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Abstract—The vacuous satisfaction of a temporal formula with
respect to a model has been extensively studied in the literature.
Although a universally accepted definition of vacuity does not
yet exist, all existing proposals generalize, in one way or another,
the antecedent failure of an implication to the syntax of a
temporal logic. They are therefore syntactic: whether a model
vacuously satisfies a formula is affected by semantics-preserving
changes to the formula. This leads to inconsistent and counter-
intuitive results. We propose an alternative: a semantic definition
of vacuity for LTL where either two semantically equivalent LTL
formulas are both satisfied vacuously in a model, or neither
of them are. Our definition is based on a syntactic-invariant
separation of LTL formulas, which gives rise to an algorithm
for detecting semantic vacuity using trap properties. We also
propose an alternative algorithm for Büchi automata, which can
be used to detect the vacuous satisfaction of ω-regular properties
as well as LTL formulas. We analyze this algorithm’s worst-
case complexity and, using real-world examples, demonstrate that
semantic vacuity can be efficiently decided in practice.

I. Introduction

Model checking is a powerful technique for verifying the

correctness of systems with respect to their requirements.

For instance, if a system is specified as a finite-state Kripke

model M and its requirements are written as a linear-time

temporal logic (LTL) formula ϕ, then an LTL model-checking

tool can be employed to decide whether the model satisfies the

formula. If M falsifies ϕ, then the tool produces a counterex-

ample, which is a path in M that witnesses the falsification

of ϕ. In practice, such counterexamples are invaluable for

investigating the system and finding the errors that cause

the falsification. Alternatively, if M satisfies ϕ, then the tool

typically does not provide any further feedback. This is not

unexpected since to show this one needs to consider all

of M’s executions and therefore no single execution would be

a sufficient witness. However, due to potential formalization

errors, M’s satisfaction of ϕ does not imply that the system

meets its requirements. An error in M indicates that M
does not conform to the system it is intended to model, and

an error in ϕ signifies that ϕ fails to express the system’s

requirements. Prudent analysis would therefore require further

feedback to provide increased confidence that no formalization

errors exist in specifying M and writing ϕ. Vacuity detection

is a prominent technique for automatically discovering such

errors.

Informally, a model M satisfies a formula ϕ vacuously

when the satisfaction is due to “unintended” reasons. For

example, the formula p → q is satisfied by any model in

which p is false. This satisfaction however may be “unin-

tended” as q’s truth assignment plays no role in it. This

phenomenon is known as propositional antecedent failure. It

has been observed in practice that vacuous satisfactions of this

kind are likely due to formalization errors in the model or the

formula [1], [2]. This observation has motivated research on

generalizing the idea of antecedent failure to temporal logic.

Consider, for example, the LTL formula ψ = �(p → �q),

stating that every occurrence of p must be followed by an

occurrence of q. Following the intuition behind antecedent

failure, Beer et al. argue that M satisfies ψ vacuously if p is

always false in M, that is, when M satisfies �(¬p) [2]. The

generalization of antecedent failure to temporal connectives

is, however, not always as straightforward as this example

may suggest. There are in fact many alternative definitions

of vacuity [3]–[7] and a universally accepted definition does

not yet exist. Nonetheless, the common thread that connects

all these definitions is that they generalize, in one way or

another, the antecedent failure of an implication to the syntax

of a temporal logic. They are therefore all syntactic.

A definition of vacuity is syntactic if the decision

whether M satisfies ϕ vacuously is affected by semantics-

preserving changes to ϕ’s syntax. While an argument can be

made that syntactic definitions capture the intuition of the

specifier, we contend that such definitions are not always

desirable. From a theoretical standpoint, qualifying the se-

mantic notion of satisfaction with a syntactic vacuity condi-

tion runs contrary to intuition. From a practical standpoint,

two correct specifications of the same requirement as two

syntactically different, but semantically equivalent, formulas

may yield contradictory results regarding whether M satisfies

the requirement vacuously. This means that a satisfaction that

is intuitively vacuous can be declared non-vacuous and vice

versa. Finally, nested until connectives in LTL do not readily

lend themselves to a syntactic generalization of antecedent

failure. We substantiate this claim in §II where we show that

existing definitions of vacuity all fall short in capturing the

“intended” behaviors described by formulas with nested until

connectives. Note in this regard that nested until connectives

cannot be avoided due to LTL’s until hierarchy [8]. This is

also a practical constraint. For instance, the bounded existence
formula [9], which is a common LTL property pattern, has a

nesting depth of five.
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To address the aforementioned issues, we propose a se-

mantic definition of vacuity where either two semantically

equivalent LTL formulas are both satisfied vacuously in a

model, or neither of them is. This sets our definition apart

from all syntactic notions of vacuity [2]–[7], and the notion

of the inherent vacuity of a formula [10], which abstracts

away from M. Our starting point is a canonical form for LTL

formulas [11], derived from Gabbay’s separation theorem [12],

which states that each LTL formula can be rewritten as the

conjunction of finitely many formulas of the form (P → �F).

Here, P is a past-only LTL formula, and F refers solely to the

future. This form is canonical in that any two semantically

equivalent formulas represented in this form have the same

number of conjuncts, and the corresponding past-only parts

and the future parts are (semantically) equivalent [11]. An-

tecedent failure can then be generalized to LTL by accounting

for the past-only parts that are never satisfied by a path. This

allows us to define a notion of temporal antecedent failure that

generalizes antecedent failure to LTL in a syntactic-invariant

manner. This straightforward generalization, we argue, can be

overly conservative. We show that using a range of abstractions

based on the satisfaction of the past-only parts over a path, one

can obtain a more refined temporal picture of how the path

satisfies ϕ. This naturally instantiates the notion of same-way
satisfaction, which we describe below.

Same-way satisfaction, although never explicitly discussed

in other works, is fundamental to vacuity. Intuitively, vacu-

ity [2] partitions the set of paths that satisfy a formula into a

number of equivalence classes. Those paths that belong to the

same class satisfy the formula “in the same way”. For example,

Beer et al.’s definition of vacuity partitions the set of paths that

satisfy the aforementioned LTL formula ψ into those with an

occurrence of p and those without an occurrence of p, and

then further refines these sets into those with finitely many

occurrences of q and those with infinitely many occurrences

of q (which makes p’s satisfaction immaterial). They then say

that a model satisfies ψ vacuously if it does not intersect the

“intended” classes, i.e., the set of paths that have an occurrence

of p and the set of paths with finitely many occurrences of q.

Instead of labeling certain paths as intended and others as

unintended, the notion of same-way satisfaction allows us

to generalize this intuition: we say that a model satisfies ψ
non-vacuously if its set of paths intersects with all of these

classes, hence representing all the different ways of satisfying

the formula. More importantly, the characterization of these

equivalence classes is entirely independent of the syntax of ψ
in our definition.

Contributions. We motivate and present a semantic definition

of vacuity for LTL. Our definition is based upon the equiva-

lence classes induced by a canonical separation of anchored

LTL formulas. Namely, each LTL formula ϕ partitions the set

of paths that satisfy it into n equivalence classes, for n ∈ N. We

say a model M satisfies ϕ vacuously if the set of M’s paths

does not intersect with each of these equivalence classes. We

present an algorithm for generating trap formulas φ1, · · · , φn,

such that M violates φi if and only if the set of M’s paths

intersects with the ith equivalence class. These formulas can

be used with a model-checking tool to decide whether M
satisfies ϕ vacuously, and to generate interesting witnesses.

Interesting witnesses are paths of M that demonstrate all the

“different ways” that M satisfies ϕ.

Constructing trap properties is computationally expensive.

We therefore present a more efficient algorithm that achieves

the same goal but uses Büchi automata instead of trap prop-

erties. A by-product of this automata-based algorithm is that

it naturally extends the proposed notion of semantic vacuity

to ω-regular languages, a strict superset of the languages

expressible by LTL. We also present the worst-case complexity

of the automata-based algorithm, and empirically investigate

its performance by generating interesting witnesses for a num-

ber of real-world examples. Our results suggest that semantic

vacuity can be efficiently decided in practice.

Outline. In §II, we recall linear-time temporal logic, gener-

alized Büchi automata, and various definitions of syntactic

vacuity. In §III, we introduce the notions of canonical sep-

aration and same-way satisfaction, and motivate and define

semantic vacuity. In §IV, we give an algorithm for deciding

semantic vacuity based on trap properties. In §V, we give a

more efficient algorithm using generalized Büchi automata,

present its worst-case complexity, and empirically evaluate its

performance on real-world examples. In §VI, we compare our

definition of vacuity to alternative ones from the literature, and

discuss its limitations.

II. Preliminaries

For a finite set AP of atomic propositions, we fix the

alphabet Σ = 2AP. A letter is an element of Σ. Let Σω be

the set of all countably infinite sequences over Σ, Σ+ be the

set of all finite nonempty sequences over Σ, and Σ∗ = Σ+∪{ε},
where ε is the empty sequence. A trace is an element of Σ+,

a path is an element of Σω, and a property or a language is

a set of paths. A prefix πi of a path π = p0 p1 p2 · · · is the

trace p0 p1 · · · pi. For a trace t and a path, or trace, π, the

concatenation of t and π is denoted tπ. We write a for the

letter {a}, and â for the set {l ∈ Σ | a ∈ l}, with a ∈ AP.

We next define the syntax and semantics of LTL. Our

definitions here are standard; see, for example, [12]–[14].

Definition 1 (LTL Syntax): The syntax of LTL is given by

the grammar

ϕ ::= � | a | ¬ϕ | ϕ ∨ ϕ | �ϕ | �ϕ | ϕSϕ | ϕU ϕ ,

where a ∈ AP. We write ⊥ for ¬�, ϕ∧ψ for ¬(¬ϕ∨¬ψ), ϕ→ ψ
for ¬ϕ∨ψ, �ϕ for �Sϕ, �ϕ for ¬�¬ϕ, �ϕ for �U ϕ, and �ϕ
for ¬�¬ϕ.

The size of an LTL formula is defined inductively over its

structure: |�| = 1, |a| = 1 for a ∈ AP, |∇ϕ| = 1 + |ϕ| for ∇ ∈
{¬,�,�}, and |ϕ � ψ| = 1 + |ϕ| + |ψ| for � ∈ {∨, S , U }. Note

that the derived connectives introduced above may contribute

more than 1 to a formula’s size. However, the contribution is

a constant. For example, |�ψ| = 4 + |ψ|.
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Definition 2 (LTL Semantics): For a path π = p0 p1 p2 · · ·
and i ∈ N, the satisfaction relation for LTL formulas is defined

inductively over the formula structure:

π, i |= �
π, i |= a if a ∈ pi

π, i |= ¬ϕ if π, i �|= ϕ
π, i |= ϕ ∨ ψ if π, i |= ϕ or π, i |= ψ
π, i |= �ϕ if i > 0 and π, i − 1 |= ϕ
π, i |= �ϕ if π, i + 1 |= ϕ
π, i |= ϕSψ if there is a j ≤ i such that π, j |= ψ

and π, k |= ϕ, for all j < k ≤ i
π, i |= ϕU ψ if there is a j ≥ i such that π, j |= ψ

and π, k |= ϕ, for all i ≤ k < j

We say that π satisfies ϕ at time i if π, i |= ϕ, and ϕ is (initially)

satisfiable if there exists a path π such that π, 0 |= ϕ. An LTL

formula ϕ defines the property L(ϕ) = {π ∈ Σω | π, 0 |= ϕ}.
Two LTL formulas ϕ and ψ are (initially) equivalent,

denoted ϕ ≡ ψ, if ∀π ∈ Σω. (π, 0 |= ϕ ⇐⇒ π, 0 |= ψ).

A past formula is a formula without the future temporal

connectives � and U . A future formula is a formula without

the past temporal connectives � and S . It is immediate that the

satisfaction of a future formula by a path π at time i does not

depend on the prefix πi−1 and that the satisfaction of a past

formula by π at time i only depends on the prefix πi. This

justifies the following definition for the satisfaction of a past

formula by a trace. A trace t ∈ Σ+ satisfies a past formula P,

denoted t |= P, if tπ, |t| − 1 |= P, for any path π. We say P
is satisfiable if ∃t ∈ Σ+. t |= P. Past formulas P1 and P2 are

semantically equivalent if ∀t ∈ Σ+. (t |= P1 ⇐⇒ t |= P2).

For an LTL formula ϕ, one can construct a general-
ized Büchi automaton with at most 2|ϕ|+1 states that recog-

nizes ϕ [15], i.e., accepts L(ϕ). Below, we define (generalized)

Büchi automata.

Definition 3 (Büchi Automaton): A generalized Büchi au-
tomaton over the alphabet Σ is a tuple A = (Q,Q0,Δ, F) with a

finite set Q of states, a set of initial states Q0 ⊆ Q, a transition

relation Δ ⊆ Q × Σ × Q, and an acceptance condition F ⊆ 2Q.

A run r of A on a path π = p0 p1 · · · ∈ Σω is a sequence of

states s0s1 · · · such that s0 ∈ Q0 and (si, pi, si+1) ∈ Δ, for i ∈ N.

The run r is accepting if, for every set S ∈ F, there is a

state s ∈ S that occurs infinitely often in r. The automaton A
accepts π if there is an accepting run of A on π. The property

accepted by A is defined as L(A) =
{
π ∈ Σω | A accepts π

}
.

A Büchi automaton, as opposed to its generalized variant,

comes with an acceptance condition F ⊆ Q. Therefore, a Büchi

automaton can be seen as a generalized Büchi automaton with

the acceptance condition {F}.
For t ∈ Σ+, we write (s, t, s′) ∈ Δ+ if there is a se-

quence of states s0, s1, · · · , s|t| such that s = s0, s′ = s|t|
and (si, ti, si+1) ∈ Δ, for 0 ≤ i < |t|. For a trace t, we define Qt

as the set of all end states of finite runs of A on t. That

is, Qt = {s′ ∈ Q | ∃s ∈ Q0. (s, t, s′) ∈ Δ+}.
We use propositional formulas defined over AP ∪ {�} as

syntactic sugar for specifying the transitions of an automaton.

The transition (q,Φ, q′), with q, q′ ∈ Q and Φ a propositional

formula, is a shorthand for (q, l, q′) ∈ Δ for all l ∈ Σ that

satisfy Φ.
We now turn to model checking and vacuity detection. A

Kripke model M is a finite structure that induces a set of

paths. We do not further specify Kripke models as we identify

them with the sets of paths they induce. Given a model M
and an LTL formula ϕ, the model checking decision problem

asks whether all paths of M are contained in L(ϕ). If the

answer is positive, we say that M satisfies ϕ and write M |=
ϕ. Otherwise, we say that M falsifies ϕ and write M �|= ϕ.

The model checking problem for LTL formulas is PSPACE-

complete [16], [17]. It can however be decided efficiently for

a large class of practical scenarios; see, e.g., [18], [19].
LTL model checking can be used to decide whether a

system, specified as a Kripke model M, satisfies its require-

ments, written as an LTL formula ϕ. If M �|= ϕ, then model-

checking tools substantiate the result with a counterexample.

The counterexample is typically a finite representation of a

path π of M that is a witness for falsification, i.e., π, 0 �|= ϕ.

This is invaluable for identifying the source of the falsification:

either the system does not satisfy its requirements or, due to

a formalization error, the model does not correctly represent

the system or the formula does not correctly encode the

requirements. In contrast, if M |= ϕ, then model-checking

tools provide no further feedback. M’s satisfaction of ϕ does

not, however, imply that the system meets its requirements.

Prudent analysis would therefore require further feedback to

increase the confidence that no formalization errors exist in

specifying M and writing ϕ. Vacuity detection is a prominent

technique for augmenting positive model-checking results.
Vacuity detection is a generalization of propositional an-

tecedent failure to temporal logic. For instance, if ϕ = �(p →
q) and p is always false in M, then q’s truth value does

not affect the satisfaction of ϕ in M. This indicates that M
does not exhibit an “intended” or “interesting” way of satisfy-

ing ϕ; namely, that of p eventually becoming true. Intuitively,

if π, 0 |= ϕ and some subformula of ϕ does not affect the

satisfaction of ϕ by π, then we say that π vacuously satisfies ϕ.

It has been observed in practice that vacuous satisfaction is

likely due to formalization errors [1], [2]. This has motivated

research on formally defining the intuitive understanding of

vacuity discussed above. Numerous definitions have been

proposed in the literature. Here, we focus on three leading

formalizations.

1) Subformula vacuity [2]: ϕ is vacuously satisfied in M if

there is a subformula ψ of ϕ such that M |= ϕ[ψ← χ], for

every formula χ. Here, [ψ← χ] stands for simultaneously

substituting all instances of ψ with χ.

2) Subformula occurrence vacuity [7]: ϕ is vacuously sat-

isfied in M if there is a subformula occurrence ψ in ϕ
such that M |= ϕ[ψ ← χ], for every formula χ. Here,

the substitution is performed independently for each

occurrence of ψ.

3) Trace vacuity [3]: ϕ is vacuously satisfied in M if there

is a subformula ψ of ϕ such that M |= ∀x. ϕ[ψ ← x],

where x � AP. Trace vacuity is a strong condition: even
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arbitrarily choosing ψ’s truth value at each moment in

time cannot undermine M |= ϕ.

These definitions coincide when every atomic proposition has

only a single occurrence in ϕ. Moreover, to decide if a subfor-

mula with a single occurrence causes syntactic vacuity, it is

sufficient to substitute it with its most challenging substitution,

which is either ⊥ or �, depending on the subformula’s polarity;

see [7] for further details.

Trace vacuity is sometimes called “semantic” because of

its universal quantification. The following example however

shows that these definitions are all syntactic: the result of

vacuity detection depends on ϕ’s syntax, not its semantics.

Example 4: Consider the LTL formula ϕ = (cU o)U x,

where c stands for performing a computation step, o stands

for outputting a result, and x stands for the termination

signal. The formula ϕ formalizes the requirement that the

system continuously performs computations or outputs a result

until eventually a termination signal is sent. Moreover, a

computation initiated before the termination signal must not

be interrupted before it outputs a result, which can possibly

occur after the termination signal. Replacing the subformulas

of ϕ by the most challenging substitution ⊥ [7] results in the

following set of formulas.

S = {(cU o) U⊥ , (cU⊥)U x , (⊥U o)U x ,⊥U x ,⊥}.

The formula ϕ is vacuously satisfied (for the three aforemen-

tioned definitions) in a model M if and only if M |= ϕ
and M satisfies at least one of the formulas in S . Only two of

the formulas in S are satisfiable, namely, (cU⊥)U x ≡ x
and (⊥U o) U x ≡ oU x. It follows that ϕ is vacuously

satisfied in a model if and only if the model satisfies oU x. For

example, ϕ is not vacuously satisfied in the model M = {coxω}
which contains only a single path.

Now, consider the formula ϕ′ = (c ∨ o)U ((o ∧ �x) ∨ (x ∧
(cU o))) ∨ x , which is vacuously satisfied in M according to

the three definitions given above. This is because substituting

the subformula (x∧ (cU o)) with the most challenging substi-

tution ⊥ results in the formula (c ∨ o)U (o ∧ �x) ∨ x, which

is satisfied by M. It is however easy to see that ϕ ≡ ϕ′. All

three definitions are therefore syntactic.

Intuitively, ϕ’s and ϕ′’s satisfactions in M should both be

declared vacuous: a path where the last computation results

in an output after the termination signal is sent represents an

interesting behavior. This behavior is, however, not present

in M = {coxω}. Syntactic definitions of vacuity fail to

detect ϕ’s vacuous satisfaction because, informally, the left

argument of ϕ’s outer until looks farther into the future than

its right argument. Only after this behavior is made explicit,

as it is done in ϕ′, are the syntactic definitions able to detect

the vacuity of satisfaction here. �
This example illustrates that a syntactic definition of vacuity

is undesirable because vacuity detection would then depend

on syntactic formalization choices that have no effect on the

semantics. As the example shows, the more intuitive result is

not necessarily obtained from the simpler formula (ϕ in the

example). It is generally unclear which syntactic representation

of a requirement is suitable for detecting syntactic vacuity.

III. Generalizing Antecedent Failure

It is not surprising that the existing definitions of vacuity

are syntactic, since propositional antecedent failure is also

a syntactic notion: it is only defined for formulas of the

form A → B. The example of the formula �(p → �q) from

the introduction suggests that a simple syntactic generalization

of antecedent failure to LTL can be defined for formulas of

the form �(A → B). Such a generalization is however bound

to be syntactic, and it is applicable only to a limited set of

formulas. To address these issues, we give a syntactic-invariant

generalization of antecedent failure to LTL based on the notion

of canonical separation of anchored LTL formulas [11].

Definition 5: Let ϕ be an LTL formula. A canonical
separation of anchored ϕ, denoted CS(ϕ)n, is a formula of

the form (P1 → �F1) ∧ · · · ∧ (Pn → �Fn), with n ∈ N, where

the following conditions hold: (1) each Pi is a satisfiable past

formula, and each Fi is a future formula; (2) for every t ∈ Σ+,

there is a unique i such that t |= Pi; (3) for all i, j, if i � j
then Fi � F j; (4) ϕ ≡ �CS(ϕ)n ≡ �CS(ϕ)n. We use designated

indices ⊥ and � to denote respectively the indices i and j such

that Fi ≡ ⊥ and F j ≡ �, if they exist.

For any formula ϕ, a canonical separation of anchored ϕ
can be constructed by applying Gabbay’s separation algo-

rithm [12], [20] to the formula ��ϕ, referred to as anchored ϕ.

We remark that ϕ ≡ ��ϕ. Moreover, any two (syntactically

distinct) canonical separations of anchored ϕ have the same

number of conjuncts, their corresponding future formulas

are equivalent and their corresponding past formulas are

semantically equivalent [11]. Thus, a canonical separation of

anchored ϕ is independent from ϕ’s syntax. The following

example illustrates these notions.

Example 6: Consider the formula ϕ = (cU o)U x dis-

cussed in Example 4. A canonical separation of anchored ϕ is

given by the conjunction of the following five formulas:

(1) �
(
¬c ∧ (¬oS (¬o ∧ �¬x)

)) → �⊥
(2)

(
�
(
(c ∨ o) ∧ ¬x

) ∧ o
)
→ �ϕ

(3)
(
�
(
(c ∨ o) ∧ ¬x

) ∧ ¬o
)
→ �(

(cU o) ∧ ϕ)

(4)
(
�
(
c ∨ o

) ∧ (¬oS (¬o ∧ �¬x)
) ∧ �x

)
→ �(

cU o
)

(5)
(
��x ∨ �

(��(c ∨ o
) ∧ (

(x ∧ �o) ∨ (o ∧ �x)
))) → ��

We characterize the past-only parts of these formulas by

referring to the Büchi automaton Aϕ that recognizes ϕ,

depicted in Figure 1. The state with double circles denotes

the automaton’s accepting state. Recall that, for a trace t, we

write Qt for the set {s′ ∈ Q | ∃s ∈ Q0. (s, t, s′) ∈ Δ+}. A trace t
satisfies the formula P1 (respectively, P2, P3, P4, P5) if and

only if Qt is the set {d} (respectively, {q0}, {q1}, {q2}, {q3}).
Moreover, the designated index ⊥ refers to conjunct 1, and

index � to conjunct 5. �
Note that �CS(ϕ)n, which is equivalent to ϕ, resem-

bles �(A → B). However, it is determined by ϕ’s semantics,

rather than its syntax. This allows us to define temporal

antecedent failure in a syntactic-invariant manner.
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q0 q1 q2

q3

d

o ∧ ¬x
c ∧ ¬o ∧ ¬x

x

¬(c ∨ o ∨ x)

o ∧ ¬x

c ∧ ¬o ∧ x

o ∧ x

�

c ∧ ¬o ∧ ¬x

¬(c ∨ o)
c ∧ ¬o

o

¬c ∧ ¬o

�
Fig. 1. Büchi automaton recognizing the formula (cU o)U x

A. Temporal Antecedent Failure

In the following, we give a syntactic-invariant definition

for temporal antecedent failure (see our related work for a

comparison to [21]). Afterward, we argue that although this

generalizes antecedent failure to LTL in a straightforward

manner, it leads to an overly conservative vacuity definition.

Definition 7 (Temporal Antecedent Failure): Let ϕ be an

LTL formula with a canonical separation CS(ϕ)n. A model M,

with M |= ϕ, satisfies ϕ due to temporal antecedent failure if

there is an index i � ⊥ such that ∀π ∈ M. π, 0 �|= �Pi.

This naturally leads to a definition for vacuity: M satisfies ϕ
vacuously if M satisfies ϕ due to temporal antecedent failure.

Note that this definition is not syntactic. It can however

be overly conservative. Namely, a model that lacks intu-

itively interesting or intended paths can satisfy a formula

non-vacuously. This implies that non-vacuity obtained based

on Definition 7 only weakly substantiates positive model-

checking results. The following example illustrates this point,

and compares temporal antecedent failure to syntactic vacuity.

Example 8: Consider the formula ϕ of Example 6. For any

path π, its shortest prefix that satisfies P4 (i.e., reaches state q2

in Figure 1) is necessarily a trace from the set defined by the

regular expression (Σ\ x̂)∗c{c, x}; this is not however a sufficient

condition. Intuitively, this regular expression denotes the set of

traces where x is falsified until only c is satisfied, immediately

followed by both c and x being satisfied. Since any path with

such a prefix must falsify oU x, it is immediate that for the

formula ϕ syntactic vacuity (according to any of the three

definitions given in §II) implies temporal antecedent failure.

Now, let M be the model with a single path π = oc{c, x}oω.

It is easy to check that, according to Definition 7, M does

not satisfy ϕ merely due to temporal antecedent failure. It

then follows that ϕ is not vacuously satisfied according to

syntactic vacuity. These results are, however, counter-intuitive:

the model M lacks a path such that the termination signal

immediately follows, or coincides with, the final output, i.e.,

a path that does not visit state q2 in Figure 1. Intuitively, this

represents a distinct and interesting behavior of the system

according to ϕ that is absent from the model. �

B. Semantic Vacuity

We define semantic vacuity for LTL by refining temporal

antecedent failure. The refinement is motivated by the fol-

lowing observation. Let us consider propositional antecedent

failure for the formula (A1 → B1) ∧ · · · ∧ (An → Bn),

where the formulas Ai are pairwise inconsistent. Then, for any

truth assignment, at most one of the formulas Ai is satisfied.

Therefore, generalizing antecedent failure to this formula can

be considered as n independent instances of antecedent failure.

Now, consider �CS(ϕ)n, for an LTL formula ϕ. Although the

past formulas Pi are pairwise inconsistent in �CS(ϕ)n, a path π
can satisfy several past formulas at different points in time.

Furthermore, a path π can satisfy a single formula Pi any

number of times, including infinitely often. That is, given a

path, the dichotomy between satisfying a past formula and

falsifying it is too coarse. This motivates the definition of

same-way satisfaction, given below, which refines temporal

antecedent failure. We will then use same-way satisfaction

to define semantic vacuity. Below, we introduce the concepts

needed to formalize same-way satisfaction.

Let ϕ be an LTL formula and CS(ϕ)n be a canonical

separation of anchored ϕ. We define the minimal equivalence

relation ∼ϕ on finite traces as: for t, t′ ∈ Σ+, t ∼ϕ t′

if ∃i ∈ {1, · · · , n}. t, t′ |= Pi. It is immediate to see that this

relation induces n equivalence classes, henceforth referred to

as O1, · · · ,On. Each class intuitively represents an obligation:

for any trace t ∈ Oi, the formula Fi defines the sufficient and

necessary condition (obligation) that a path π must fulfill,

namely that π, 0 |= Fi, so that the path tπ satisfies ϕ.

We therefore refer to the (quotient) set {O1, · · · ,On} as the

alphabet of obligations and denote it by Σϕ. Note that a

model M falsifies �Pi if and only if for every prefix π j of any

path π ∈ M, π j � Oi. The definition of temporal antecedent

failure therefore implicitly abstracts each path π ∈ M with

the set of obligations corresponding to the prefixes of π. In

the following, we refine this notion by accounting for whether

infinitely many, finitely many, or none of the prefixes of a

path belong to an obligation. Informally, these cases represent

the path’s recurring behaviors, its transient behaviors, and the

behaviors that are absent in the path, respectively.

Definition 9 (Obligation Abstraction): Let ϕ be an LTL

formula, and π ∈ Σω. We define the obligation abstraction
of π with respect to ϕ as the tuple

sϕ(π) = (sπ1, · · · , sπ|Σϕ |) ∈ {0, 1,∞}
|Σϕ | ,

where sπi = 0 if no prefix of π belongs to Oi, sπi = 1 if finitely

many prefixes of π belong to Oi, and sπi = ∞ otherwise (as

a convention, we exclude zero from finitely many). We may

omit the subscript from sϕ(π) when ϕ is clear from the context.
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TABLE I
Candidate obligation abstractions for the paths that satisfy (cU o)U x

Abstraction Concretization Abstraction Concretization
(0, 0, 0, 0,∞) xω (0, 0, 0, 1,∞) Not possible
(0, 0, 1, 0,∞) c{o, x}xω (0, 0, 1, 1,∞) c{c, o}oxω
(0, 1, 0, 0,∞) oxω (0, 1, 0, 1,∞) Not possible
(0, 1, 1, 0,∞) ocoxω (0, 1, 1, 1,∞) oc{c, x}oω

Moreover, we say a path π concretizes a tuple s ∈ {0, 1,∞}|Σϕ |
if s(π) = s.

The following example illustrates this definition.

Example 10: Consider the formula ϕ = (cU o)U x, for

which CS(ϕ)n is given in Example 6. It is immediate that ∼ϕ
induces five equivalence classes, and no prefix of a path

satisfying ϕ can belong to the obligation O⊥. Moreover, every

path satisfying ϕ has infinitely many prefixes belonging to the

obligation O�, and finitely many (if any) prefixes belonging

to the other obligations; see Figure 1. This gives us eight

candidates for the obligation abstractions of the paths in L(ϕ),

presented in Table I. Then, we observe that two abstraction

candidates cannot be concretized by a path in L(ϕ). This

immediately follows from the correspondence between the

obligations and the sets of states of the automaton of Figure 1,

discussed in Example 6. �
For any π, σ ∈ Σω and an LTL formula ϕ, we write π �ϕ σ

if s(π) = s(σ). We say π and σ satisfy ϕ in the same way
if π, σ ∈ L(ϕ) and π �ϕ σ. Below, we define semantic vacuity.

Intuitively, a formula is semantically vacuously satisfied in M
if M does not contain representatives of all the different ways

of satisfying ϕ.

Definition 11 (Semantic Vacuity): A model M semantically
vacuously satisfies a formula ϕ if M |= ϕ and there exists a

tuple s ∈ {0, 1,∞}|Σϕ | that has a concretization in L(ϕ), but it

does not have one in M.

Two remarks are due here. First, the obligation abstraction

distinguishes between recurring, transient, and absent behav-

iors of a path. Our definition inherits the distinction between

absent and non-absent behaviors from temporal antecedent

failure, which it refines. It is also clear that the transient

behaviors of a path do not affect the membership of the path

to the language of an LTL formula, as it is reflected in the

acceptance condition of Büchi automata. This is evident, for

instance, in the Büchi automaton discussed in Example 6,

where each obligation maps to one state of the automaton.

We have opted not to further refine the notion of temporal

antecedent failure. This choice is motivated by the practi-

cal consideration that same-way satisfaction should induce

a (preferably small) finite number of equivalence classes.

Augmenting positive model-checking results with excessively

many witnesses is impractical. In short, Definition 9 strikes a

balance between the intuition behind “satisfaction in the same

way” and the number of equivalence classes of the same-way

satisfaction relation.

Second, same-way satisfaction augments a positive model

checking result. Namely, the intersections between the set

of paths of M and each equivalence class defined by �ϕ
demonstrate a distinct way in which M satisfies ϕ. Similarly

to syntactic vacuity, the fact that M lacks a certain way of

satisfying ϕ need not correspond to a formalization error. It

nevertheless helps the modeler to better understand the relation

between the system that M models and the requirements that ϕ
expresses. Note that, in contrast to the syntactic definitions of

vacuity and temporal antecedent failure, a single path cannot

satisfy ϕ in two different ways.

IV. Deciding Semantic Vacuity: Trap Properties

For any LTL formula ϕ, the relation �ϕ partitions the

set L(ϕ) into a finite number of equivalence classes. We

write IPϕ for L(ϕ)/ �ϕ. It is immediate that a model M
satisfies ϕ non-vacuously (according to Definition 11) iff ∀Π ∈
IPϕ. M ∩ Π � ∅. Then, a set of interesting witnesses for

the satisfaction of ϕ in M is any set W such that ∀Π ∈
IPϕ.∃π ∈ W. π ∈ M ∩ Π. The following example illustrates

these definitions.

Example 12: Consider the formula ψ = �(p → �q). A

canonical separation of anchored ψ is the conjunction of the

formula (¬qS (p∧¬q)) → �(�q∧ψ) and the formula (�¬p∨
(¬pS q)) → �ψ.

It follows that the obligation alphabet Σψ has two elements.

For any path π ∈ L(ψ), the pigeonhole principle implies that

infinitely many prefixes of π must belong to at least one

of these obligations. The obligation abstractions of the paths

of L(ψ) can then be calculated as the following: (0,∞), (1,∞),

and (∞,∞). These are the abstractions of the paths expressed

by the ω-regular expressions (Σ \ p)ω, (Σ∗p)+Σ∗q̂(Σ \ p)ω, and

(Σ∗pΣ∗q̂)ω, respectively. An example of a model that satisfies ψ
non-vacuously is M = {qω, pqω, (pq)ω}. Note that M is

itself a minimal set of interesting witnesses. Therefore, the

model M′ = {pqω} satisfies ψ vacuously. Note that M′ |= ψ is

not due to temporal antecedent failure. Moreover, the three

definitions of syntactic vacuity given in §II state that M
satisfies ψ vacuously, because q is satisfied infinitely often

in all paths of M (thus making p’s truth assignment irrel-

evant for the satisfaction). This demonstrates the difference

between the syntactic vacuity definitions and our definition

of semantic vacuity. Syntactic definitions are concerned with

how each proposition independently affects the satisfaction,

whereas semantic vacuity is concerned with how the temporal

relation between the propositions constitutes a distinct way of

satisfaction. For instance, the single path {p, q}∅ω satisfies ψ
non-vacuously according to the syntactic definitions, but same-

way satisfaction does not differentiate it from qω: they have

the same obligation abstraction. Clearly, the path {p, q}∅ω
satisfies ψ semantically vacuously. �

Next, we construct trap properties for finding concretiza-

tions of any obligation abstraction in a model, if a concretiza-

tion exists in the model. The trap properties can be used

for deciding vacuity and generating interesting witnesses, as

discussed below. Fix an LTL formula ϕ. For a tuple s =
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(s1, · · · , s|Σϕ |) ∈ {0, 1,∞}|Σϕ |, we define the trap property ϕs

as

ϕs =
∨

i∈I0

(�Pi) ∨
∨

i∈I1

(�¬Pi ∨ ��Pi) ∨
∨

i∈I∞

(��¬Pi) ,

where I0, I1, and I∞ stand for the sets of all indices corre-

sponding to 0, 1, and ∞ in s, respectively. As usual, the past

formulas Pi refer to a canonical separation of anchored ϕ.

Proposition 13: Let ϕ be an LTL formula, and s =
(s1, · · · , s|Σϕ |) ∈ {0, 1,∞}|Σϕ |. A path π does not belong to L(ϕs)

if and only if the following conditions hold.

1) For every i such that si = 0, no prefix of π belongs to Oi.

2) For every i such that si = 1, finitely many prefixes of π
belong to Oi.

3) for every i such that si = ∞, infinitely many prefixes of π
belong to Oi.

Proof: A path π falsifies ϕs iff π falsifies every disjunct

of ϕs. That is π �|= ϕs iff (1) ∀i ∈ I0. π, 0 |= �¬Pi, (2) ∀i ∈
I1. π, 0 |= �Pi ∧ ��¬Pi, and (3) ∀i ∈ I∞. π, 0 |= ��Pi. These

three cases readily correspond to the three conditions of the

proposition. �
The following corollary of this proposition allows us to use a

model-checking tool for deciding semantic vacuity.

Corollary 14: For any LTL formula ϕ and model M,

with M |= ϕ, the satisfaction is semantically vacuous iff ∃s ∈
{0, 1,∞}|Σϕ |. ϕs ∧ ϕ � ⊥ ∧M |= ϕs.

Suppose that M |= ϕ. The following algorithm decides if

the satisfaction is vacuous. For every s ∈ {0, 1,∞}|Σϕ |, do the

following steps. Construct the formula ϕs. If ϕ ∧ ϕs is satis-

fiable, then use a model-checking tool to decide if M |= ϕs.

If the answer is positive, then ϕ is vacuously satisfied in M.

If the algorithm terminates without detecting vacuity, then the

satisfaction is not vacuous. Trap properties can also be used to

generate interesting witnesses for the relation M |= ϕ. Namely,

a set W of interesting witnesses can be found by collecting

the paths in M that falsify ϕs, for all abstractions s such

that ϕs ∧ ϕ � ⊥.

Constructing trap properties depends on a canonical sep-

aration of anchored LTL formulas. Therefore, the aforemen-

tioned algorithms for deciding semantic vacuity and generating

interesting witnesses also depend on anchored separation.

Separating arbitrary LTL formulas is believed to be nonele-

mentary [13]. The past-only formulas, used in trap properties,

can be constructed using an elementary algorithm [11]. This

algorithm is also prohibitively expensive in practice. In the

following section, we propose a more efficient algorithm for

deciding semantic vacuity that uses Büchi automata instead of

trap properties.

V. Deciding Semantic Vacuity: ω-Automata

In this section, we show how Büchi automata can be used

instead of trap properties to decide vacuity and generate inter-

esting witnesses. The use of Büchi automata also allows us to

generalize our definition of semantic vacuity to ω-regular lan-

guages. The generalization is justified by noting that one can

define a canonical form for ω-regular languages that resembles

the canonical LTL separation; moreover, it is independent to

the shape of the Büchi automaton that recognizes the language.

Namely, any ω-regular language can be expressed by the

intersection of finitely many expressions of the form PiFi,

where, Pi is a regular expression and Fi is an ω-regular

expression. Moreover, L(Pi ∩ Pj) = ∅ and L(Fi) � L(F j),

whenever i � j. This representation of ω-regular languages is

therefore analogous to a canonical separation of an anchored

LTL formula. These expressions are simple to construct from

the automaton DF
ϕ, which we will introduce in Construction 16.

We start by extending the relation ∼ϕ to ω-regular lan-

guages. Let ϕ be a (syntactic representation of an) ω-regular

language, and Aϕ be a Büchi automaton that recognizes ϕ. For

an automaton A and a trace t, we write At for the automaton

obtained from A by letting Qt be the set of initial states. For

two traces t, t′, we define t ∼ϕ t′ if L(At
ϕ) = L(At′

ϕ). It is easy

to show that this definition depends only on Aϕ’s semantics,

i.e., ϕ. The following lemma, proved in [11], implies that

this is a conservative extension of the definition of ∼ϕ given

in §III-B.

Lemma 15: Let ϕ be an LTL formula, CS(ϕ)n be a

canonical separation of anchored ϕ, and Aϕ be a generalized

Büchi automaton that recognizes ϕ. For t ∈ Σ+, if t |= Pi,

then L(At
ϕ) = L(Fi). Moreover, for any trace t′, if Qt = Qt′

then t′ |= Pi. �
We extend the definitions of satisfaction, obligations, tem-

poral antecedent failure, same-way satisfaction, and semantic

vacuity to ω-regular languages in the obvious way. We also

extend ∼ϕ to Σ∗ by defining ε ∼ϕ ε. It is easy to check that the

relation ∼ϕ is right-invariant, i.e., for all traces u, v,w ∈ Σ∗, the

equivalence u ∼ϕ v implies uw ∼ϕ vw. Moreover, it is of finite

index. It then follows from the Myhill-Nerode theorem [22]

that one can construct a deterministic finite state automaton

on finite words (DFA) recognizing the equivalence classes

of ∼ϕ. Namely, we construct a DFA DF
ϕ = (Q, q0, δ, ∅) such

that |Q| = |Σϕ| + 1 and, for any i ∈ {1, · · · , |Σϕ|}, there is a

unique state qi ∈ Q such that the run of DF
ϕ on any trace t ∈ Oi

ends at qi. We sketch the construction below.

Construction 16: The input is a generalized Büchi automa-

ton Aϕ = (R,R0,Δ, F) recognizing ϕ. The output of the con-

struction is the automaton DF
ϕ = (Q, q0, δ, ∅), where Q ⊆ 2R ∪

{q0}. Let us write Rt for the set {s′ ∈ R | ∃s ∈ R0. (s, t, s′) ∈ Δ+},
which is a subset of R. Let Q be the set of states of DF

ϕ,

and U ⊆ Q be the set of states that “must be processed”;

we clarify this shortly. Initially, we define Q = U = {q0}. To

make the construction more efficient, for every state q ∈ Q,

we maintain a list r(q) of corresponding subsets of R, and a

single trace t(q) (such that the run of DF
ϕ on t(q) ends with the

state q). We define t(q0) = ε. Now, we process each state in U
according to the following steps until the set U is empty:

1) Take any q ∈ U, and let U ← U \ {q}. Let t ← t(q).

2) For every l ∈ Σ, perform the first applicable action:

• if Rtl ∈ r(q′) for some q′ ∈ Q\{q0}, define δ(q, l) = q′;
• if L(Atl

ϕ) = L(At(q′)
ϕ ), for some q′ ∈ Q \ {q0},

define δ(q, l) = q′ and r(q′) ← r(q′) ∪ {Rtl};
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• for i such that tl ∈ Oi, Q ← Q ∪ {qi}, U ← U ∪
{qi}, r(qi) ← {Rtl}, and t(qi) ← tl.

Note that the operator ← denotes assignment. �
For an ω-regular property ϕ, we next show how to construct,

given a tuple s ∈ {0, 1,∞}|Σϕ |, a generalized Büchi automa-

ton As that recognizes the set of concretizations of s. These

automata recognize the paths that falsify the trap properties

defined in §IV.

A. Constructing Trap Automata

Fix an ω-regular language ϕ, and let I0, I1, and I∞ be the

sets of indices that correspond to 0, 1, and ∞ of some s ∈
{0, 1,∞}|Σϕ |, respectively. We construct an automaton As such

that π ∈ L(As) iff s(π) = s. The construction consists of

two phases. In the first phase, we construct an automaton

whose states encode which obligations in I1 have occurred

so far. In the second phase, accepting states are added to the

automaton. These can only be reached once all obligations

in I1 have occurred at least once. The automaton’s acceptance

condition ensures that a path is accepted if and only if each

obligation in I∞ occurs infinitely often and each obligation

in I1 occurs only finitely often. The obligations in I0 cannot

occur by construction. Below, we describe the construction.

Our starting point is the DFA DF
ϕ. We define the set Q×C,

where C = 2|I1 |. Intuitively, each element of Q × C encodes

an obligation and the set of transient obligations that have

occurred so far. We write 0 and 1 respectively for (0, · · · , 0)

and (1, · · · , 1). We define e0 = (q0, 0) as As’s initial state,

and write S and Δ respectively for the set of states and the

transition relation of As. Initially, S = {e0} and Δ = ∅. We

expand S inductively: For each e = (q, c) ∈ S , we take the

following steps. For each l ∈ Σ and qi = δ(q, l), if i ∈ I1 ∪ I∞,

then we add e′ = (qi, c′) to S and (e, l, e′) to Δ, where c′ is

defined as follows; if i ∈ I1, then c′ is obtained by setting the

value that corresponds to Oi in c to 1. If i ∈ I∞, then c′ = c.

This procedure terminates because Q×C is finite. A trace t can

reach a state of the form (q, 1) in As only if each obligation

in I1 has a representative in a prefix of t. We can thus prune

the sets S and Δ by removing all the states from which no

state of the form (q, 1) is reachable. This concludes the first

phase.

We now describe how to add accepting states to As. For

each i ∈ I∞, we add a state (q′i , 1) to S . Then, for ev-

ery (q, c) ∈ S and letter l ∈ Σ such that ((q, c), l, (qi, 1)) ∈ Δ, we

add ((q, c), l, (q′i , 1)) to Δ. Furthermore, for any i, j ∈ I∞ and l ∈
Σ, if ((qi, 1), l, (qj, 1)) ∈ Δ, then we add ((q′i , 1), l, (q′j, 1)) to Δ.

The acceptance condition of the generalized Büchi automa-

ton As is then given by the set F = {{(q′i , 1)} | i ∈ I∞}. The

following theorem shows the correctness of our construction.

Theorem 17: Let ϕ be an ω-regular language, s be a tuple

in {0, 1,∞}|Σϕ |, and π ∈ Σω. Then, π ∈ L(As) if and only

if s(π) = s.

Proof: Assume that π ∈ L(As) and let r0r1 · · · be an

accepting run of As on π. Then, there is is a smallest index k
such that rk and all subsequent states are of the form (q′, 1).

It follows immediately that rk−1 is of the form (q, 1) and,

q2 q3 q4

q5

q1

q0

o ∧ ¬x
c ∧ ¬o ∧ ¬x

x

¬(c ∨ o ∨ x)

o ∧ ¬x

c ∧ ¬o ∧ x

o ∧ x

�

c ∧ ¬o ∧ ¬x

¬(c ∨ o)
c ∧ ¬o

o

¬c ∧ ¬o

�

o ∧ ¬x

c ∧ ¬o ∧ ¬x

x

¬(c ∨ o ∨ x)

Fig. 2. The DFA DF
ϕ

therefore, each obligation in I1 is represented by a prefix of π
(and of πk−1). Since states of the form (q′, 1) correspond to

obligations in I∞, only those obligations can occur infinitely

often in prefixes of π. From the acceptance condition, it

follows that all obligations in I∞ occur infinitely often in

prefixes of π. That no obligation in I0 has representatives in

prefixes of π is immediate from the construction of As.

Conversely, let s(π) = s. Since only finitely many prefixes

of π belong to obligations in I1, there is a largest index k
such that πk belongs to such an obligation. Let r0 = e0 and,

for 0 < m ≤ k, let rm be the state of the form (q, c) such

that (rm−1, pm−1, rm) ∈ Δ. It follows from the construction of As

that rk is of the form (q, 1). For m > k, let rm be the state of the

form (q′, 1) such that (rm−1, pm−1, rm) ∈ Δ. We have constructed

a run of As on π, and since there are infinitely many prefixes

of π that belong to each of the obligations in I∞, we conclude

that each state of the form (q′, 1) occurs infinitely often in the

run. �
The following example illustrates the construction of trap

automata.

Example 18: We construct the automaton As for the

tuple s = (0, 1, 1, 0,∞) of Example 10. We start with DF
ϕ =

(Q, q0, δ, ∅), shown in Figure 2. The first phase of the con-

struction results in the automaton of Figure 3. The second

phase, not depicted there, adds the accepting state (q′
5
, 1) and

the corresponding transitions to this automaton. �
Corollary 19: Let ϕ be an ω-regular language, M be a

model that satisfies ϕ, and Aϕ be a Büchi automaton that rec-

ognizes ϕ. The satisfaction of ϕ in M is semantically vacuous

iff there is a tuple s ∈ {0, 1,∞}|Σϕ | such that L(Aϕ)∩L(As) � ∅
and M∩ L(As) = ∅. �

Note that, similarly to semantic vacuity, temporal antecedent

failure can be decided for ω-regular languages without re-

sorting to separation algorithms. It is easy to see that M
satisfies ϕ due to temporal antecedent failure iff there is a

state q ∈ Q \ {q0, q⊥} in DF
ϕ such that M ⊆ L(Tq), where Tq is

the Büchi automaton (Q \ {q}, {q0}, δ,Q \ {q, q⊥}).
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(q2,(1,0))

(q3,(0,1)) (q2,1)

(q4,1)

(q5,1)(q0,0)

o ∧ ¬x

c ∧ ¬o ∧ ¬x

x

c ∧ ¬o ∧ ¬x

o ∧ ¬x

o ∧ ¬x

o ∧ x

o ∧ ¬x

c ∧ ¬o ∧ ¬x

c ∧ ¬o ∧ ¬x

�

o ∧ ¬x

c ∧ ¬o ∧ ¬x

Fig. 3. The automaton As prior to the 2nd phase

B. Complexity and Empirical Evaluation

We give the (worst-case) size of As, for a generalized Büchi

automaton Aϕ and s ∈ {0, 1,∞}|Σϕ |. By the definition of ∼ϕ, the

number of obligations |Σϕ| is at most exponential in the number

of states of Aϕ. Recall that, in the DFA DF
ϕ, the set Q of states

has |Σϕ| + 1 elements. The automaton As has at most 2|I1 |−1 ·
(|I1|+2 · |I∞|)+1 states, which is exponential in the size of Σϕ.

Now, if ϕ is an LTL formula, then |Σϕ| is at most double

exponential in |ϕ|, and the size of As is in the worst case

triple exponential in |ϕ|. These results give us upper-bounds

for |As| that are not necessarily tight.

In the following, we calculate the number of obligations for

a number of examples, and show that the worst-case scenarios

rarely occur in practice. For our evaluation, we consider

the LTL formulas used in the formalization of the GIOP

protocol [23] and the TLA v5 formula from the formalization

of Bluespec [24]. These models and formulas are publicly

available in the Promela database [25]. We also analyze

common LTL specification patterns [9], confining our attention

to most challenging cases for each pattern. The results are

summarized in Table II, where |Aϕ| refers to the number of

states of Aϕ generated from ϕ using the LTL2BA tool [15].

Except for the simplest formulas, |Σϕ| ≤ |Aϕ|. Moreover,

except for the formula TLA v5, |Σϕ| ≤ |ϕ|. These results

suggest that for most practically relevant LTL formulas, the

size of Σϕ is small; therefore, semantic vacuity can be decided

efficiently. We have used the model-checking tool SPIN [19]

to decide vacuity for the GIOP model, and have discovered a

number of interesting behaviors that the model lacks.

The results of our empirical study suggest that, despite

its high worst-case complexity, semantic vacuity can in most

cases be efficiently decided in practice. Furthermore, even

when deciding semantic vacuity is infeasible, one can still

efficiently check for temporal antecedent failure.

VI. RelatedWork and Discussion

Numerous syntactic definitions of vacuity have been pro-

posed in the literature and their applications have been dis-

TABLE II
Empirical Results

Formula |ϕ| |Σϕ | |Aϕ | Formula |ϕ| |Σϕ | |Aϕ |
GIOP v3 10 3 2 Precedence 26 4 4
GIOP v4l 69 6 17 Response 35 4 8
GIOP v4a 8 2 1 Prec. Chain 1 38 5 8
GIOP v5 20 4 4 Prec. Chain 2 41 4 8
GIOP v6b 19 2 2 Resp. Chain 1 40 6 35
GIOP v8 34 6 4 Resp. Chain 2 38 6 16
GIOP v9a 18 4 11 Constr. Chain 50 6 16
GIOP v9b 12 3 2 Existence 17 3 5
GIOP v10 23 3 4 Bound. Ex. 60 8 16
TLA v5 105 513 2816 Universality 23 4 4
Absence 24 4 4

cussed; see, e.g., [2]–[7], [10], [21], [26]–[28]. For a survey on

vacuity detection and other sanity checks in formal verification

see [29]. As mentioned before, we are the first to define

semantic vacuity, in contrast to the existing definitions which

are syntactic. A semantic generalization of antecedent failure

for the temporal logic PSL has been proposed by Ben-David

et al. in [21]. Their definition is applicable only to a limited

set of formulas, namely, those that can be written in the

form �(P → F), where P is a past formula and F is a future

formula. This resembles our definition of temporal antecedent

failure, but our definition is applicable to any ω-regular

language. A goal of Ben-David et al. is to reduce the number

of false positive vacuity declarations. Using a conservative

definition (such as theirs, or our temporal antecedent failure)

in this context is reasonable.

In the context of model-based testing, unique first cause

(UFC) coverage by Whalen et al. [30] and Büchi coverage

by Tan [31] can be seen as definitions for vacuity. These

definitions are, however, not semantic: UFC depends on the

syntax of the LTL formula at hand, and Tan’s definition

relies on the structure of a Büchi automaton that recognizes

the formula. The latter is not semantic because no canonical

representation for the automata that recognize LTL formulas

exists.

Our definition of semantic vacuity can be used for reasoning

about any property for which past behaviors can influence

its satisfaction. That is, semantic vacuity is well-suited for

all ω-regular languages that do not define a fairness property

(see [32] for a formal definition of fairness): semantic vacuity

cannot be readily used to reason about limit behaviors of fair-

ness properties. This is because, for a fairness property ϕ, the

relation ∼ϕ has only one equivalence class, and consequently

the obligation abstraction degenerates. Note that reasoning

about limit behaviors is challenging also when using syntactic

definitions of vacuity. It is easy to see that, for instance, the

formulas ��a and ��a, which define fairness properties, are

never syntactically vacuous. As future work, we plan to extend

semantic vacuity to limit behaviors, for instance using the

notion of right congruences for ω languages [33].
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