate Lists. Lists can be expanded into sepa-
rate rows using the UNWIND clause. This duplicates the table of
intermediate status based on the list’s length, assigning each
list element to one of the copies with a new alias. To truncate
the expanded list and retain a single copy, the WITH or RETURN
clause along with result refinement subclauses like LIMIT and
WHERE can be applied.

To arrange these paired operations across individual steps, we
classify them into two categories: (i) essential operations, which in-
troduce properties in the expected result set, and (ii) supplementary
operations, which are independent of the expected result set.

Specifically, for each property key (&, p) in the expected result
set, there are two types of essential operations. The first type in-
troduces the graph element itself, denoted as E*, since accessing
the property relies on the existence of the element. The second
type refers to the actual access to the property, denoted as (E.p)*.
Since the element & itself is not part of the ground truth, a paired
removal, denoted as &7, is also scheduled.

Supplementary operations involve elements unrelated to the
ground truth, including the introduction of extra graph elements,
creation of aliases, and expansion of lists. All these operations
are performed randomly: extra nodes or relations are selected at
random from the graph; aliases are bound to randomly chosen graph
elements or expressions (see Section 3.5 for expression generation);
and list items are instantiated with similarly generated random
expressions. As with Category (i), each of these operations is paired
with a corresponding removal operation.

Example 3.1. Consider the initial graph in Figure 3 and the des-
ignated ground truth with property keys (N1, name), (E1, rating),
and (N, genres). Category (i) involves nine essential operations,
ie., N1+, (N1.name)*, Ny, E;r (Eq.rating)*, ET, N2+, (Na.genres)*,

Testing Graph Databases with Synthesized Queries

and N, where three pairs of add-subtract operations are arranged
for N1, E1, and Ny that are not part of the expected result set.

Operations in Category (ii) are then supplemented by GQS. For
example: an additional element N3 can be added; an alias a bound
to a property-access expression Ny.year can be introduced; and
an array [associated with the expression [N5.name] can also be
expanded. The involved operations include N7, a*, NJ, NI, and I*,
as well as their paired removals N, a~, N, ,N;, and [~.

3.3 Building Cross-Step Dependencies

Our GQS approach distributes all operations across steps to build
complex cross-step dependencies through referenceable variables
in search patterns or expressions. However, valid dependencies
are established only when operations are scheduled in the correct
order. For instance, the property-access operation (Nj.name)* can
only be assigned to a step after N7 has been introduced in an earlier
step; otherwise, the dependency cannot be formed as the query is
syntactically invalid.

When scheduling operations, two key temporal constraints must
be considered to build valid dependencies. First, in any task, the
graph elements involved must have been introduced before they
are referenced. Second, removal operations must be scheduled after
their corresponding add operations.

We denote these temporal constraints as O < O’, meaning that
the operation O must be scheduled before the operation O’. In the
above example, the constraint N1+ < (N1.name)* must be satisfied.
Additionally, as Cypher allows element removal to be scheduled
in the same clause as alias binding [42], we also account for weak
constraints, denoted as <. For example, (N7.name)™ < N| means
that the removal of the element N; can be scheduled either at the
same step or after its property access Nj.name.

Example 3.2. Overall, the eight constraints for establishing valid
dependencies in Example 3.1 are:

(1) Ny < (N1.name)* < N; (B)Nf <a* 2Ny
(2) E7 < (Ey.rating)* 2 Ef (6) NS < I* X Ny
(3) N < (Na.genres)* < N (7)a*t <a”
(4) N < N© ®) I <1~

3 3

GQS schedules operations in different steps while ensuring no
violation of constraints by adapting topological sorting. Specifically,
it first scans the operations to be arranged, and then constructs a
directed acyclic graph (DAG) representing the involved constraints,
where each node is an operation and each edge is the temporal order
between two operations. The distribution procedure takes as input
the DAG and outputs, for each step, the assigned operations and
the referenceable variables. These variables can then be referenced
in search patterns or expressions, thus building data dependencies
across steps. The pseudocode is given in Algorithm 1.

The procedure starts by traversing the DAG (line 4) and collects
the nodes with zero indegree, i.e., operations that are ready to be
assigned as they do not depend on any unassigned operations. It
then checks whether the clause type of an operation o matches that
of the operations already assigned to the current step, as each step
corresponds to a single clause type. If both conditions are met, o is
assigned to the current step based on a random decision (line 5).

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Algorithm 1 Scheduling operations

Input: G, a DAG comprising operations as nodes and their
constraints as edges

Output: Step, an array with the operations assigned to each
step; Var, an array with the referenceable variables at each step

i1 > the current step
2: while G is not empty do

3 Step[i] — 0 > initializing current step’s ops
4 for oin G do

5 if deg™ (0) = 0 A align(Step[i], 0) A rand() then

6: Step[i].append(o)

7 for o’ in o.weak_related do >0=0
8: if deg™ (0”)=1 A align(Step[i],0’) A rand() then
9: Step[i].append(o”)

10: end if

11 end for

12: end if

13: end for

14: Var[i] « ref_vars(Var[i— 1], Step[i]) > Var[0] =0
15: G.remove(Step[i])

16: Ie—i+1

17: end while

N1 name)

(E4. ratlng) N2 genres)

Step
Assigned

Figure 4: An illustration of assigning operations across dif-
ferent steps based on Example 3.2.

Weak Constraints

Normal Constraints

Example 3.3. Figure 4 illustrates the assignment of operations
across steps, based on Example 3.2. For Step 1, six operations—N,
E}, N, NS, Nf, and Nf—have zero indegree and share the same
clause type MATCH. Among them, four operations are randomly
selected and assigned to the first clause (colored in green).

The procedure then examines each operation o’ that is weakly
constrained by the assigned operation o, i.e., 0 < o’ (line 7). If 0o’
has no other constraints (i.e., its in-degree is one) and its clause
type matches that of the operations already assigned to the current
step, it may be included in the same step at random. (line 8)

Example 3.4. As shown in Figure 4, after assigning a* to Step
4 (colored in red), the operation N, is also assigned to this step
because it has only one constraint weakly related to aj and shares
the same clause type WITH.

In each step, the set of referenceable variables is updated (line 14)
by collecting those variables introduced earlier and excluding those
removed in the current step. These variables, bound to aliases, nodes,
and relations, can be referenced in search patterns and expressions
(see Section 3.5). Subsequently, the assigned operations and their
associated constraints are removed from the DAG (line 15). This
process is repeated until the DAG becomes empty.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

® OO O

Nodes B e Previously
to be introduced ase patiern used pattern

Figure 5: Three pattern mutation strategies.

Oo—0

Graph path of @

Mutated pattern

Once the process terminates, operations are scheduled and clause
types for each step are determined based on the mapping in Table 1.
For example, Step 3 in Figure 4 will use UNWIND as its operation
I* involves list expansion; Step 2 introduces elements (£*) and
thus will employ MATCH, which may be randomly replaced with
OPTIONAL MATCH for added variety. Next, we describe how GQS
constructs each concrete clause to enhance query complexity.

3.4 Mutating Search Patterns

Diverse search patterns involve different ways of combining nodes
and relations, as well as referencing elements introduced earlier in
the query. Recall the search pattern (p :USER)-[r :LIKE]->(m
:MOVIE) in Figure 2 (line 5). A “reverse” yet equivalent pattern, (m
:MOVIE)<-[r :LIKE]-(p :USER), would trigger different query
plans, such as graph traversal processes, in many GDBs like Mem-
graph [35].2 In the former pattern, all USER nodes are retrieved first,
whereas, in the latter pattern, the traversal starts by retrieving all
MOVIE nodes. Moreover, if a subsequent search pattern (p)-[r2
:DISLIKE]->(m2 :MOVIE) is used, the traversal will begin specifi-
cally from the Alice node, to which the variable p is bound through
the first MATCH clause (line 5-6), to find the movies she dislikes.

To explore the diverse query-processing behaviors of GDBs, GQS
introduces novel pattern mutation strategies that generate a large
class of search patterns. These patterns both introduce new graph el-
ements as specified in the plan and reference previously introduced
ones. For instance, when synthesizing Clause 2 in Figure 3, the
MATCH clause introduces nodes N3 and Ny, while also referencing
earlier elements such as Ny and Ns.

GQS begins by collecting paths through the graph that contain
the elements to be introduced. The sequences of nodes and relations
along these paths form the base patterns. For example, the dashed
boxes in Figure 5 show three base patterns, each containing N3
and Ny, to be introduced. The path for the base pattern in Scenario
@ is highlighted by the red arrow. GQS then iterates through all
these base patterns and mutates them to new ones. First, for each
base pattern, it identifies the graph elements that also appear in the
patterns used in previous clauses (e.g., N5 in Scenario @). There
are three cases based on the shared element’s position. For each,
we devise a corresponding mutation strategy, which GQS applies
to the base pattern, combining it with a previously used pattern.

2Some GDBs may optimize these two patterns into the same query plan. However, this
is generally not the case for complex, yet semantically equivalent, search patterns [33].

Zijing Yin, Si Liu, and David Basin

o If the common element appears at the beginning or end of both
the base and previous patterns, the two patterns are concate-
nated, as illustrated by @ in Figure 5. In this case, the mutated
pattern now also references the previously introduced node Nj.

e When the common element is located at the start or end of either
the base or the previous pattern (but not both), a branching mu-
tation is applied, as depicted in @. In this scenario, the previously
introduced node Nj is incorporated into the mutated pattern,
forming two branches that separately involve N3 and Ny.

e If the common element is located in between the two ends of
both the base and previous patterns, a cross mutation applies, as
shown in @. The mutated pattern can then be split at the common
element (N; in this case) into multiple subpatterns, which are
then randomly recombined to form new search patterns.

Note that as both the base patterns and previously used patterns
align with the graph structure, the mutated patterns derived from
them naturally retain alignment to the graph, as illustrated by the
three examples in Figure 5. Finally, we encode the mutated patterns
into search patterns that are compatible with the MATCH clause. For
example, the mutated pattern in Scenario ® can be encoded into two
search patterns in a MATCH clause: (n3)<-[e2]-(n1)-[e1]->(n2)
and (n4)-[e4]1->(n1)-Le1]1->(n2).

During this process, GQS introduces additional mutations to
enhance the complexity of the generated queries. Specifically, the
labels or types of the corresponding nodes or relations are added to
the search pattern element to enable index-based optimizations by
the GDBs under test. Additionally, relations may either retain their
original direction or disregard direction to trigger a wider range of
graph traversal processes. For instance, the first search pattern men-
tioned above can be mutated into (n3:L)-[e2]-(n1)-[e1]-(n2),
where L specifies the label attached to n3, and the relation direc-
tions are removed. Furthermore, if the search pattern is part of
an OPTIONAL MATCH clause, which allows matched subgraphs to
partially align with the pattern, it can be extended with additional
random patterns. This further increases the query’s complexity.

Already bound elements

() --=> (") -l (n5) -I-> (n1)

NN
51

Figure 6: An illustrating example for predicate construction.

O Potentially matched elements

D Search pattern

An encoded search pattern may match multiple subgraphs. For
example, as shown in Figure 6, consider the pattern (n)-[]->(n’)-
[1->(n5)-[1->(n1) for Scenario @, where n5 and n1 were bound
to the nodes N5 and Nj in previous steps. Both the subgraphs
N3-N4-N5-N; and N3-N3-N5-Nj match this pattern; however,
only the former can correctly introduce the nodes N3 and Ny, as
scheduled (i.e., NJ and N;). GQS filters out undesired graph ele-
ments with predicates in the WHERE subclauses.

To construct such predicates, first, GQS scans through the search
pattern and selects a pattern element that is already bound to a
graph element. In our example, (n5) could be selected as it was
bound to N5 in the previous steps. If no such pattern elements exist,
then one pattern element is randomly picked, and a predicate is con-
structed to ensure that it only matches the desired graph element.

Testing Graph Databases with Synthesized Queries

Then, starting from this selected pattern element, GQS traverses
the graph following the search pattern and constructs predicates
when multiple matches could occur. In our example, starting from
(n5), GQS first checks the pattern segment (n’)-[]->(n5). Both
Ny and Ny could match (n’), as they both have an outgoing rela-
tion connected to Ns. Therefore, a predicate, such asn’.id = 4,is
constructed to ensure that n’ is bound to Ny (assuming identifiers
are unique). This process is repeated until all the pattern segments
are checked. Note that for OPTIONAL MATCH clauses, the randomly
extended pattern segments are also checked to ensure that the pat-
tern uniquely matches one subgraph, thereby avoiding an increase
in the multiplicity of the results. Finally, the expressions used in
these predicates will be further substituted with more complicated
ones that also achieve the same filtering, as described in Section 3.5.

3.5 Generating Complex Expressions

While predicates with simple expressions, such asn’.id = 4, are
sufficient to filter out undesired graph elements, more complex
expressions are preferable to extensively test GDBs.

Previous work [16, 47] provides a good basis for generating com-
plex expressions, like char_length(‘abc’)+sqrt(round(1.2)),
that satisfy specific value constraints, such as evaluating to 4 as
in the right-hand side of the above predicate. GQS adapts the ap-
proach proposed in [16] to construct such expressions. Specifically,
GQS first selects an expression template for the new expression.
This template includes functions (e.g., sqrt(par)), operator appli-
cations (e.g., par1 + par2), and string match expressions (e.g., par1
CONTAINS par2), where par1 and par2 denote the parameters of
the template. Such templates function as the skeleton of the ex-
pressions. Next, GQS converts the value constraint into respective
sub-constraints for these parameters. For instance, if the template
par1 + par2 is selected, the sub-constraints for par1 and par2
can be evaluating to 3 and 1, respectively. This process repeats
recursively to construct an expression for each parameter until the
nesting depth is reached.

Replacing Property-Access Expressions. Compared to expres-
sions like the above, generating complex expressions to replace
property-access expressions in predicates, such as n’ . id, is more
challenging because the new expressions must still effectively fil-
ter out undesired graph elements. For example, the expression
sign(n’.id) cannot replace n’.id as both n’.id = 4 (i.e., Ny)
andn’.id = 2 (i.e., N3) would evaluate to the same value 1. As a
result, this expression is ineffective in ruling out Nj.

GQS generates complex expressions by recursively nesting tem-
plates based on the original property access while ensuring the
distinguishability of elements at each nesting level. The pseudocode
for this process is provided in Algorithm 2. This algorithm takes
as input two sets of graph elements, S; and Sy, one of their com-
mon property name P whose value can distinguish these two sets,
and the nesting depth D. It outputs an expression Exp that, when
instantiated with elements from the respective sets, evaluates to
distinct values, denoted as V; and V5, respectively.

The algorithm begins by initializing the expression Exp with the
original property-access expression (line 1). The evaluation results
are then initialized by instantiating Exp with elements from the
respective sets, S1 and Sy (lines 2-3). Next, the algorithm determines

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Algorithm 2 Replacing property-access expressions

Input: S; and Sz, two graph element sets; P, a common property
name; D, the nesting depth

Output: Exp, an expression that, when instantiated with S;
and Sy, evaluates to different values with respect to P

1: Exp « original_property_access_expr(P)

2: Vi « property_val(Sy, P) > instantiating Exp with S;
3: V2 « property_val(Sz, P) > instantiating Exp with Sy
4 Type «— get_type(Exp)

5. while D > 0 do

6: Tplt — exp_template_with_param_type(Type)

7 New_Exp « Tplt.nest(Exp)

8: if New_Exp.eval(V;) N New_Exp.eval(V;) = () then

9: Vi «— New_Exp.evaluate(V;)

10: V2 < New_Exp.evaluate(V>)

11: Exp < New_Exp

12: Type «— get_type(Exp)

13: end if

14: De—D-1
15: end while

Exp’s data type and selects a new expression template that includes
a parameter matching this data type (lines 4-6). The new expression
is instantiated with the original Exp as its parameter (line 7). If the
template requires additional parameters, they are filled randomly.
The evaluation results for the new expression are then calculated
for both sets (line 8). If the evaluation results overlap, indicating
the template cannot differentiate between the elements of S; and
Sy, the algorithm selects a new template. Otherwise, Exp is updated
with the new expression (line 11), and its data type is updated based
on the result of the nested expression (line 12).

This process repeats, with the new Exp serving as a parameter for
another expression template until the specified depth D is reached.

Example 3.5. In the aforementioned example, S; and Sy include
Ny and Ny, respectively, while P represents the property name id.
GQS first finds an expression template that can accept integers as
parameters (i.e., n’ . id’s type). If left(m.name, n’.id) is chosen
as the new expression template, GQS checks if it still evaluates to
different values when instantiated withn’ .id = 4andn’.id = 2,
respectively. When this is the case, GQS then searches for another
template that can use left(m.name, n’.id) as a parameter and
remains distinguishable forn’ .id = 4andn’.id = 2. The process
continues until the predefined nesting depth is reached.

4 Implementation

We implement our GQS approach in an automated testing tool for
GDBs that support Cypher queries. The overall codebase consists
of 34K lines of Java code.

Integrating Different GDBs. GQS can be easily adapted to test
GDBs. We have integrated GQS into four popular GDBs, i.e., Neo4;j,
Memgraph, FalkorDB, and Kuzu, using their Java drivers. Each of
the first three GDBs requires around 100 LoC to configure and en-
sure stable testing. Kuzu requires the database schema information
before initializing a random graph, and 150 LoC were needed to

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

meet this requirement. For testing new GDBs, GQS offers interfaces
that allow for easy integration of their Java drivers.

Note that using an expected result set as the ground truth further
facilitates the integration, as properties (or key-value pairs) provide
a unified format widely supported by diverse GDBs. Moreover, this
design choice does not compromise the effectiveness of GQS’s bug
detection: errors not directly related to graph properties, such as
incorrect subgraph retrieval, still manifest as incorrect property
values, e.g., erroneous outputs of element identifiers.

Supported Cypher Features. Our implementation covers all 11
clauses and subclauses for data retrieval, as documented in the
Cypher Query Language Reference [42]; see also Section 5.3. The
only exception is the MANDATORY MATCH clause, which is not sup-
ported by the four Cypher databases we test (Section 5.1).

All supported data retrieval clauses are synthesized according
to the plan described in Section 3.2, except UNION and CALL. These
two clauses are handled separately due to their unique semantics
and varied implementations in practice. Specifically, since UNION
connects two queries, it is added after the synthesis of two sepa-
rate queries. The CALL clause invokes database engine procedures.
However, some implementations intentionally deviate from the Lan-
guage Reference [42]. For example, to retrieve graph element labels,
Neo4j and FalkorDB provide the procedure CALL db.labels(),
which align with the reference, while Kuizu and Memgraph do not
provide such functionality. In addition, our graph initializer incor-
porates all six clauses for writing data to the database. Unlike the
data retrieval clauses, these clauses are not used in our ground-truth
validation but are instead employed to create and update graphs.

GQS supports an extensive library of 61 functions, as well as
aggregation operators, property access operators, and mathematical
operators, which are commonly supported by the four tested GDBs.
Functions limited to only a few databases are excluded to ensure
compatible queries. Subquery and transaction features are currently
unsupported. Variable-length patterns are not supported as they
could introduce undesired subgraph matches.

Handling GDB-specific Cypher Variations. By default, our im-
plementation synthesizes Cypher queries in line with the Cypher
Query Language Reference [42]. However, we also account for
variations in how different GDBs implement certain Cypher fea-
tures. For instance, Kuzu and FalkorDB deviate from the relation
uniqueness requirement, allowing the same relation to be matched
multiple times within a single query pattern. In the search pat-
tern (n1)-[e1]-(n2)-[e2]-(n3), el and e2 are expected to cor-
respond to different relations in the graph according to the reference.
However, in FalkorDB and Kuzu, the same relation can be matched
by both e1 and e2. To address this, we introduce additional WHERE
predicates to filter out duplicate matches, e.g., WHERE e1!=e2.

5 Experiments
In this section, we conduct an extensive assessment of GQS, along

with the state-of-the-art logic bug detectors for GDBs. We seek to
answer the following questions:

Q1. Can GQS detect new bugs in production GDBs (Section 5.2)?
Q2. How do our key design choices contribute to GQS’s effec-
tiveness in bug detection (Section 5.3)?

Zijing Yin, Si Liu, and David Basin

Table 2: Summary of the tested GDBs.

GDB GitHub | Initial Tested version LoC
stars release
Neo4j 13.2K 2007 5.18, 5.20, 5.21.2 1.4M
Memgraph 2.4K 2017 2.13, 2.14.1, 2.15, 2.17 0.2M
Kuzu 1.3K 2022 0.4.2,0.7.1 11.9M
FalkorDB* 651 2023 4.2.0 2.8M

* RedisGraph, the predecessor of FalkorDB, has received 2K GitHub
stars since its initial release in 2018.

Table 3: Summary of the bugs detected by GQS.

GDB Logic bugs Other bugs
#detected #confirmed #fixed | #detected #confirmed #fixed
Neodj 2 2 2 3 3 3
Memgraph 6 6 1 1 1 0
Kuzu 5 5 5 2 2 2
FalkorDB 13 4 0 4 2 1
[Total | 26 17 8 | 10 8 6 |

Q3. Is GQS more effective in finding bugs than the state-of-the-
art (Section 5.4)?

5.1 Experimental Setup

We examine recent releases of four popular and heavily tested GDBs:
Neo4j [39], the market leader with over two decades of develop-
ment; Memgraph [35], an in-memory GDB specializing in real-time
analytics; FalkorDB [12], the fork of RedisGraph [44], designed for
large language models; and Kuzu [24], an emerging embeddable
GDB. During our testing, when new versions of the GDBs were
released, we deployed new instances to assess them. Table 2 pro-
vides details on the tested GDBs. Note that when comparing GQS
with the state-of-the-art tools, we also test early releases of Neo4j,
Memgraph, and FalkorDB (in this case, RedisGraph), which are not
included in Table 2. These releases have been extensively tested
using these competing tools; see Section 5.4 for details.

We initialize the tested GDBs using random graphs of varying
sizes, with a maximum of 13 nodes and 500 relations. In addition,
we set GQS to perform up to 9 synthesis steps. The maximum size
of an expected result set is limited to 6. While larger parameter
settings, such as larger graphs and expected result sets, may ex-
pose additional bugs, they also result in greater overhead for GQS.
Hence, there is no single “best” parameter configuration. In practice,
users should configure GQS based on their specific needs. However,
throughout our testing, we observed that small to medium graph
sizes and expected result sets are sufficient to uncover a large num-
ber of bugs. Specifically, all detected bugs were triggered on graphs
with fewer than 12 nodes and 31 relations, and involved fewer than
5 properties in the expected result sets; detailed distributions of
bugs across these parameters are available in our repository. Over-
all, we recommend that users start with small parameter settings
and gradually increase them during the testing process.

Our experiments were conducted on a Linux workstation run-
ning Ubuntu 22.04, with AMD Ryzen 9 7950X and 128GB of memory.

5.2 Discovering New Bugs

We have detected and reported 36 previously unknown bugs across
all four GDBs, as summarized in Table 3. For more details, please
refer to our repository. Among these bugs, 26 are logic errors that

[P

EEES

Testing Graph Databases with Synthesized Queries

yield incorrect query results. Additionally, there are 10 other bugs,
including memory corruption, crashes, or unexpected exceptions,
which can cause the GDBs to hang indefinitely, consume excessive
memory, etc. As of this writing, the developers have confirmed 25
issues, with 14 resolved in the latest releases. Notably, almost all
bugs identified in Neo4j, Memgraph, and Kuzu have been confirmed,
and the majority have been fixed, following our reports. Due to
the relatively longer response time from the FalkorDB developers,
the number of confirmed bugs remains limited at the time of this
paper’s publication. However, the confirmations we received from
the other three GDBs give us strong confidence that GQS is effective
and that the bugs identified in FalkorDB are also genuine.

Interesting Bugs. We presented a representative bug in Section 1.
In the following, we provide examples of three other bugs.

Example 5.1. Figure 7 illustrates a Cypher query that triggers a
logic bug in Neo4j. This query consists of four main steps, with two
MATCH clauses searching for the desired patterns and an UNWIND
clause in between expanding the arrays involved. Instead of return-
ing the correct value of r4.k191 as specified in the query (line 4),
Neo4;j incorrectly returns the property value of a node (n4) that is
not even queried for. Such bugs could result in data leakage or, if
exploited, unauthorized data access.

MATCH (n@ :L11)<-[r@ :T31-(n1) WHERE (((NOT (NOT ...

UNWIND [(r@.k186), 557243387] AS a0

MATCH (n2 :L11 :L5)-[r1 :T31->(n3 :L11), ..., (n7 :L11
L5)-[r4 :T3]->(n8 :L11 :L5 :L4) WHERE

RETURN (r4.k190) AS a3, (r4.k191) AS a4

// expected result: 6 rows of {a3:v6z5e, a4:true} v

// actual result: 6 rows of {a3:v6z5e, a4:WEJ6Mifdo} ¥

Figure 7: A logic bug found in Neo4j: an incorrect return for
r4.k191’s value. Parts of the query are omitted for simplicity.

Example 5.2. Figure 8 presents a test query that causes Mem-
graph to incorrectly produce an empty result. The query involves
five steps and eight clauses and subclauses, which collectively trig-
ger Memgraph'’s complex optimization logic. The bug arises from an
unexpected optimization combination in the query plan, specifically
Cartesian product optimizations combined with filtering.

Fixing this bug proved challenging. Despite quickly initiating
an investigation, the developers’ progress stalled after one month.
As a temporary solution, they recommended disabling Cartesian
product optimizations, which compromised performance to ensure
correctness. A fix was finally implemented after six months.

While our focus is on logic bugs, GQS can also trigger memory
corruption bugs, unexpected exceptions, or GDB crashes. The test
oracles for identifying these issues come at no additional cost.

Example 5.3. Figure 9 shows a query that exposes a memory leak
in the latest release of Memgraph. This issue originates from the
replace function, which is currently underspecified for handling
empty strings. Consequently, when the query attempts to match
an empty string in the string “tS15G” and replaces it with another
string “U11sWFVRw”, Memgraph hangs indefinitely and consumes
over 50GB of memory within five minutes.

This bug is severe. It can significantly affect GDB availability
and lead to security vulnerabilities like denial-of-service attacks.

Qe e -

< o

(PRSI

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

MATCH (n@ :L@ :L6 :L11)<-[r@ :T21-(n1), (n2 :L6)<-[r1 :T2
1-(n3 :L0) WHERE

UNWIND [-1465465557]1 AS a@

MATCH (n4 :L@)<-[r2 :T2]1-(n5 :L@ :L6) WHERE

UNWIND [(n@.k65)] AS al
RETURN (r1.k86) AS a2,

ORDER BY a4 DESC
// expected result: {a2:0spkB,a3:false,a4:SqpUzADY6} vV
// actual result: {} ¥

(n3.k4) AS a3, (r1.k87) AS a4

Figure 8: A logic bug in Memgraph caused by unexpected
optimization combinations.

Notably, it had persisted for over three years since Memgraph'’s
earliest publicly accessible release, before being discovered by GQS.

WITH replace('tS15G', '',

RETURN a@

// expected result: {a@:'tS15G'} (empty string ignored)
or a parse error (empty string disallowed) v

// actual result: Memgraph hangs, consuming memory ¥

'"UT11sWFVRw') AS a0

Figure 9: A memory leak uncovered in Memgraph due to
underspecified handling of empty strings.

In addition to the bug severity discussed above, we reviewed
Kuzu’s developer discussions and patches to further assess the
impact of our detected bugs, based on their detailed bug reports.
Among the seven bugs identified, two are not only logic bugs lead-
ing to incorrect outputs, but they also involve unsafe type usage,
potentially resulting in memory corruption. Such issues could have
security implications for applications built on top of Kuzu.

Notably, many bugs (triggered by our complex test queries) are
located in core, frequently invoked functions. This suggests that the
processing of queries in typical user scenarios could also be affected
by the same underlying issues. For example, one bug in Kuzu stems
from an error in a common helper routine for binary operators,
potentially impacting all queries relying on this functionality.

5.3 A Closer Look at GQS

We have demonstrated GQS’s effectiveness in bug detection. To fur-
ther assess the contributions of our key design choices to the bugs
found, we analyze all 36 bug-triggering test queries with respect to
five aspects: synthesis steps, Cypher features, data dependencies,
search patterns, and nested expressions.

Overall, the majority of the detected bugs involve many steps, di-
verse search patterns, deeply nested expressions, rich clause types,
and complex cross-clause references within the test queries. This
underscores the importance of complex queries in effectively trig-
gering bugs, which is the focus of our GQS approach.

Synthesis Steps. GQS generates queries in a stepwise manner.
Figure 10 shows the distribution of all detected bugs across the four
tested GDBs, categorized by the different synthesis steps involved.
As we can see, 80% of the bugs are triggered by queries synthesized
with at least three steps, with those composed of four to six steps
being particularly effective. This result is consistent with the expec-
tation that more complex queries are more likely to cover corner
cases in, e.g., pattern matching (Example 5.1) and combining opti-
mizations (Example 5.2). In contrast, existing metamorphic testers
often use only one or two clauses, potentially missing bugs.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

8 40
56 308
H g
° g
é“ ZOE
2

(4

2 10

1 2 3 4 5 6 7 8 9
Number of steps

Figure 10: Distribution of all 36 bugs
across the tested databases, categorized
by the different synthesis steps involved.

Zijing Yin, Si Liu, and David Basin

WHERE I s
SKIP 122 1 WHERE [R . 4
LMIT 16 SKIP D E]
ORDER BY s LIMIT W12
g CALL |1 ORDER BY P2
b (]
P UNION |1 s CALLIL
2 RETURN s] UNION | 1
UNWIND 15 & RETURN I e 34
UNWIND 8
WITH a3
MATCH [77 WITH I—— 24
OPT. MATCH [Jll8 MATCH I N 5
OPT. MATCH 7
0 20 40 60 80 110 120
0 10 20 30

Occurrences
Figure 11: The aggregated number of
clauses involved in the bug-triggering
test queries.

Number of bugs
Figure 12: The number of bugs related to
different types of clauses.

14 17.5
12 15.0
glo §12.5
5 8 % 10.0
5 5
£ £ 75
2 2
= 4 5.0
2 2.5
0 0.0
0-20 20-40 40-60 60-80 80-100 0 1-3

Number of dependencies
Figure 13: Distribution of bugs based on
the number of dependencies involved.

However, test queries with fewer steps still account for a non-
negligible number of bugs. These queries are often sufficient to
expose errors in functions or operators, as illustrated in Example 5.3.

More steps necessitate additional synthesis and execution time,
as confirmed by our analysis presented in Figure 10. Specifically, as
the number of steps increases, the number of test queries completed
per second decreases. For example, queries synthesized with nine
steps require 6.6 times more execution time on average compared
to those synthesized with only three steps. Excessively increasing
the steps reduces the bug-finding performance. In practice, users of
GQS can configure the number of synthesis steps to strike a balance
between effectiveness and efficiency in bug detection. Additionally,
this configuration should take into account the type of GDB under
test. For example, in-memory GDBs such as Memgraph can typically
handle test queries with more synthesis steps, processing around
six queries per second with nine synthesis steps; whereas on-disk
GDBs like Neo4j handle only about three queries per second for
the same number of steps, likely due to higher I/O overhead.

Cypher Features. GQS-synthesized queries encompass a wide
range of Cypher features, including various clauses. As indicated by
our analysis, all of these clauses are involved in the bug-triggering
test queries. Note that our analysis excludes data manipulation
clauses like CREATE and SET as they are not relevant to data query-
ing (or ground truth validation).

A clause can occur multiple times per query due to the random
assignment at each synthesis step. As shown in Figure 11, the MATCH
clause appears frequently, with over 70 aggregated occurrences

Number of patterns
Figure 14: Distribution of bugs based on
the number of patterns involved.

14

12

[
o

Number of bugs

- R 0
4-6 7-9 >10)

1-5 6-10
Depth of nested expressions

Figure 15: Distribution of bugs based on
the depth of nested expressions.

11-20 >21

across all the queries. This is expected because pattern matching
underlies GDB querying. Note that the WHERE clause appears more
than 100 times as it serves as the filtering subclause for both MATCH
and WITH. Figure 12 presents the number of bugs related to different
clauses. Most of the bugs involve the canonical Cypher skeleton
MATCH-WHERE-RETURN; however, the number of bugs associated
with other clauses is also significant. For example, 24 out of 36 bugs
are triggered by queries containing the ORDER BY or WITH clauses.
In addition, a substantial number of Cypher functions, 32 in total,
are involved in the reported bugs. See our repository for details.

Cross-Step Dependencies. During the synthesis of test queries,
GQS establishes complex data dependencies across multiple steps.
Figure 13 shows that, although a significant number of bugs involve
fewer than 20 dependencies, over 61% of bugs are triggered by test
queries with more than 20 dependencies. These dependency-heavy
queries often lead to problematic execution paths in query planners
during optimization, resulting in incorrect query outcomes.

Search Patterns and Nested Expressions. We also analyze the
variety of search patterns used and the depth of nested expressions
involved in the bug-triggering test queries. Figure 14 presents the
distribution of bugs based on the number of patterns used. Notably,
two-thirds of the bugs are triggered by test queries containing more
than three distinct patterns.

Nested expressions also play a crucial role in triggering bugs. As
shown in Figure 15, 83% of the bugs are associated with queries
that contain more than five levels of nested expressions.

Testing Graph Databases with Synthesized Queries

Table 4: Bugs missed by existing testers and their latencies.
GDBMeter, Gamera, and GQT did not support Memgraph.

Tester Neo4j Memgraph RedisGraph® | Total
GDsmith 1 2 15 18
GDBMeter 1 - 15 16
Gamera 2 - 16 18
GQT 1 - 16 17
GRev 2 2 16 20
Avg. latency (yrs) 2.2 3.4 4.0 -
Max. latency (yrs) | 2.7 3.4 5.0 -

* All tools tested earlier versions of FalkorDB, i.e., RedisGraph.

Table 5: Comparison on test query complexity.

Tester Pattern Expression Clause Dependency
GDsmith 4.96 3.68 6.39 21.75
GDBMeter 0.86 2.24 1.94 1.97
Gamera 0.83 1.39 1.92 1.89
GQT 1.03 2.87 3.39 3.43
GRev 6.69 5.26 6.49 28.41
GQS 8.14 7.82 6.50 56.02

5.4 Comparison with State-of-the-Art
We compare GQS with five state-of-the-art logic bug detectors.

e The metamorphic bug detectors, GDBMeter [22], Gamera [62],
GQT [19], and GRev [33], each applying specifically designed
query rewrite rules to identify discrepancies between the result
of the original query and that of the rewritten query.

o The differential tester GDsmith [16], which detects logic bugs by
comparing the results of the same query across multiple GDBs.

5.4.1 Bug Latency. In line with common practice [21, 33], we an-
alyze the latencies of the bugs found by GQS, i.e., the time span
between the earliest version of the GDB in which a bug was intro-
duced and when it was first discovered by us. This analysis provides
a perspective on GQS’s effectiveness in uncovering hidden bugs: if
a bug exists in versions that predate those tested by existing tools,
it suggests that the bug remained latent despite their extensive
testing efforts. Our analysis excludes Kuzu as it is a relatively new
GDB that has not yet been tested by existing tools. This results in a
total of 29 bugs across the remaining three GDBs.

As shown in Table 4, over half of the 29 bugs reported by our
tool were introduced in versions prior to those tested by the state-
of-the-art. In particular, nearly all of the 17 bugs found in FalkorDB
(see Table 2) were already present in RedisGraph versions predating
those assessed by these tools. The average latency for these missed
bugs ranges between two and four years, where the longest latent
bug was introduced five years ago.

5.4.2 Test Query Complexity. Generating complex queries is es-
sential for extensively-testing GDBs and triggering logic bugs, as
we have already seen in Section 5.3. Therefore, we compare the
queries generated by GQS and existing tools with respect to four
aspects: patterns, expressions, clauses, and dependencies.

We randomly select 10,000 test queries generated by each tool
and use the Cypher query parser [27] to convert them into abstract
syntax trees [4]. We then iterate through these trees to collect the
following metrics per query: (i) the number of patterns involved,

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

(ii) the maximum depth of nested expressions, (iii) the number of
clauses involved, and (iv) the number of cross-clause data references.
We report the average for each metric, as shown in Table 5.

Overall, the test queries synthesized by our tool GQS exhibit
substantially greater complexity than those generated by existing
tools. In particular, each GQS-generated query utilizes an aver-
age of 8.14 patterns, which is approximately 180% more than the
average of the other tools. GQS’s queries also reach a maximum
depth of 7.82 for nested expressions, around 50% deeper than the
second-best tool GRev. Moreover, GQS demonstrates significantly
higher complexity in data dependencies, with around 100% more
cross-clause references compared to GRev. Note that the queries
generated by GDBMeter, Gamera, and GQT are significantly less
complex. This is partially due to the constraints imposed by their
metamorphic oracles, which require test generation to adhere to
predefined rewrite rules.

5.4.3 Test Oracle Effectiveness. While GQS is capable of generating
more complex queries than existing tools, for a fair comparison
of test oracles, we integrate our bug-triggering test queries with
their respective oracles. Our evaluation focuses solely on whether
these tools can identify the bugs when provided with the same
test queries. Specifically, for metamorphic testers, we apply their
rewriting rules to these queries and check whether the transformed
queries reveal violations of metamorphic relations. For the differen-
tial tester GDsmith, we execute the queries across different GDBs
and check for any discrepancies.

Missed Bugs. Overall, metamorphic oracles are insensitive to cer-
tain types of bugs, especially when their root causes are unrelated to
the predefined metamorphic relations. When comparing with GDB-
Meter and GRev, we are able to quantify the number of missed bugs
because GDBMeter’s metamorphic relations are straightforward
to implement, and GRev provides direct interfaces for applying its
rewrite rules to given queries. Out of 26 logic bugs detected by GQS,
GDBMeter and GRev could only identify 11 and 3, respectively, even
when using the bug-triggering test cases.

Example 5.4. Figure 16 shows an example bug found by GQS
that is missed by GDBMeter. When running Memgraph with the
GQS-synthesized test query (lines 2-3), it produces an incorrect
empty output, instead of the expected result (line 14). Upon applying
GDBMeter’s ternary logic partitioning [22] to the test query, all
three partitioned queries (lines 5-13) also result in empty results.
The union of these results matches the incorrect output (namely
GDBMeter’s oracle), causing GDBMeter to mistakenly pass the test.
The key factor triggering this bug lies in the WITH clause, which is
not accounted for by GDBMeter’s metamorphic rules.

Unlike the above two metamorphic testers, Gamera and GQT
do not provide interfaces for directly applying their metamorphic
relations to specific queries. In addition, their query rewrites incor-
porate a degree of randomness. For instance, GQT randomly adds
labels to nodes during query rewrites, resulting in infinitely many
transformations. Consequently, it is infeasible to precisely quantify
the number of bugs they might overlook. Therefore, we manually
analyze their predefined metamorphic relations and observe that
these tools are likely to miss some bugs reported by our tool, as
their root causes are unrelated to the relations.

aoa W =

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

// GQS-synthesized test query
MATCH (n@)-[r@]l->(n1) WITH ro ...
WHERE ("1"<>n@.k99) RETURN r@.id AS a0

// GDBMeter-rewritten query #1 (NOT)

MATCH (n@)-[rel->(n1) WITH ro ...

WHERE NOT ("1"<>n@.k99) RETURN ro.id AS a@

// GDBMeter-rewritten query #2 (IS NULL)

MATCH (n@)-[r@]->(n1) WITH ro ...

WHERE ("1"<>n@.k99) IS NULL RETURN r@.id AS a@

// GDBMeter-rewritten query #3 (TRUE)

MATCH (n@)-[rel->(n1) WITH ro ...

WHERE TRUE RETURN ro.id AS a@

// expected result: {a0:20} v

// actual result (serving as GDBMeter's oracle): {} ¥
// GDBMeter: {}U{}U{}={} (matching the incorrect oracle)

Figure 16: A Memgraph bug found by GQS that cannot be
detected by applying GDBMeter’s metamorphic rules.

Example 5.5. Figure 17 illustrates a representative bug found in
the latest version of FalkorDB, which is unlikely to be detected by
Gamera or GQT. This bug’s root cause lies in FalkorDB’s mishan-
dling of UNWIND’s semantics, resulting in some records not being
fetched. Gamera’s and GQT’s oracles are unlikely to identify this
bug because their metamorphic rules do not cover UNWIND.

UNWIND [1,2,3] AS a0
MATCH (n2 :L12)-[r11-(n3) WHERE (((r1.id) = 13) AND ...
RETURN a@

// expected result: [{a0:1},{a0:2},{a0:3}] v

// actual result: [{a0:1}] ¥

Figure 17: A bug found by GQS in FalkorDB’s latest version
that is unlikely to be detected by Gamera or GQT.

False Alarms. For the differential tester GDsmith, feeding it with
GQS-generated bug-triggering queries resulted in no missed bugs.
This is expected since our tested GDBs do not share a substantial
common codebase; therefore, the same bugs do not exist across
these GDBs. However, we observe a significant number of false
positives, which may limit GDsmith’s practical applicability. In
particular, running GDsmith for 24 hours on the latest versions of
Neo4j and Memgraph resulted in 1192 bug reports, of which 1160
are false positives, yielding an approximate 98% false positive rate.
Such high false alarm rates mainly come from exceptions raised by
invalid queries and output format differences.

5.4.4 24-Hour Empirical Testing. What about the bug detection
effectiveness of each tool on its own? To answer this, we conducted
a 24-hour empirical analysis of all testers using their respective
query generators. As shown in Table 6, GQS demonstrates superior
effectiveness, identifying a total of 13 bugs, including 11 logic bugs,
which are significantly more than the other tools. Note that Table 3
(Section 5.2) reports a greater number of bugs than mentioned here,
as our overall testing process spanned several months.

We also analyze how the number of bugs detected with each tool
accumulates over the 24-hour period, as shown in Figure 18. Since
Memgraph and Kuzu are either unsupported or not tested by all
testers, we report results only for Neo4j and FalkorDB. Compared
to the other testers, GQS offers two key advantages: it not only
detects the largest number of bugs overall, but it also continues
to trigger bugs consistently throughout the testing period. This

Zijing Yin, Si Liu, and David Basin

Table 6: Bugs detected over a 24-hour testing.

Tester Neo4j Memgraph FalkorDB | Total
GDsmith | 1(1) 2(1) 4(4) 7(6)
GDBMeter | 1(0) - 1(0) 2 (0)
Gamera 0 (0) - 1(0) 1(0)
GQT 0 (0) - 5(5) 5 (5)
GRev 0 (0) 1(1) 1(1) 2(2)

GOS 2(1) 3(2) 3(8) 13 (11)

X (Y): among the X bugs found in total, Y bugs are logic bugs.

10 4 10(9) ®
- ® GQs .
= GDBMeter
ﬁ 81 @ GRev °
& A GQT °
£ 61 v Gamera L
2 e GDsmith ® A 5(5) ® 5(5)
.5 44 oA *
©
2 oA *
E 2911y A ° . 2(0)
© oA . v 10

0 T T T T T T T 1

o 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

Figure 18: Cumulative bugs detected in Neo4j and FalkorDB

over 24 hours. We follow the same setup as in Table 6.

highlights GQS’s effectiveness in rapidly and reliably identifying
bugs.

While GQS can uncover hidden bugs missed by state-of-the-art
tools (see Section 5.4.1), it may conversely miss bugs found by oth-
ers. In our 24-hour experiment, GQS failed to detect two crash bugs
in FalkorDB that were identified by GDBMeter and Gamera after 21
and 17 hours, respectively. This is likely because both testers main-
tain a continuous testing session on the same database instance,
allowing issues like memory leaks to accumulate and eventually
trigger crashes. In contrast, GQS restarts the database instance for
each new graph to ensure a clean execution environment. This
design choice enhances bug reproducibility and accelerates the
detection of logic bugs, but may reduce the likelihood of revealing
crash bugs that emerge only after prolonged execution. Given our
focus on logic bug detection, we consider this trade-off reasonable.

6 Related Work

We have already discussed the state-of-the-art approaches for find-
ing GDB logic bugs in Section 1. In this section, we focus on related
work in relational database (RDB) testing and query synthesis.

RDB Testing. In recent years, a wide range of logic bug detectors
have been developed for RDBs [3, 15, 20, 21, 46, 47, 49, 50, 54]. While
RDBs and GDBs differ in their data models and query languages,
many of their bug-detection techniques are grounded in similar
principles—most notably, the use of randomized testing with ran-
domly generated initial database states and queries. Moreover, test
oracles such as differential testing and certain metamorphic testing
strategies developed for RDBs can, in principle, be adapted to the
GDB setting. GDBMeter illustrates this by adopting the metamor-
phic oracles from TLP [46], originally designed for SQL, which

Testing Graph Databases with Synthesized Queries

partitions queries using three-valued logic. However, such adap-
tations may leave substantial parts of the graph-specific seman-
tics untested. For example, key constructs in GDBs, such as paths,
neighborhoods, and recursive traversals, do not map cleanly to the
relational structures and operators in RDBs.

Similar to our approach, PQS [47], Pinolo [15], and TQS [54]
test RDBs by synthesizing SQL queries. However, PQS and Pinolo
cannot establish the ground truth and, instead, rely on subset re-
lationships as test oracles—an approach that does not guarantee
the correctness of individual queries. TQS targets logic bugs in join
optimizations by synthesizing join queries based on normal forms.
This is a strategy specific to the relational model that does not
naturally extend to graphs. While our stepwise synthesis approach
is tailored to the semantic characteristics of Cypher queries, many
SQL queries, particularly those involving sequences of joins or re-
cursion, exhibit conceptually similar chain-like structures. Hence,
it should be possible to adapt our synthesis strategy to RDB testing
as well.

Query Synthesis. SQL and Datalog query synthesis has been exten-
sively studied over the past decades, with applications in database
education, query optimization, and data migration. However, exist-
ing synthesizers [36, 52, 55, 56, 60] are not suitable for GDB testing.
A key reason lies in their different application objectives. For in-
stance, some synthesizers target educational use cases, prioritizing
simplicity and explainability [56], whereas our goal is to generate
complex queries capable of thoroughly exercising the behavior of
GDBs.

Additionally, SQL and Datalog queries differ from graph queries
like Cypher in both their structure and semantics, resulting in differ-
ent synthesis tasks. Translating SQL or datalog queries to Cypher
could enable the use of existing query synthesizers, originally de-
veloped for RDBs, in the context of GDB testing. Conversely, recent
advances in transpiling Cypher to SQL suggest that our synthe-
sized Cypher queries could, in principle, be adapted to RDB testing.
However, state-of-the-art transpilers in both directions [25, 26, 38]
either lacks soundness guarantees or may not yet support queries
at the level of complexity generated by GQS.

7 Discussion and Concluding Remark

We have presented (i) GQS, the first automated testing approach
for detecting logic bugs in GDBs with respect to an established
ground truth, and (ii) an instantiation of GQS, incorporating the
first Cypher query synthesizer tailored for GDBs. We have utilized
GQS to uncover many previously unknown, long-latent bugs in
production GDBs and demonstrated its superior effectiveness in
bug detection compared to the state-of-the-art. Our approach is
conceptually simple, facilitating its adoption in practice, yet highly
effective, contributing to more reliable GDBs.
In the following, we discuss limitations and future work.

Limitations. While testing can find bugs in databases, it can gen-
erally not guarantee their absence [13, 30]. Our GQS approach, like
other bug detectors, shares this inherent limitation. However, as
demonstrated by our analysis, GQS is more effective than them in
identifying logic bugs.

Due to the limitations of black-box testing, GQS may gener-
ate duplicate bug reports, as bugs with a common root cause can

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

be triggered by seemingly distinct test cases. Currently, we rely
on manual analysis to deduplicate these reports. Moreover, GQS
does not support automated root cause analysis of detected bugs.
However, compared to existing testers, it facilitates bug analysis
by providing useful information, including the faulty database, the
exact query execution, and the expected query result. In contrast,
differential testers require developers to inspect each GDB under
comparison to identify the faulty one, while metamorphic testers
require manual examination of each query based on the metamor-
phic relations. Both automated bug deduplication and root cause
analysis are orthogonal research areas in system testing and remain
challenging [10, 57]. This represents a current research gap in GDB
(and RDB) testing, which we hope to fill in the future.

In addition, GQS relies on the correctness of our implementation
to accurately report logic bugs; otherwise, false alarms might be
produced. However, formally verifying implementations at this
scale is extremely challenging, as is recognized by the verification
community [37, 51]. This is likely why no existing database testers
have their implementations fully verified. Given the challenges of
full formal verification, we instead sought to enhance confidence
in the implementation through large-scale testing carried out with
reasonable and practical effort.

GQS focuses on the common Cypher features shared across the
tested GDBs to ensure compatible test queries, and it does not yet
accommodate features specific to some GDBs, e.g., label expressions
unique to Neo4j. Currently, GQS does not support subqueries or
OLAP (Online Analytical Processing) queries. We plan to extend
GQS with these additional features in future work.

Beyond Logic Bugs. Graph query generation is fundamental to
GDB testing, not only for detecting logic bugs but also for assessing
other properties. As already demonstrated by our experiments, the
complex queries we synthesized are effective in triggering GDB
crashes or unexpected exceptions (10 in total across four GDBs).
Additionally, our query synthesizer can serve as a basis for examin-
ing GDB performance issues like inefficient query processing. The
challenge lies in the current lack of ground truth on the expected
execution time, where the cardinality estimation approach [45]
designed for RDBs may provide a direction for future research.

Recent years have also seen advances in black-box checking of
isolation levels [14, 17, 23, 28, 53, 58, 59], such as serializability,
snapshot isolation, and weaker ones [5, 29]. These efforts primar-
ily focus on RDBs and their concurrency control mechanisms for
transactions (assuming the correctness for individual queries). Our
work can be naturally extended to address this problem for GDBs,
e.g., checking serializability claimed by Neo4j or snapshot isolation
claimed by Memgraph. This can be done by wrapping generated
Cypher queries as transactions and utilizing existing oracles like
Adya’s theory [2] or Biswas and Enea’s axioms [7] to validate the
fulfillment of different isolation guarantees.

Beyond Cypher. While Cypher is the de facto graph query lan-
guage, other languages, such as Gremlin [48], are also widely used.
To extensively test Gremlin-based GDBs, one can leverage the ad-
vanced Cypher for Gremlin compiler [41] to translate our synthe-
sized Cypher queries into Gremlin queries. Using this approach, we
tested JanusGraph [18] (v1.1.0) and uncovered two bugs within 24

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

hours. However, during this process, we encountered several limi-
tations in the compiler’s current support for Cypher features. For
example, the compiler inaccurately translates UNWIND clauses and
aggregation functions. To ensure correctness, we disabled these fea-
tures. Improving the compiler in future work would likely enhance
its effectiveness of bug detection for Gremlin-based GDBs.

As an alternative, our methodology can be applied to design a
dedicated Gremlin synthesizer supporting its full range of features.
This is feasible because Gremlin queries also employ a chain struc-
ture, comprising steps for individual graph traversal operations.

The GQL standard [1] has recently been published, marking
a significant milestone in the database world. On one hand, our
synthesizer will continue to be in action, as, e.g., Neo4j’s compli-
ance with GQL will not prevent any existing Cypher queries from
functioning [32]. On the other hand, our approach and synthesizer
lay the groundwork for effectively testing GQL-based databases in
the future, as both languages naturally and deliberately converge,
sharing a largely identical core syntax [32, 43].

Acknowledgments

We thank the anonymous reviewers for their valuable feedback.
This research is supported by an ETH Zurich Career Seed Award.

References

[1] ISO/IEC 39075:2024. Accessed in July, 2024. Information technology — Database

languages — GQL. https://www.iso.org/standard/76120.html.

Atul Adya. 1999. Weak consistency: a generalized theory and optimistic implemen-

tations for distributed transactions. Ph.D. Dissertation. Massachusetts Institute of

Technology, Department of Electrical Engineering and Computer Science.

[3] Jinsheng Ba and Manuel Rigger. 2024. Keep It Simple: Testing Databases via
Differential Query Plans. Proc. ACM Manag. Data 2, 3, Article 188 (2024).

[4] John W. Backus. 1959. The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM Conference. In Information Pro-
cessing, Proceedings of the 1st International Conference on Information Processing,
UNESCO, Paris 15-20 June 1959. UNESCO (Paris), 125-131.

[5] Peter Bailis, Aaron Davidson, Alan D. Fekete, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2013. Highly Available Transactions: Virtues and Limitations.
Proc. VLDB Endow. 7, 3 (2013), 181-192.

[6] Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michat Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2023. Demysti-
fying Graph Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. ACM Comput. Surv. 56, 2, Article 31 (sep 2023).

[7] Ranadeep Biswas and Constantin Enea. 2019. On the complexity of checking
transactional consistency. Proc. ACM Program. Lang. 3, OOPSLA (2019), 165:1—
165:28.

[8] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.
Querying Graphs. Morgan & Claypool Publishers.

[9] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 2020. Metamorphic Testing:
A New Approach for Generating Next Test Cases. CoRR abs/2002.12543 (2020).
arXiv:2002.12543 https://arxiv.org/abs/2002.12543

[10] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern, Eric
Eide, and John Regehr. 2013. Taming compiler fuzzers. In PLDI ’13, Hans-Juergen
Boehm and Cormac Flanagan (Eds.). ACM, 197-208.

[11] Cypher. Accessed in July, 2024. https://neo4j.com/docs/cypher-manual/current/
introduction/.

[12] FalkorDB. Accessed in July, 2024. https://www.falkordb.com/.

[13] Shabnam Ghasemirad, Si Liu, Christoph Sprenger, Luca Multazzu, and David
Basin. 2025. VerIso: Verifiable Isolation Guarantees for Database Transactions.
Proc. VLDB Endow. 18, 5 (2025), 1362-1375.

[14] Long Gu, Si Liu, Tiancheng Xing, Hengfeng Wei, Yuxing Chen, and David Basin.
2024. IsoVista: Black-box Checking Database Isolation Guarantees. Proc. VLDB
Endow. 17, 12 (2024).

[15] Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan
Zhang, Rongxin Wu, and Charles Zhang. 2023. Pinolo: Detecting Logical Bugs in
Database Management Systems with Approximate Query Synthesis. In USENIX
ATC °23. USENIX Association, 345-358.

[16] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao
Xie. 2023. GDsmith: Detecting Bugs in Cypher Graph Database Engines. In ISSTA

[2

Zijing Yin, Si Liu, and David Basin

'23. ACM, 163-174.

[17] Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei, David A. Basin, Haixiang Li,
and Anqun Pan. 2023. Efficient Black-box Checking of Snapshot Isolation in
Databases. Proc. VLDB Endow. 16, 6 (2023), 1264-1276.

[18] JanusGraph. Accessed in April, 2025. https://janusgraph.org/.

[19] Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H. C. Yap, Zhenkai Liang, and
Manuel Rigger. 2024. Detecting Logic Bugs in Graph Database Management
Systems via Injective and Surjective Graph Query Transformation. In ICSE *24.
ACM, Article 46.

[20] Zu-Ming Jiang, Si Liu, Manuel Rigger, and Zhendong Su. 2023. Detecting Trans-

actional Bugs in Database Engines via Graph-Based Oracle Construction. In OSDI

'23.397-417.

Zu-Ming Jiang and Zhendong Su. 2024. Detecting Logic Bugs in Database Engines

via Equivalent Expression Transformation. In OSDI "24. USENIX Association,

821-835.

[22] Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su. 2023. Testing
Graph Database Engines via Query Partitioning. In ISSTA °23. ACM, 140-149.

[23] Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anomalies from
Experimental Observations. Proc. VLDB Endow. 14, 3 (2020), 268-280.

[24] Kuzu. Accessed in July, 2024. https://kuzudb.com/.

[25] Shunyang Li, Zhengyi Yang, Xianhang Zhang, Wenjie Zhang, and Xuemin Lin.
2021. SQL2Cypher: Automated Data and Query Migration from RDBMS to
GDBMS. In WISE 2021. Springer-Verlag, 510-517.

[26] Jerry Liang. Accessed in April, 2025. openCypher Transpiler. https://github.com/
microsoft/openCypherTranspiler.

[27] Cypher Parser Library. Accessed in July, 2024. libcypher-parser. https://github.

com/cleishm/libcypher-parser

Si Liu, Long Gu, Hengfeng Wei, and David Basin. 2024. Plume: Efficient and

Complete Black-box Checking of Weak Isolation Levels. Proc. ACM Program.

Lang. 8, OOPSLA2 (2024).

[29] Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin. 2024. NOC-NOC:
Towards Performance-optimal Distributed Transactions. Proc. ACM Manag. Data
2, 1, Article 9 (mar 2024).

[30] Si Liu, Peter Csaba Olveczky, Min Zhang, Qi Wang, and José Meseguer. 2019.
Automatic Analysis of Consistency Properties of Distributed Transaction Systems
in Maude. In TACAS 2019 (LNCS, Vol. 11428). Springer, 40-57.

[31] Rupak Majumdar and Filip Niksic. 2017. Why is random testing effective for
partition tolerance bugs? Proc. ACM Program. Lang. 2, POPL, Article 46 (Dec.
2017), 24 pages.

[32] Valerio Malenchino. Accessed in July, 2024. GQL is Here: Your Cypher Queries
in a GQL World. https://neo4j.com/blog/cypher-gql-world/.

[33] Qiuyang Mang, Aoyang Fang, Boxi Yu, Hanfei Chen, and Pinjia He. 2024. Testing
Graph Database Systems via Equivalent Query Rewriting. In ICSE °24. ACM,
Article 143, 12 pages.

[34] William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech. . 10,
1(1998), 100-107.

[35] Memgraph. Accessed in July, 2024. https://memgraph.com/.

[36] Jonathan Mendelson, Aaditya Naik, Mukund Raghothaman, and Mayur Naik.
2021. GENSYNTH: Synthesizing Datalog Programs without Language Bias.
AAAI'2135, 7 (May 2021), 6444-6453.

[37] Peter Miiller and Natarajan Shankar. 2021. The First Fifteen Years of the Verified
Software Project. In Theories of Programming: The Life and Works of Tony Hoare.
ACM Books, Vol. 39. ACM / Morgan & Claypool, 93-124.

[38] Neo4j. Accessed in April, 2025. SQL to Cypher translation. https://neo4j.com/
docs/jdbc-manual/current/sql2cypher/.

[39] Neo4j. Accessed in July, 2024. https://neo4j.com/.

[40] openCypher. Accessed in July, 2024. https://opencypher.org/.

[41] openCypher. Accessed in July, 2024. Cypher for Gremlin. https://github.com/
opencypher/cypher-for-gremlin.

[42] openCypher. Accessed in July, 2024. Cypher Query Language Reference, Version
9. https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf.

[43] Philip Rathle and Brad Bebee. Accessed in July, 2024. GQL: The ISO standard
for graphs has arrived. https://aws.amazon.com/blogs/database/gql-the-iso-
standard-for-graphs-has-arrived/.

[44] RedisGraph. Accessed in July, 2024. https://github.com/RedisGraph/RedisGraph.

[45] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In ESEC/FSE "20. ACM,
1140-1152.

[46] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via

query partitioning. Proc. ACM Program. Lang. 4, OOPSLA, Article 211 (nov 2020),

30 pages.

Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted

Query Synthesis. In OSDI "20. USENIX Association, 667-682.

[48] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages (DBPL 2015). ACM, 1-10.

[49] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Testing Database Systems via Differential Query

)
=

)
=,

(47

https://www.iso.org/standard/76120.html
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://www.falkordb.com/
https://janusgraph.org/
https://kuzudb.com/
https://github.com/microsoft/openCypherTranspiler
https://github.com/microsoft/openCypherTranspiler
https://github.com/cleishm/libcypher-parser
https://github.com/cleishm/libcypher-parser
https://neo4j.com/blog/cypher-gql-world/
https://memgraph.com/
https://neo4j.com/docs/jdbc-manual/current/sql2cypher/
https://neo4j.com/docs/jdbc-manual/current/sql2cypher/
https://neo4j.com/
https://opencypher.org/
https://github.com/opencypher/cypher-for-gremlin
https://github.com/opencypher/cypher-for-gremlin
 https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf
https://aws.amazon.com/blogs/database/gql-the-iso-standard-for-graphs-has-arrived/
https://aws.amazon.com/blogs/database/gql-the-iso-standard-for-graphs-has-arrived/
https://github.com/RedisGraph/RedisGraph

Testing Graph Databases with Synthesized Queries

Execution. In ICSE 23. IEEE Press, 2072-2084.

Jiansen Song, Wensheng Dou, Yu Gao, Ziyu Cui, Yingying Zheng, Dong Wang,
Wei Wang, Jun Wei, and Tao Huang. 2024. Detecting Metadata-Related Logic
Bugs in Database Systems via Raw Database Construction. Proc. VLDB Endow.
17, 8 (may 2024), 1884-1897.

Andrei Stefanescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Rosu.
2016. Semantics-based program verifiers for all languages. In OOPSLA 2016. ACM,
74-91.

Keita Takenouchi, Takashi Ishio, Joji Okada, and Yuji Sakata. 2021. PATSQL:
Efficient Synthesis of SQL Queries from Example Tables with Quick Inference of
Projected Columns. Proc. VLDB Endow. 14, 11 (2021), 1937-1949.

Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. COBRA:
Making Transactional Key-Value Stores Verifiably Serializable (OSDI "20). USENIX
Association, Article 4.

Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detecting
Logic Bugs of Join Optimizations in DBMS. Proc. ACM Manag. Data 1, 1, Article
55 (may 2023), 26 pages.

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and
Mukund Raghothaman. 2021. Example-guided synthesis of relational queries. In

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

PLDI °21. ACM, 1110-1125.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly
expressive SQL queries from input-output examples. In PLDI ’17. ACM, 452-466.
Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the useful-
ness of IR-based fault localization techniques. In ISSTA ’'15. ACM, 1-11.
Hengfeng Wei, Jiang Xiao, Na Yang, Si Liu, Zijing Yin, Yuxing Chen, and An-
qun Pan. 2025. Boosting End-to-End Database Isolation Checking via Mini-
Transactions. In ICDE 2025. IEEE Computer Society, 3998-4010.

Jian Zhang, Ye Ji, Shuai Mu, and Cheng Tan. 2023. Viper: A Fast Snapshot Isolation
Checker. In EuroSys ’23. ACM, 654-671.

Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing SQL queries from
input-output examples. In ASE ’13. IEEE, 224-234.

Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding bugs in Gremlin-based
graph database systems via randomized differential testing. In ISSTA 22. ACM,
302-313.

Zeyang Zhuang, Penghui Li, Pingchuan Ma, Wei Meng, and Shuai Wang. 2024.
Testing Graph Database Systems via Graph-Aware Metamorphic Relations. Proc.
VLDB Endow. 17, 4 (mar 2024), 836-848.

	Abstract
	1 Introduction
	2 Background
	2.1 GDBs and Labeled Property Graphs
	2.2 The Cypher Query Language

	3 Graph Query Synthesis
	3.1 Overview
	3.2 Integrating Diverse Clauses
	3.3 Building Cross-Step Dependencies
	3.4 Mutating Search Patterns
	3.5 Generating Complex Expressions

	4 Implementation
	5 Experiments
	5.1 Experimental Setup
	5.2 Discovering New Bugs
	5.3 A Closer Look at GQS
	5.4 Comparison with State-of-the-Art

	6 Related Work
	7 Discussion and Concluding Remark
	References

