
SSL/TLS Session-Aware User Authentication: A
Lightweight Alternative to Client-Side Certificates

Rolf Oppliger1 Ralf Hauser2 David Basin3

1eSECURITY Technologies

Beethovenstrasse 10, CH-3073 Gümligen
Phone/Fax: +41 79 654 8437

E-mail: rolf.oppliger@esecurity.ch

2PrivaSphere AG
Jupiterstrasse 49, CH-8032 Zürich

Phone: +41 43 299 5588, Fax: +41 (0)1 382 2133
E-mail: hauser@privasphere.com

3 ETH Zurich, Department of Computer Science

Haldeneggsteig 4, CH-8092 Zürich
Phone: +41 44 632 7245, Fax: +41 44 632 1172

E-Mail: basin@inf.ethz.ch

Abstract
Many SSL/TLS-based e-commerce applications employ traditional

authentication mechanisms on the client side. These mechanisms—if
decoupled from SSL/TLS session establishment—are vulnerable to
man-in-the-middle attacks. In this article, we examine the feasibility of
such attacks, survey countermeasures, and explain the rationale behind
SSL/TLS session-aware user authentication as a lightweight and
privacy-enhancing alternative to the deployment and use of public key
certificates on the client side. We also present different possibilities for
making deployed user authentication mechanismsSSL/TLS session-
aware.

Keywords. Security, electronic commerce, man-in-the-middle

(MITM) attack, SSL/TLS protocol, user authentication, SSL/TLS
session-aware user authentication

1 Introduction

Most electronic commerce (e-commerce) applications in use today employ the Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) [DR06] protocol to authenticate the
server and to cryptographically protect the communication channel between the client and
the server. SSL/TLS provides support for user authentication based on public key
certificates. But in practice, due to the slow deployment of these certificates, user
authentication usually occurs at the application layer. There are many options here, including
personal identification numbers (PINs), passwords, passphrases, as well as “strong”
authentication mechanisms, such as one-time password (OTP) and challenge-response
(C/R) systems.

In theory, the SSL/TLS protocol is assumed to be sound and secure. In practice, however,
the vast majority of SSL/TLS-based e-commerce applications, employing user authentication
at the application layer, are vulnerable to phishing, Web spoofing, and—most importantly—
man-in-the-middle (MITM) attacks. If an MITM can place himself between the user and the
server, then he can act as a relay and authenticate himself to the server on the user’s behalf.
Even worse, if the MITM operates in real-time, then there is hardly any user authentication
mechanism (decoupled from SSL/TLS session establishment) that cannot be defeated or
misused. This fact is usually neglected when people talk about the (perceived) security of
SSL/TLS-based e-commerce applications, such as Internet banking or Internet voting.

In the literature, there is surprisingly little work on technologies and techniques to protect
SSL/TLS-based e-commerce applications against MITM attacks. We believe that this topic is
highly relevant and has not received adequate attention, either in the literature or in practice.
In [OHB06], we therefore proposed SSL/TLS session-aware user authentication (TLS-SA) as
a technological approach to fill this gap and to provide a lightweight alternative to the
deployment and use of public key certificates on the client side. That paper presents a basic
solution to implement TLS-SA, employing impersonal authentication tokens.

In this article, we put TLS-SA into perspective. More specifically, we take a closer look at
MITM attacks in Section 2 and alternative countermeasures and their limitations in Section 3.
In Sections 4 and 5 we present TLS-SA and introduce different extensions. In addition to
summarizing the original, basic approach based on impersonal tokens, we show how to build
implementations based on challenge-response systems and one-time passwords. Finally, we
draw conclusions and provide an outlook in Section 6.

2 MITM Attacks

According to RFC 2828, an MITM attack refers to “a form of active wiretapping attack in
which the attacker intercepts and selectively modifies communicated data in order to
masquerade as one or more of the entities involved in a communication association.” Hence,
the major characteristics of MITM attacks are (i) that they are active attacks, and (ii) that they
target the associations between the communicating entities (rather than the entities or the
communication channels between them). Note that in the literature, an MITM that carries out
an active attack in real-time is sometimes called adaptive. We do not use this term and MITM
attacks are adaptive by default.

In a typical setting, the MITM places himself between the user and the server in a way
that he can talk to the user and the server separately, whereas the user and the server think
that they are talking directly with each other. In an SSL/TLS setting, which is standard in
Internet banking and other e-commerce applications, there are many possibilities for
mounting an MITM attack. The user may be directed to the MITM using standard phishing
techniques. Other possibilities are where the MITM employs Address Resolution Protocol
(ARP) cache poisoning, or Domain Name System (DNS) spoofing (recently, the term
“pharming” has been coined to refer to DNS spoofing attacks, such as local DNS cache
poisoning).

The best way to think about an MITM attack is to consider an adversary that represents
an SSL/TLS proxy server (or relay) between the user and the server. Neither the user nor the
server are aware of the MITM. Cryptography makes no difference here as the MITM is in the
loop and can decrypt and reencrypt all messages that are sent back and forth. Also, an
MITM need not operate alone and there may be many entities involved in an MITM attack.
One entity may be located between the client and the server, whereas the other entities may
be located elsewhere. In this case, the corresponding attacks are known as Mafia or terrorist

fraud, and the underlying problem is known as the chess grandmaster problem. For the
purpose of this article, we do not care whether the adversary is acting as a single-entity or a
multiple-entity MITM. Instead, we use the term MITM attack to refer to all types of attacks in
which at least one entity is located between the client and the server.

MITM attacks can be devastating. If, for example, the user authenticates himself to an
application server, then he reveals his credentials to the MITM and the MITM can misuse
them to spoof the user. If the user employs an OTP system, then the MITM can grab the
OTP (which is typically valid for at least a couple of seconds) and reuse it to spoof the user. If
the user employs a C/R system, then again the MITM can simply send back and forth the
challenge and response messages. Even if the user employed a zero-knowledge
authentication protocol [FS87], the MITM would still be able to relay the messages and spoof
the user accordingly. The zero-knowledge property does not, by itself, provide protection
against MITM attacks—it only protects against information leakage related to the user’s
secret.

Given the above, it is perhaps not surprising that most currently deployed user
authentication mechanisms fail to provide protection against MITM attacks, even when they
run on top of the SSL/TLS protocol. We see two main problems responsible for this failure.

1. SSL/TLS server authentication is usually done poorly by the naive end user, if done at
all.

2. SSL/TLS session establishment is usually decoupled from user authentication.

The first problem leads to a situation in which the user talks to the MITM, thereby
revealing his credentials to the MITM. The second problem means that the credentials
revealed by the user can be reused by the MITM to spoof the user to the origin server. To
counter MITM attacks, it suffices to solve either of these problems. Solving the first requires
hard-coded server certificates or dedicated client software, whereas the second requires
modifications to SSL/TLS or to the authentication protocols used. As explained later in this
article, we think that the second possibility is more appropriate for the Internet.

3 Countermeasures and Related Work

In spite of the fact that MITM attacks pose a serious threat to SSL/TLS-based e-commerce
applications, there are only a few countermeasures and surprisingly little related work.
Moreover, the situation is often misunderstood. For example, it is often stated within the
security industry that strong (possibly two-factor) user authentication mechanisms are
needed to thwart MITM attacks.1 This statement is fundamentally wrong. Vulnerability to
MITM attacks is not a user authentication problem—it is a server authentication problem.
MITM attacks are possible because SSL/TLS server authentication is done poorly by the
user (see the first point enumerated above). In other words, if users properly authenticated
the server with which they establish an SSL/TLS session, then they would be protected
against MITM attacks. Unfortunately, this is not the case and it is questionable whether it is
possible at all. Note that an MITM can employ many tricks to give the user the impression of
being connected to an origin server, for example, using visual spoofing, which is becoming
increasingly popular. In the most extreme case, one may think of an MITM that is able to
control the graphical user interface of the browser. Also, we have seen phishing sites using
valid certificates. We refer to the case in which a phisher employed a valid certificate for
www.mountain-america.com and www.mountain-america.net to spoof the Web site of the

1
www.antiphishing.org/sponsors_technical_papers/PHISH_WP_0904

Mountain America Credit Union at www.mtnamerica.org. In such a setting, most users are
unable to recognize that they are subject to an MITM attack.

Along the same line of argumentation, it is important to note that the SSL/TLS protocol
has been designed to protect against MITM attacks. In addition to the requirement that
certificate-based server authentication must be done properly, SSL/TLS-based MITM
protection requires that all clients are equipped with public key certificates. This requirement
could be relaxed, if one extended the SSL/TLS protocol with alternative client authentication
methods (in addition to certificate-based authentication). In fact, there are efforts within the
IETF to specify ciphersuites for the TLS protocol that support authentication based on pre-
shared keys (PSKs) [ET+05, BH06]. Also, the adoption of password-based key exchange
protocols was proposed in [S+01], and the use of the Secure Remote Password (SRP) is
specified in an Internet-Draft. We believe that all of these efforts are important, but that there
is still a long way to go until the corresponding TLS extensions are available, implemented,
and deployed. In the meantime, one cannot count on the security properties of the SSL/TLS
protocol alone. Instead, one must assume a setting in which the SSL/TLS protocol is only
used to authenticate the server and the user authenticates himself on top of an established
SSL/TLS session using some additional authentication mechanism.

In addition to the SSL/TLS protocol and extensions thereof, different cryptographic
techniques have been proposed to protect users against MITM attacks. We list some of them
here, in chronological order:

• Rivest and Shamir proposed the Interlock protocol [RS84] that was later shown to be
vulnerable when used for authentication [BM94].

• Asokan et al. proposed protection mechanisms to secure tunneled authentication
protocols against MITM attacks [ANN03] that are conceptually related to our proposal.

• Jakobsson and Myers proposed a technique called delayed password disclosure
(DPD2) that can be used to complement a password-based authentication and key
exchange protocol to protect (only) against a special form of MITM attack—the so-
called doppelganger window attack.

• Kaliski and Nyström proposed the use of a password protection module (PPM3) to
provide protection against MITM attacks. The PPM is a trusted piece of software that
utilizes password hashing to generate a passcode that is unique for a user and an
application in question.

• Parno et al. proposed a Phoolproof anti-phishing system that employs trusted devices,
such as Bluetooth-enabled smartphones, to protect users against MITM attacks
[PKP06].

In addition, as an alternative to employing cryptographic techniques and protocols, some
researchers have suggested employing multiple communication channels and channel
hopping to thwart MITM attacks (e.g., [ASS03]).

There is a steadily increasing number of e-commerce applications—especially in
Europe—that authenticate users by sending short messaging system (SMS) messages that
contain transaction authentication numbers (TANs) and require that users enter these TANs
when they log in. Sending an SMS is an example of using two communication channels or
two-factor authentication (the mobile phone being the second factor). While it has been
argued that this mechanism protects against MITM attacks, unfortunately, this is not the

2
http://www.informatics.indiana.edu/markus/stealth-attacks.htm

3
http://www.rsasecurity.com/rsalabs/staff/bios/bkaliski/publications/other/kaliski-authentication-risk-

readiness-bits-2004.ppt

case. If an MITM is located between the user and the server, then he need not eavesdrop on
the SMS messages; all he needs to do to spoof the user is to forward the TAN submitted by
the user on the SSL/TLS session. If one wants to work with TANs distributed via SMS
messages, then one has to work with transaction-based TANs.4 For each transaction
submitted by the user, a summary is returned to the user together with a TAN in an SMS
message. To confirm the transaction, the user must validate the content of the summary and,
if correct, enter the corresponding TAN. The down-side of this proposal is that transaction-
based TANs are expensive (perhaps prohibitively so), they are not particularly user-friendly,
they do not protect the privacy of the user, and they are not even completely secure—an
MITM can still attack the parts of a transaction that are not part of the summary.

We think that all technologies and techniques proposed so far either fail to adequately
thwart MITM attacks or have severe disadvantages when it comes to a large-scale
deployment. This leads us to the following proposal.

4 SSL/TLS Session-Aware User Authentication

Recall from the end of Section 2 that any effective countermeasure against MITM attacks in
an SSL/TLS setting can either enforce proper server authentication or combine user
authentication with SSL/TLS session establishment. We think that the first possibility asks
too much of the user. The validation of public key certificates (including, for example,
revocation checking) is too involved for the casual user. This is particularly true for deciding
what to do when something illegitimate takes place. Users normally click through any
dialogue that pops up to warn them. We therefore focus on the second approach and
examine possibilities for combining user authentication with SSL/TLS session establishment,
which we refer to as SSL/TLS session-aware user authentication (TLS-SA).

The main idea behind TLS-SA is to make the user authentication depend not only on the
user’s (secret) credentials, but also on state information related to the SSL/TLS session in
which the credentials are transferred to the server. The rationale is that the server should
have the possibility of determining whether the SSL/TLS session in which it receives the
credentials is actually the same as the one the user employed when he sent out the
credentials in the first place. In typical secure online applications, server operators such as
banks typically are much better equipped to master complex tasks such as validating
cryptographic protocol outcomes. The server is normally run in a data-center managed by
sophisticated administrators while the clients, which are increasingly small mobile devices,
are used by comparatively unsophisticated users.

• If the two sessions are the same, then there is probably no MITM involved.

• If the two sessions are different, then something abnormal is taking place. It is then
likely that an MITM is located somewhere between the user’s client system and the
server.

Using TLS-SA, the user authenticates himself by providing a user authentication code
(UAC) that depends on both the credentials and the SSL/TLS session (in particular, on
information from the SSL/TLS session state that is cryptographically hard to alter). An MITM
who gets hold of the UAC can no longer misuse it by simply retransmitting it. The key point is
that the UAC is bound to a particular SSL/TLS session. Hence, if the UAC is submitted on a
different session, then the server can detect this fact and drop the session accordingly. This
is illustrated in Figure 1. There is a blue SSL/TLS session between the user and the MITM
and a red SSL/TLS session between the MITM and the server. The UAC is bound to the blue

4
http://www.cryptomathic.com/pdf/The%20Future%20of%20Phishing.pdf

session. So, if the MITM comes along and submits the UAC on the red session, then the
server will detect the misuse and drop the session.

MITM

User Client

UAC

Server

UAC

 Figure 1 An MITM trying to submit the user credentials (i.e., the UAC) on a “wrong”
SSL/TLS session

If a user wants to protect himself against a server not dropping the session before he or
she reveals sensitive information (e.g., credit card information), then he or she can request a
server authentication code (SAC) for mutual authentication. The generation and verification
of a SAC is analog to a UAC and not further addressed in this overview article.

5 Implementing TLS-SA

There are many possibilities to implement TLS-SA. Note that TLS-SA is not a user
authentication mechanism or system per se. Rather, it is a technological approach that can
be used to make a given authentication mechanism or system be SSL/TLS session-aware
and hence resistant against MITM attacks. The way this is done depends on the actual
authentication mechanism or system in use. If, for example, users are authenticated with
PINs, then there is a basic solution proposed in [OHB06] that employs impersonal
authentication tokens. We introduce this solution first, before we expand on possibilities for
making C/R and OTP systems SSL/TLS session-aware.

5.1 Basic Solution

In our basic solution, a user U is equipped with an impersonal authentication token T with a
small display. U employs a client (i.e., browser) C to access an SSL/TLS-based application
on server S. U is identified with IDU and holds PINU (i.e., a PIN shared with S). T is identified
by a serial number SNT that may, for example, be imprinted on the back side of the token.
Furthermore, T is equipped with both a public key pair (k,k-1) and a secret token key KT
shared with S. The keys k and k-1 are the same for all tokens, which is why the tokens are
impersonal, whereas KT is unique and specific to T. Note, however, that KT is not specific to
the user, and hence the tokens need not be personalized (this is the main advantage of
using impersonal tokens in the first place). KT can be generated randomly, or pseudo-
randomly, using a master key MK, i.e., a key held exclusively by S:

KT = EMK(SNT)

In the first case, where KT is generated randomly, all token keys must be stored on the server
side. However, in the second case, where KT is derived from SNT, there is no need to
centrally store all token keys. Instead, KT can be generated dynamically from SNT and MK.

In order to access S, U directs C to S. C and S then try to establish an SSL/TLS session
using the SSL/TLS handshake protocol. As part of this protocol, S authenticates itself using a
public key certificate. S is configured in a way that it always requires certificate-based client
authentication by sending an SSL/TLS CertificateRequest message to C. When C receives
this message, it knows that it must authenticate itself by returning a Certificate message and
a properly signed CertificateVerify message to S. The CertificateVerify message comprises a
digitally signed hash value Hash of all messages previously exchanged during the execution
of the SSL/TLS handshake protocol. Part of these messages is the server’s Certificate
message, which comprises the server’s public key certificate (and hence the server’s public
key, included in this certificate). Consequently, the CertificateVerify message is logically
bound to the server’s public key.

The digital signature is generated by T using its private key k-1. Due to the fact that T is an
impersonal token, the CertificateVerify message neither authenticates the token nor the
client. It only ensures that C uses a token to establish an SSL/TLS session with S and that
the token has access to Hash. Said another way, the token represents a trusted observer for
Hash and for enforcing a proper execution of TLS-SA. In addition to providing a properly
signed CertificateVerify message to S, T also renders a shortened version of

NT = EKT(Hash) (1)

on its display (for example, in decimal notation). In this case, E represents an encryption
function that is keyed with KT. Alternatively, NT could represent a message authentication
code (MAC) computed with a one-way hash function keyed with KT.5 For example, the HMAC
construction (cf. RFC 2104) can be used to generate

NT = HMACKT(Hash). (2)

In either case, NT can be shortened to the length of PINU by truncating it. This value must
then be combined with PINU to generate a UAC that is valid for exactly one SSL/TLS session
initiated by U. If f represents such a combination function, then the UAC can be expressed as

UAC = f(NT,PINU) (3)

There are many ways to define an appropriate function f. One possibility is digit-wise
addition, modulo 10. In this case, the UAC is the digit-wise sum, modulo 10, of NT and PINU,
which is a function simple enough for users to compute themselves (in their heads). Another
possibility is to use PINU to select specific digits of NT. This construction is, for example,
employed by PINsafe of Swivel (in Swivel’s terminology, PINU refers to the user PIN, NT
refers to the security string, and the UAC refers to the one-time code). If the token comprises
a keypad for entering PINU, then the token can also be used to compute f. It goes without
saying that f can then be more complex.

5
In some circumstances, the use of a MAC is advantageous because keyed one-way hash functions

are generally more efficient than symmetric encryption systems and because there are usually no
regulations restricting the use of (keyed) one-way hash functions, in contrast to the use of encryption
systems.

After a server-authenticated SSL/TLS session is successfully established between C and
S, S can authenticate U by requesting IDU, SNT, and a valid UAC for the SSL/TLS session in
use. Note that the user need not enter SNT if this value is included in the public key certificate
for T’s private key k-1. In this case, S can retrieve SNT from the certificate, but the certificate
is then token-specific. Alternatively, one could also provide for the user to temporarily register
with a specific token. In this case, S can retrieve IDU from its registration database and set it
as a default value in the user authentication process. Note, however, that the binding
between SNT and IDU is still weak. On the server side, S can verify the UAC because it
knows f and PINU, and because it can reconstruct NT (since it knows Hash and MK to
generate KT).

In theory, it is feasible to transfer the UAC as part of the SSL/TLS CertificateVerify
message so that the user authentication can be handled entirely by the token (and hence the
user does not have to enter anything in a Web form). For example, T can digitally sign both
the Hash value and the UAC. Alternatively, T can digitally sign a keyed hash value (instead
of the hash value Hash), where the UAC represents the key, Hash represents the argument,
and the HMAC construction can be used to key the hash function. Last but not least, T can
only send the keyed hash value (instead of the digital signature). Because all of these
possibilities require changes in the SSL/TLS handshake protocol, they are not further
addressed in this article.

5.2 C/R Systems

A C/R system is an authentication system where the entity that is authenticated (typically the
client) is provided with a challenge that it must return an appropriate response to the entity
that is authenticating it (typically the server). C/R systems are often implemented in hardware
and the corresponding (hardware) tokens may be connected to the client systems using
some cryptographic token interface standard, such as PKCS #11 or Microsoft’s
Cryptographic API (CAPI).

On the conceptual level, there is a simple and straightforward possibility to make a C/R
system SSL/TLS session-aware: instead of having the server provide a challenge to the
client, the client and the server both employ a value derived from the SSL/TLS session state
as a challenge. We distinguish between two cases depending on whether or not the token is
connected to the client system.

1. If the token is connected, then Hash can be sent to the token and the token can
compute NT according to formula (1) or (2). NT can either be displayed so the user can
compute the UAC or the user must additionally input PINU into the token, so that the
token can compute the UAC (this is the preferred choice). The UAC can then be
manually copied by the user from the token display to the appropriate Web form.

2. If the token is not connected, then the situation is somewhat more involved. In this
case, there is no communication path between the client and the token and hence
there must be another possibility for communicating SSL/TLS state information from
the browser to the token (see below).

The main advantages of the first case, where the token is connected, are that the user
interaction is simple and that one can use NT and possibly the UAC in its entire length,
thereby providing better security and relaxing the requirements on what parts of the user’s
screen must not be controlled by the attacker. The main disadvantage is the necessity of
having a free port to connect the device to and the need to install a token driver on the client
system (unless the operating system has a standard device driver available such as

currently, for example, in Windows XP-based client systems with Microsoft Internet Explorer).
Also, connectivity typically adds to the cost of the token hardware.

The main advantage of the second case, where tokens are not connected, is that there is
no need for a physical token interface and hence a token driver need not be installed. The
main disadvantage is that another possibility to communicate SSL/TLS state information from
the browser to the token is required. One possibility is to have the browser display Hash,
which the user must then enter into the token. This has the disadvantage that Hash is quite
long (i.e., 36 bytes), and hence it is unreasonable to ask the user to manually enter it into the
token. An alternative is the use of an optical transmission channel, such as the flickering
code employed by AXSionics.6 Another alternative is the use of a special function to
compress or truncate Hash to only a few bits. This alternative is explored next.

Compressing Hash is tricky and care is required at this step. If one works with a
deterministically compressed or truncated Hash value, then an MITM can still go for colliding
Hash values. One possibility to protect against this attack is to have the browser pseudo-
randomly select and work with a subset of the Hash’s bits to form the challenge. More
specifically, the browser pseudo-randomly selects a few position indices and bit sequences
that begin at these positions, and concatenates them to form a challenge. The number and
lengths of the bit sequences depend on the maximum length of the challenge. The challenge
can be displayed by the browser and the user can enter it into his token. The token, in turn,
can then generate a response. If the token implements a block cipher and holds a token key
KT, then this key can be used to encrypt the challenge according to

Response = EKT(Challenge||Padding) (4)

Note that Challenge is typically shorter than the block length of the block cipher and
hence one must introduce some padding. Also note that the block length is important
because one must avoid the case in which the output of the block cipher is too long (since
the user must manually enter this value into a Web form). In a typical setting, Challenge may
comprise 4 to 8 decimal characters, whereas Response may comprise up to 13
alphanumerical characters (e.g., uppercase letters and decimal characters). If l=lChallenge is the

maximum length of the challenge (in decimal digits), then one has b = log2(10l-1) bits to
represent the challenge. For lChallenge=4, this corresponds to b=13, and for lChallenge=8, this
corresponds to b=26. So if the challenge is 8 decimal digits long, then one can employ 26
bits to encode the challenge. In equation (4) above, the response refers to one ciphertext
block. This means that the length of the response is equal to the block length of the cipher in
use. For DES and 3DES, for example, this is 64 bits. If we employ the Base-32 encoding

scheme that comprises 32 characters encoded in 5 bits each, then we need 64/5=13
alphanumeric characters to encode the response. If, however, we employ the Base-64
encoding scheme that comprises 64 characters encoded in 6 bits each, then we can reduce

the length of the response to the more realistic size of 64/5=11 characters.

We have built a prototype implementation of TLS-SA that employs C/R tokens, described
in detail in [O+07]. On the client side, the implementation employs non-connected C/R tokens
from Vasco and a specially crafted plugin for Microsoft Internet Explorer. On the server side,
the implementation employs a lightly modified web server. Our implementation both
demonstrates the technical feasibility of TLS-SA and provides a testbed for further analysis
and improvement.

6
http://www.axsionics.com

5.3 OTP Systems

In contrast to C/R systems, OTP systems do not work with challenges. Instead, the entity
that is authenticated provides an OTP to the entity that is authenticating it. No interaction or
handshake usually takes place between the client and the server. Roughly speaking, there
are three classes of OTP systems.

1. Physical lists of OTPs: Examples include scratch lists and access cards, as well as
lists of TANs and indexed TANs (iTANs).

2. Software-based OTP systems: Examples include Lamport-style OTP systems, such as
Bellcore’s S/Key and the one-time passwords in everything (OPIE) system.

3. Hardware-based OTP systems: Examples include SecurID and SecOVID tokens. Note
that most hardware-based OTP systems are not connected to the client systems. This
simplifies the deployment of the tokens and makes them resistant to many malware
attacks.

In [OHB06], we indicated how to use impersonal authentication tokens to complement
hardware-based OTP systems in the sense that the resulting (combined) authentication
system is SSL/TLS session-aware. The idea is that U employs the OTP as input for f (instead
of PINU) in formula (3). Hence, the UAC computed is

UAC = f(NT,OTP). (3)

Everything else (including the construction of NT) remains unchanged. The disadvantage of
this approach is that the user must have two tokens (i.e., the original OTP token and the
impersonal authentication token) or the tokens must be integrated into one. The first
possibility is likely to be unacceptable in practice, whereas the second possibility will take
some time until integrated tokens appear on the marketplace. Thus, the use of software-
based OTP systems seems to be more appropriate.

For the classes of OTP systems listed above, the first class is definitively the most difficult
one to make SSL/TLS session-aware. If we only have a physical (paper) list of OTPs, then a
technique similar to the one to make C/R systems be SSL/TLS session-aware may be
employed. If a SSL/TLS session between the browser and the server is established, then the
user selects the next OTP not yet used and enters it into the browser. The browser, in turn,
interprets this value as an index into the Hash value. A specific number of bits is then
extracted from the Hash value and this bit sequence represents the UAC. The browser may
display the UAC and the user may enter it in a Web form (instead of the OTP).

6 Conclusions and Outlook

Many SSL/TLS-based e-commerce applications employ traditional authentication
mechanisms on the client side. It is not widely known, even within the security community,
that most of these mechanisms—if decoupled from SSL/TLS session establishment—are
vulnerable to MITM attacks. Few institutions have fully recognized the seriousness of this
threat and of those who have, many have declared client certificate authentication as the
“strategic solution.” To date, the often discussed obstacles to a full-PKI roll-out have
prevented the successful, large-scale deployment of this solution. There does not exist a
generally acceptable PKI-based solution that provides the degrees of freedom needed and
supports the variety of platforms required by customers to use services like Internet banking.

These problems motivated our proposal in [OHB06] of TLS-SA based on impersonal
authentication tokens. In this article, we put TLS-SA into perspective. More specifically, we
took a closer look at MITM attacks, countermeasures and related work, TLS-SA, and—most

importantly—possibilities to implement it in different real-world settings. As mentioned in the
introduction, we have tested some of our ideas by building a proof of concept implementation
of TLS-SA, employing C/R tokens. More recently, we have started work on making
smartcards that are SSL/TLS session-aware and that conform to Eurocard, MasterCard, and
Visa’s (EMV) Chip Authentication Program (CAP). This is important as it is likely that EMV-
CAP debit cards will be widely deployed (at least in Europe) and will, for example, also be
used for Internet banking.

Overall, TLS-SA is a promising approach to solving the MITM problem. It leverages the
legacy authentication mechanisms and systems that the broad masses have become
accustomed to using. It neither requires a full-fledged PKI, as is mandatory when performing
authentication using client-side certificates, nor does it unambiguously identify the parties
involved, also towards a illegitimately observing third party. Hence, we firmly believe that
TLS-SA provides as a lightweight and privacy-enhancing alternative to the deployment and
use of client-side certificates.

References

[ANN03] Asokan, N., Niemi, V., and K. Nyberg, “Man-in-the-Middle in Tunneled Authentication
Protocols,” Proceedings of the International Workshop on Security Protocols, 2003, pp. 15–24
(also available as IACR ePrint 2002/163).

[ASS03] Alkassar, A., Stüble, C., and A.-R. Sadeghi, “Secure Object Identification—or: Solving The
Chess Grandmaster Problem,” Proceedings of the 2003 Workshop on New Security Paradigms,
Ascona, Switzerland, ACM Press, NY, 2003, pp. 77–85.

[BH06] Badra, M., and I. Hajjeh, “Key-Exchange Authentication Using Shared Secrets,” Computer,
Vol. 39, Issue 3, March 2006, pp. 58–66.

[BM94] Bellovin, S.M., and M. Merritt, “An Attack on the Interlock Protocol When Used for
Authentication,” IEEE Transactions on Information Theory, Vol. 40, No. 1, January 1994.

[DR06] Dierks, T., and E. Rescorla, “The TLS Protocol Version 1.1,” RFC 4346, April 2006.

[ET+05] Eronen, P., and H. Tschofenig (Eds.), “Pre-Shared Key Ciphersuites for Transport Layer
Security (TLS),” Standards Track RFC 4279, December 2005.

[FS87] Fiat, A., and A. Shamir, “How To Prove Yourself: Practical Solutions to Identification and
Signature Problems,” Proceedings of CRYPTO ’86, Springer, LNCS 263, 1987, pp. 186–194.

[O+07] Oppliger, R., et al., “A Proof of concept Implementation of SSL/TLS Session-Aware User
Authentication,” Proceedings of Kommunikation in Verteilten Systemen (KiVS 2007), Springer-
Verlag, 2007, pp. 225–236.

[OHB06] Oppliger, R., Hauser, R., and D. Basin, “SSL/TLS Session-Aware User Authentication—Or
How to Effectively Thwart the Man-in-the-Middle,” Computer Communications, Vol. 29, Issue 12,
August 2006, pp. 2238–2246.

[PKP06] Parno, B., Kuo, C., and A. Perrig, “Phoolproof Phishing Prevention,” Proceedings of Financial
Cryptography and Data Security, Springer-Verlag, 2006

[RS84] Rivest, R.L., and A. Shamir, “How to Expose an Eavesdropper,” Communications of the ACM,
Vol. 27, No. 4, 1984, pp. 393–395.

[S+01] Steiner, M., et al., “Secure Password-Based Cipher Suite for TLS,” ACM Transactions on
Information and System Security (TISSEC), Vol. 4, No. 2, May 2001, pp. 134–157.

