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1. INTRODUCTION

Security policies come in all shapes and sizes, ranging from simple access-control policies
to complex data-usage policies governed by laws and regulations. Given their diversity and
their omnipresence in regulating processes in modern IT systems, it is important to have a
firm understanding of what kinds of policies can be enforced and to have general tools for
their enforcement.
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Most conventional enforcement mechanisms are based on some form of execution moni-
toring. Schneider [2000] began the investigation of which kinds of security policies can be
enforced this way. In Schneider’s setting, an execution monitor runs in parallel with the
target system and observes the system’s actions just before they are carried out. Whenever
an action would result in a policy violation, the enforcement mechanism terminates the sys-
tem. Note that there are alternative notions of enforceability where, rather than terminating
execution just prior to a violation, one may raise exceptions, take corrective actions, and
the like. For example, Ligatti and others [2005; 2009] consider enforcement mechanisms that
can also insert actions into and delete actions from non-compliant behavior. Moreover, their
enforcement mechanisms may even change compliant behavior, provided that the resulting
behavior is semantically equivalent. We follow Schneider’s account in this paper; see also
Section 5 for more discussion on this point.

In this paper, we refine Schneider’s setting, thereby overcoming several limitations. To
explain the limitations, we first summarize Schneider’s findings. Schneider [2000] shows that
only those security policies that can be described by a safety property [Lamport 1977; Paul
et al. 1985; Alpern and Schneider 1985] on traces are enforceable by execution monitoring.
In other words, a policy is enforceable by execution monitoring only when (1) inspecting
the sequence of system actions is sufficient to determine whether it is policy compliant and
(2) nothing bad ever happens on a prefix of a policy-compliant trace.1 History-based access-
control policies, for example, fall into this class of properties. Furthermore, Schneider defines
so-called security automata that recognize the class of safety properties and “can serve as
the basis for an enforcement mechanism” [Schneider 2000, Page 40]. However, Schneider’s
conditions for enforceability are necessary but not sufficient. In fact, there are safety prop-
erties that are not enforceable. This is already pointed out by Schneider [2000, Page 41].

We provide a formalization of enforceability for mechanisms similar to Schneider’s [2000],
that is, monitors that observe system actions and terminate systems to prevent policy
violations. A key aspect of our formalization is that we distinguish between actions that
are only observable and those that are also controllable: An enforcement mechanism cannot
terminate the target system when observing an only-observable action. In contrast, it can
prevent the execution of a controllable action by terminating the system. An example of
an observable but not controllable action is a clock tick, since one cannot prevent the
progression of time. With this classification of system actions, we can derive, for example,
that availability policies with deadlines, which require that requests are processed within a
given time limit, are not enforceable although they are safety properties. Another example
is administrative actions like assigning roles or permissions to users. Such actions change the
system state and can often only be observed but not controlled by most (sub)systems and
enforcement mechanisms. However, a subsystem might permit or deny other actions, which
it controls, based on the system’s current state. Therefore the enforceability of a policy for
the subsystem usually depends on this distinction.

In contrast to Schneider, we give also sufficient conditions for the existence of an enforce-
ment mechanism in our setting with respect to a given trace property. This requires that
we first generalize the standard notion of safety [Alpern and Schneider 1985] to account for
the distinction between observable and controllable actions. Our necessary and sufficient
conditions provide a precise characterization of enforceability that we use for exploring
the realizability of enforcement mechanisms for security policies. For different specification
languages, we first present decidability results for the decision problem that asks whether
a given security policy is enforceable. Furthermore, in case of decidability, we show how
to synthesize an enforcement mechanism for the given policy. In particular, we prove that
the decision problem is undecidable for context-free languages and PSPACE-complete for

1Note that a trace property must also be a decidable set to be enforceable, as remarked later by Viswanathan
[2000] and Hamlen et al. [2006]. Furthermore, it must be nonempty [Ligatti et al. 2009].
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regular languages. Moreover, we extend our decidability result by giving a solution to the
realizability problem where policies are specified in a temporal logic with metric constraints.
The underlying decision problem is EXPSPACE-complete and is PSPACE-complete without
metric constraints.

Summarizing, we see our contributions as follows. We overcome limitations of Schneider’s
setting on policy enforcement based on execution monitoring [Schneider 2000]. First, we
distinguish between controllable and observable system actions when monitoring executions.
Second, we give conditions for policy enforcement based on execution monitoring that are
necessary and also sufficient. These two refinements of Schneider’s work allow us to reason
about the enforceability of policies that, for instance, involve timing constraints. Finally, we
provide results on the decidability of the decision problem of whether a policy is enforceable
with respect to different specification languages.

We proceed as follows. In Section 2, we define our notion of enforceability. In Section 3, we
relate it to a generalized notion of safety. In Section 4, we analyze the realizability problem
for different specification languages. In Sections 5 and 6, we discuss related work and draw
conclusions.

2. ENFORCEABILITY

In this section, we first describe abstractly how enforcement mechanisms monitor systems
and prevent policy violations. Afterwards, we define our notion of enforceability. Finally,
we present examples illustrating our notion.

2.1. Policy Enforcement Based on Execution Monitoring

We take an abstract view of systems and their behaviors similar to Schneider [2000] and
others [Ligatti et al. 2005; 2009; Ligatti and Reddy 2010], where executions are finite or
infinite sequences over an alphabet Σ. We assume that a system execution generates such
a sequence incrementally, starting from the empty sequence ε. In the following, we also
call these sequences traces. Possible interpretations of the elements in Σ are system actions,
system states, or state-action pairs. Their actual meaning is irrelevant for us. However, what
is important is that each of these elements is finitely represented and visible to a system
observer, and that policies are described in terms of these elements. For convenience, we
call the elements in Σ actions. Furthermore, we assume that the actions are classified as
being either controllable actions C ⊆ Σ or only observable actions O ⊆ Σ, with O = Σ \C.

Our abstract system architecture for equipping a system S with an enforcement mecha-
nism E is as follows. Before S executes an action a ∈ Σ, E intercepts it and checks whether
a’s execution violates the given policy P . If the execution of a leads to a policy violation
and a is controllable, then E terminates S. Otherwise, E does not intervene and S suc-
cessfully executes a. Note that if the execution of a leads to a policy violation but a is
only observable, then E can detect the violation but not prevent it. In such a case, E is
not an enforcement mechanism for the policy P . Overall, in this interaction between a sys-
tem S and an enforcement mechanism E, we extend Schneider’s setting [Schneider 2000]
by distinguishing between controllable and observable actions.

We make several remarks about this system architecture. First, in process algebras like
CSP and CCS, S and E are modeled by processes over the action set Σ, and their interaction
is the synchronous composition of processes. See, for example, Basin et al. [2007], where it is
assumed that all actions are controllable. The composed system terminates in a deadlock in
case of a policy violation. Since we distinguish between controllable and observable actions,
the process modeling E must always be able to engage in actions in O. Second, instead
of assuming that actions are solely generated by the target system S, the enforcement
mechanism E can generate observable actions, which are internal and invisible to S. For
instance, the enforcement mechanism can have its own internal clock, which generates clock
ticks. Third, instead of action interception and system termination, we could require that



A:4 D. Basin et al.

S sends a query to E whether executing an action a ∈ C is authorized. E sends then a
permit-or-deny message back to S, who proceeds according to E’s answer: in case of permit,
S executes the action and in case of deny, S continues with an alternative action for which
S might need to send a request to E prior to executing it. When executing an action in O,
S notifies E of its execution. With this kind of interaction, E’s function is similar to a policy
decision point (PDP) in standard access-control architectures like XACML.

As pointed out by Schneider [2000], a necessary condition for enforcing a policy by exe-
cution monitoring is that policy compliance is determined only by the observed trace. We
therefore require that a policy P is a property of traces, that is, P ⊆ Σ∗ ∪ Σω, where Σ∗

is the set of finite sequences over Σ and Σω is the set of infinite sequences over Σ. We also
write Σ∞ for Σ∗ ∪ Σω. Since systems might not terminate—in fact, they often should not
terminate—we also consider infinite traces, which describe system behaviors in the limit.

Another necessary condition for enforceability is that the decision of whether the en-
forcement mechanism E terminates the system S cannot depend on possible future ac-
tions [Schneider 2000]. This point is reflected in how and when E checks policy compliance
in its interaction with S: E’s decision depends on whether τa is in P , where a is the inter-
cepted action and τ is the trace of the previously executed actions.

Finally, although implicit in Schneider’s work [Schneider 2000], there are also soundness
and transparency requirements for an enforcement mechanism [Ligatti et al. 2005; 2009;
Erlingsson 2004; Hamlen et al. 2006]. Soundness means that the enforcement mechanism
must prevent system executions that are not policy compliant. Transparency means that the
enforcement mechanism must not terminate system executions that are policy compliant.
These requirements clearly restrict the class of trace properties that can be enforced by the
interaction described above between S and E.

2.2. Formalization

Checking whether the execution of an action is policy compliant is at the core of any
enforcement mechanism. The maximum information available to check compliance is the
intercepted action a together with the already executed trace τ . Since these checks should
be carried out algorithmically, our formalization of enforceability requires the existence of a
Turing machine. In particular, for every check, this Turing machine must terminate, either
accepting or rejecting the input τa. Accepting the input means that executing a is policy
compliant whereas rejecting τa means that a’s execution results in a policy violation. As
a consequence, if a is observable, the Turing machine must accept τa. We do not restrict
the Turing machine’s time and space complexity since we are interested in the class of
policies that are in principle enforceable, not necessarily efficiently enforceable. We also do
not formalize the interaction between the enforcement mechanism and the system and how
actions are intercepted.

Prior to formalizing enforceability, we first introduce the following definitions. For se-
quences σ, σ′ ∈ Σ∞, we say that σ is a prefix of σ′ if there is a sequence τ ∈ Σ∞ such
that σ′ = στ . Note that a sequence is always a prefix of itself. For a sequence σ ∈ Σ∞, we
denote the set of its prefixes by pre(σ) and the set of its finite prefixes by pre∗(σ), that is,
pre∗(σ) := pre(σ)∩Σ∗. The truncation of L ⊆ Σ∗ is trunc(L) := {σ ∈ Σ∗ |pre(σ) ⊆ L} and
its limit closure is cl(L) := L ∪ {σ ∈ Σω | pre∗(σ) ⊆ L}. Note that trunc(L) is the largest
subset of L that is prefix-closed and cl(L) contains, in addition to the sequences in L, the
infinite sequences whose finite prefixes are all elements of L. Furthermore, for L ⊆ Σ∗ and
K ⊆ Σ∞, we define L ·K := {στ ∈ Σ∞ | σ ∈ L and τ ∈ K}.

Since not all sequences in Σ∞ might correspond to reasonable system executions, we
formalize enforceability relative to a trace universe U . A trace universe describes all pos-
sible system executions or over-approximates these, that is, U is a nonempty prefix-closed
subset of Σ∞. For example, when considering real-time systems [Alur and Henzinger 1992]
and policies with timing constraints, we can discard sequences from Σ∞ where time does
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not progress, see Example 2.2 and Section 4.2. Trace universes have been used for similar
purposes in Henzinger [1992] and Clarkson and Schneider [2010].

Definition 2.1. Let Σ be a set of actions. The property of traces P ⊆ Σ∞ is enforceable
in the trace universe U ⊆ Σ∞ with the observable actions in O ⊆ Σ, (U,O)-enforceable for
short, if there is a deterministic Turing machine2 M with the following properties, where
A ⊆ Σ∗ is the set of inputs accepted by M:

(i) M halts on the inputs in (trunc(A) · Σ) ∩ U .
(ii) M accepts the inputs in (trunc(A) ·O) ∩ U .
(iii) cl(trunc(A)) ∩ U = P ∩ U .
(iv) ε ∈ A.

Intuitively, property (i) ensures that whenever the enforcement mechanism E checks whether
τa is policy compliant by using the Turing machine M (when intercepting the action a ∈ Σ),
then E obtains an answer from M. Note that we require that the trace τ produced so far by
the system S is in trunc(A) and not in A, since if there is a prefix of τ that is not accepted
by M, then E would have terminated S earlier. Furthermore, we are only interested in
traces in the universe U . Property (ii) states that A ⊇ (trunc(A) ·O)∩U and we guarantee
with it that a finite trace τa with a ∈ O is policy compliant provided that τa ∈ U and τ is
policy compliant. Property (iii) relates the policy P with the inputs accepted by M. Note
that cl(trunc(A)) ∩ U ⊆ P ∩ U formalizes the soundness requirement for an enforcement
mechanism and cl(trunc(A)) ∩ U ⊇ P ∩ U formalizes the transparency requirement. Since
P can contain infinite sequences, we need to consider the limit closure of trunc(A), that is,
cl(trunc(A)). With property (iv) we ensure that the system S is initially policy compliant.

Natural questions that arise from Definition 2.1 are (1) for which class of trace prop-
erties does such a Turing machine M exist, (2) for which specification languages can we
decide whether such a Turing machine M exists, and (3) when a policy is enforceable, can
we synthesize an enforcement mechanism from its description? Before investigating these
questions, we illustrate Definition 2.1 by considering several examples.

2.3. Examples

We now present examples of both enforceable and non-enforceable policies.

Example 2.2. Consider the following two policies describing actions that must or must
not happen within a fixed time interval. The policy P1 requires that whenever there is a fail
action then there must not be a login action for at least 3 time units. The policy P2 requires
that every occurrence of a request action must be followed by a deliver action within 3
time units, provided the system does not stop in the meanwhile. We give their trace sets
below. We assume, for the ease of exposition, that actions do not happen simultaneously and,
whenever time progresses by one time unit, the system sends a tick action to the enforcement
mechanism. However, more than one action can be executed in a single time unit.

Let Σ be the action set {tick , fail , login, request , deliver}. The trace universe U ⊆ Σ∞

consists of all traces containing infinitely many tick actions and their finite prefixes. This
models that time does not stop. We define P1 as the complement with respect to U of the
limit closure of{

a1 . . . an ∈ Σ∗
∣∣ there are i, j ∈ {1, . . . , n} with i < j such that ai = fail ,
aj = login, and ai+1 . . . aj−1 contains three or fewer tick actions

}
2Since Σ can be infinite, we require that M’s transition function is computable. This is without loss of
generality since we assume that Σ is finitely representable, that is, we can represent the actions in Σ by
finite words over some finite alphabet Σ′. Instead of M we could use a deterministic Turing machine with
the alphabet Σ′.
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and P2 as the complement with respect to U of the limit closure of{
a1 . . . an ∈ Σ∗

∣∣ there are i, j ∈ {1, . . . , n} with i < j such that ai = request and
ai+1 . . . aj contains no deliver action and more than three tick actions

}
.

A tick action is only observable by an enforcement mechanism since the enforcement
mechanism cannot prevent the progression of time. It is also reasonable to assume that
fail actions are only observable since otherwise an enforcement mechanism could prevent
failures from happening in the first place. Hence we define O := {tick , fail}.

It is straightforward to define a Turing machine M as required in Definition 2.1, showing
that P1 is (U,O)-enforceable. Intuitively, whenever the enforcement mechanism observes a
fail action, it prevents all login actions until it has observed sufficiently many tick actions.
This requires that login actions are controllable, whereas tick and fail actions need only be
observed by the enforcement mechanism.

The set of traces P2 is not (U,O)-enforceable. The reason is that whenever an enforcement
mechanism observes a request action, it cannot terminate the system in time to prevent a
policy violation when no deliver action occurs within the given time bound. This is because
the enforcement mechanism cannot prevent the progression of time. More precisely, assume
that there exists a Turing machine M as required in Definition 2.1, which must accept the
trace request tick3 ∈ P2. But then, by condition (ii) of Definition 2.1, it also must accept
the trace request tick4 6∈ P2. Note that terminating the system before observing the fourth
tick action would violate the transparency requirement.

Example 2.3. A common security principle is to limit users’ permissions to prevent
system misuse and fraud. An example is the following policy, which is a simplified variant of
dynamic separation of duty in the RBAC standard [American National Standards Institute,
Inc. 2004]: a user may be a member of any two exclusive roles as long as the user has not
activated both of them in the same session. This policy contains two kinds of actions, which
are usually attributed to different agents. Namely, a user activates the roles in his own
sessions and a system administrator changes the exclusiveness relation of roles. A slightly
weaker policy requires that a user may only activate a role in a session if he is currently a
member of that role and the role is not exclusive to any other currently active role in the
session.

The first policy is only enforceable if both kinds of actions are controllable. In particular,
an enforcement mechanism must prevent an administrative action that makes two roles
exclusive whenever these roles are both currently activated in a session of some user. In
contrast, the weaker policy is enforceable even when changing the exclusiveness relation of
roles is only an observable action. Here, the enforcement mechanism must just prevent the
activation of a role if the user is not a member of that role or the role is in the exclusiveness
relation with some other active role in the user’s session at the moment of its activation. For
this, it suffices to observe the administrative actions and to update the exclusiveness relation
accordingly. With respect to Definition 2.1, it is easy to provide a Turing machine that
accepts a trace extended with an intercepted role-activation action iff the role’s activation
does not lead to a policy violation.

We remark that the RBAC standard requires that such administrative actions are con-
trollable so that the stronger variant of so-called dynamic separation-of-duty constraints is
indeed enforceable. However, this comes at the cost that an enforcement mechanism must
check the constraints for all current sessions before, for example, roles are made exclusive.

Note that terminating a target system is a rather harsh countermeasure to prevent policy
violations. As the above example illustrates, it is sometimes preferable for an enforcement
mechanism simply to deny the execution of the intercepted action and to notify the system
about this. The target system may then try to continue with another action. As already
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remarked by Schneider [2000], extending the capabilities of an enforcement mechanism so
that it can also notify the monitored system whether an action was permitted or denied
does not enlarge the class of security policies that are enforceable.

Example 2.4. Our third example concerns distributed systems, where the enforcement
mechanism controls only actions that originate from one of the distributed processes. Sup-
pose that a user’s mail client is monitored by an enforcement mechanism that controls
actions like sending and encrypting the user’s emails. However, a send action that origi-
nates from another mail client is not controllable. Indeed, it is only observable when the
email is received by the user’s mail client. A security policy stating that the user’s mail
correspondence must be encrypted is not enforceable, since the enforcement mechanism
cannot prevent other mail clients from sending him unencrypted emails. However, policy
violations can be detected. Obviously, the weaker policy stating that the user must not send
unencrypted emails is enforceable.

As this third example suggests, policy enforcement is generally difficult to achieve in dis-
tributed environments where components’ actions are out of the enforcement mechanism’s
control. Instead one must often settle for something weaker, namely observing policy viola-
tions. This is the challenge of distributed usage control [Pretschner et al. 2006].

3. RELATION BETWEEN ENFORCEABILITY AND SAFETY

In this section, we characterize the class of trace properties that are enforceable with respect
to Definition 2.1. To provide this characterization, we first generalize the standard notions
of safety properties [Alpern and Schneider 1985; Henzinger 1992].

3.1. Generalizing Safety

According to Lamport [1977], a safety property intuitively states that nothing bad ever
happens. A widely accepted formalization of this, from Alpern and Schneider [1985], is as
follows: the set P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ 6∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<iτ 6∈ P ,

where σ<i denotes the prefix of σ of length i. In particular, σ<0 is the empty sequence ε.
Alpern and Schneider’s definition takes only infinite sequences into account. Their definition,
however, straightforwardly generalizes to finite and infinite sequences: the set P ⊆ Σ∞ is
∞-safety if

∀σ ∈ Σ∞. σ 6∈ P → ∃i ∈ N. ∀τ ∈ Σ∞. σ<iτ 6∈ P ,
where σ<i = σ if σ is finite and i ∈ N is greater than or equal to σ’s length.

Note that ω-safety is not directly related to enforceability, since an enforcement mech-
anism monitors finite traces and ω-safety restricts the infinite traces in a set of traces.
Moreover, note that ω-safety and ∞-safety differ even on sets of infinite sequences. For
instance, the set {a} ·Σω is ω-safety, since for every infinite sequence σ that does not start
with a, no extension of σ<1 is in {a} · Σω. However, {a} · Σω is not ∞-safety, since we can
extend the empty sequence, which is not in {a} · Σω, by an infinite sequence τ that starts
with the letter a. In general, whenever a policy P ⊆ Σ∞ is ∞-safety, the set P ∩ Σω of its
infinite traces is ω-safety, whereas the converse is invalid.

In Definition 3.1 below, we give our generalized notion of safety, which is parametric in
the universe U . The sets Σω and Σ∞ used in the definitions for ω-safety and ∞-safety are
just two instances for U . This generalization is similar to Henzinger’s definitions of safety
and liveness [Henzinger 1992], which extends the classical safety-liveness classification for
properties of untimed systems [Alpern and Schneider 1985] to real-time settings. Further-
more, our definition is parametric in a set O ⊆ Σ. Intuitively, if a trace σ ∈ U violates P ,
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then this violation must be caused by a finite prefix of σ not ending with an element in O.
In other words, elements in O cannot be the source of a violation.

Definition 3.1. Let U ⊆ Σ∞ and O ⊆ Σ. The set P ⊆ Σ∞ is (U,O)-safety if

∀σ ∈ U. σ 6∈ P → ∃i ∈ N. σ<i 6∈ Σ∗ ·O ∧ ∀τ ∈ Σ∞. σ<iτ 6∈ P ∩ U .

Remark 3.2. For the sake of completeness, we remark that Alpern and Schneider’s [1985]
widely accepted formalization of liveness, which captures the intuition that something good
can happen [Lamport 1977], also has a natural generalization to the setting with a universe
U ⊆ Σ∞ and a set of actions O ⊆ Σ. The universe U relativizes liveness to the sequences
in U [Henzinger 1992]. The set of actions O further relativizes liveness such that good
things must only be possible after actions not in O, instead of requiring that good things
can always happen. We say that P ⊆ Σ∞ is (U,O)-liveness if

∀σ ∈ U.∀σ′ ∈ Σ∗. σ′ ∈ pre(σ) ∧ σ′ 6∈ Σ∗ ·O → ∃τ ∈ Σ∞. σ′τ ∈ P ∩ U .

Again, as with our generalized notion of safety, for U = Σω and O = ∅, this formalization
matches the one by Alpern and Schneider [1985]. The intuition for P being (U,O)-liveness
is that something good can happen in U after actions not in O. An example is that after a
send action it must be possible to eventually perform a receive action. However, if a send
action takes place while the receiver process is terminated (this would be the action in O),
we do not impose that the corresponding receive action takes place.

In the following examples, we illustrate our generalized notion of safety.

Example 3.3. Both the policies P1 and P2 from Example 2.2 are ∞-safety. If a trace τ
violates P1 then the violation can be pinpointed to a position where a login action is
executed. That is, there is some i ≥ 1 with τ<i−1 ∈ P1, τ<i 6∈ P1, and τ<i ends with a login
action. No matter how we extend τ<i, the extension still violates P1. Analogously, policy
violations with respect to P2 are caused by tick actions rather than login actions.

However, P1 is (U,O)-safety while P2 is not (U,O)-safety, where U and O are as in
Example 2.2. A violation of P1 is caused by executing a login action, which is controllable.
We cannot extend such an execution so that the resulting extended trace is policy compliant.
For P2, a violation is caused by a tick , which is only observable. The prefix excluding this
tick action can be extended to a trace that is in P2. Namely, we discharge the request action
in the prefix by adding a deliver action.

Example 3.4. Recall the trace universe U ⊆ Σ∞ from Example 2.2, where Σ =
{tick , fail , login, request , deliver}. It consists of the infinite traces with infinitely many tick
actions and their finite prefixes. The trace property “always eventually a tick action,” for-
malized as follows, is not ∞-safety:

P := {ε} ∪ {a0 . . . an ∈ Σ∗ | n ∈ N and an = tick}∪
{a0a1 . . . ∈ Σω | for all i ∈ N, there is some j ∈ N with j ≥ i and aj = tick} .

When considering only the infinite traces, the trace property P ∩ Σω is not ω-safety. In
fact, according to Alpern and Schneider [1985], P ∩ Σω is a liveness property. P is also
not (U, ∅)-safety since any nonempty trace a0 . . . an with an 6= tick is in U \ P and can
be extended to the trace a0 . . . an tick , which is in P ∩ U . However, when we exclude finite
traces from U , then P is (U ∩ Σω, ∅)-safety, since P ∩ Σω = U ∩ Σω.

Although safety and liveness focus on complementary aspects of system behavior, Exam-
ple 3.4 above illustrates that, besides trivial corner cases, a liveness property can also be
a safety property in an appropriate universe. Intuitively, for larger universes U and larger
sets O, it is less likely that a set P of traces is (U,O)-safety. This intuition is captured by
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the following lemma showing that the safety of a trace property is preserved with respect
to subset inclusion of universes U and sets of actions O.

Lemma 3.5. For every P,U ⊆ Σ∞ and O ⊆ Σ, if P is (U,O)-safety then P is (U ′, O′)-
safety, for every U ′ ⊆ U and O′ ⊆ O.

Proof. Let σ be a trace in U ′ \ P . We obviously also have that σ ∈ U \ P . Since P
is (U,O)-safety, there is a position i ∈ N in the trace σ such that the action at i is not in
O and from this position onwards we cannot fix the violation, that is, σ<iτ 6∈ P ∩ U , for
every τ ∈ Σ∞. Since O′ ⊆ O, the action at position i is not in O′ either. Similarly, we have
that σ<iτ 6∈ P ∩ U ′, for every τ ∈ Σ∞. Therefore, P is (U ′, O′)-safety.

We next prove that any set P of traces is (U,O)-safety, for some trace universe U and
some set O of actions. Furthermore, for each O, there is a maximal trace universe U , in
terms of set inclusion, for which P is (U,O)-safety.

Lemma 3.6. For every P ⊆ Σ∞ such that ε ∈ P and every O ⊆ Σ, there is a trace
universe U ⊆ Σ∞ with the following properties:

(i) P is (U,O)-safety.
(ii) For every trace universe U ′ ⊆ Σ∞, if P is (U ′, O)-safety then U ′ ⊆ U .

Proof. First, observe that there is always a trace universe U in which P is (U,O)-safety.
In particular, P is ({ε}, O)-safety.

We also note that for every trace universe V , if P is (V,O)-safety then P ∩ V is prefix-
closed. Indeed, suppose that σ is a prefix of σ′ and σ 6∈ P ∩ V and σ′ ∈ P ∩ V . As V is
prefix-closed, we have that σ ∈ V \P . Then, there is a position i ∈ N such that σ<i /∈ Σ∗ ·O
and {σ<i}·Σ∞∩P ∩V = ∅. This last statement is a contradiction as σ′ ∈ {σ<i}·Σ∞∩P ∩V .

Let V be the set of all trace universes V such that P is (V,O)-safety and let U :=
⋃
V ∈V V .

We prove by contradiction that P is (U,O)-safety. Then obviously the set U also satisfies
condition (ii) in the lemma’s statement.

Now, consider the set S :=
⋂
i∈N
{
σ ∈ U \ P

∣∣ σ<i ∈ Σ∗ ·O or {σ<i} ·Σ∞ ∩ P ∩ U 6= ∅
}

.
Since P is not (U,O)-safety by assumption, S is not empty. Consider some trace σ ∈ S.
Then, as σ ∈ U , we have that σ ∈ V , for some set V ∈ V. Since P is (V,O)-safety, there is
a position j ∈ N such that σ<j /∈ Σ∗ · O and {σ<j} · Σ∞ ∩ P ∩ V = ∅. As σ ∈ S, we have
that σ<j ∈ Σ∗ · O or {σ<j} · Σ∞ ∩ P ∩ U 6= ∅. Thus {σ<j} · Σ∞ ∩ P ∩ U 6= ∅. It follows
that {σ<j} · Σ∞ ∩ P ∩ V ′ 6= ∅, for some V ′ ∈ V with V ′ 6= V . That is, there is σ′ ∈ P ∩ V ′
with σ<j a prefix of σ′. As P ∩ V ′ is prefix-closed, we have that σ<j ∈ P ∩ V ′, and as V is
prefix-closed we also have that σ<j ∈ P ∩V , which contradicts {σ<j} ·Σ∞ ∩P ∩V = ∅.

The following lemma characterizes (U,O)-safety in terms of prefix sets and limit closures.
We make use of this characterization in Section 3.2, where we link (U,O)-safety to (U,O)-
enforceability. For a set of sequences L ⊆ Σ∞, we abbreviate

⋃
σ∈L pre(σ) by pre(L) and⋃

σ∈L pre∗(σ) by pre∗(L).

Lemma 3.7. For every P,U ⊆ Σ∞ and O ⊆ Σ, it holds that P is (U,O)-safety iff
cl(pre∗(P ∩ U) ·O∗) ∩ U ⊆ P .

Proof. We rephrase Definition 3.1 in terms of set containment, from which we conclude
the stated equivalence.

We first show that the set P ⊆ Σ∞ is (U,O)-safety iff ∀σ ∈ U. σ /∈ P → pre∗(σ) 6⊆
pre∗(P ∩U) ·O∗. We start with the left to right implication. Suppose that P is (U,O)-safety
and let σ ∈ U \P . Then there is a position i ∈ N such that (1) σ<i /∈ Σ∗ ·O and (2) σ<iτ /∈
P ∩ U , for all τ ∈ Σ∞. (2) establishes that σ<i /∈ pre∗(P ∩ U) and, together with (1), that
σ<i /∈ pre∗(P ∩ U) ·O∗. As σ<i ∈ pre∗(σ), we obtain that pre∗(σ) 6⊆ pre∗(P ∩ U) ·O∗. We
now prove the right to left implication. Let σ ∈ U \ P . Then pre∗(σ) 6⊆ pre∗(P ∩ U) · O∗,
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and thus there is a position i ∈ N such that σ<i /∈ pre∗(P ∩U) ·O∗. Let σ1, σ2 ∈ Σ∗ be such
that σ<i = σ1σ2, σ1 /∈ Σ∗ ·O, and σ2 ∈ O∗. Hence σ1 /∈ pre∗(P ∩ U), that is σ1τ /∈ P ∩ U ,
for all τ ∈ Σ∞. It follows that P is (U,O)-safety.

The statement ∀σ ∈ U. σ /∈ P → pre∗(σ) 6⊆ pre∗(P ∩ U) · O∗ is equivalent to ∀σ ∈ U.
σ ∈ P ← pre∗(σ) ⊆ pre∗(P ∩U) ·O∗. As pre∗(P ∩U) ·O∗ is prefix-closed, it is also equivalent
to ∀σ ∈ U. σ ∈ P ← σ ∈ cl(pre∗(P ∩ U) ·O∗), that is, cl(pre∗(P ∩ U) ·O∗) ∩ U ⊆ P .

Note that P ∩U ⊆ cl(pre∗(P ∩U) ·O∗)∩U , for any sets P,U ⊆ Σ∞ and O ⊆ Σ. Therefore,
P ⊆ Σ∞ is (U,O)-safety iff cl(pre∗(P ∩ U) ·O∗) ∩ U = P ∩ U .

3.2. Characterizing Enforceability

In the following, we generalize Schneider’s statement that∞-safety is a necessary condition
for a security policy to be enforceable by execution monitoring [Schneider 2000]. First, we
distinguish between controllable actions C and observable actions O. Second, we take a
trace universe U into account. In Schneider’s setting, U is Σ∞ and O equals ∅. Third, we
show that a policy P ⊆ Σ∞ must satisfy additional conditions to be enforceable. Finally,
we show that our conditions are not only necessary, but also sufficient.

Theorem 3.8. Let U ⊆ Σ∞ be a trace universe such that U ∩Σ∗ is a decidable set and
let O ⊆ Σ. The set P ⊆ Σ∞ is (U,O)-enforceable iff the following conditions are satisfied:

(1) P is (U,O)-safety,
(2) pre∗(P ∩ U) is a decidable set, and
(3) ε ∈ P .

Proof. We start with the implication from left to right. Assume that P ⊆ Σ∞ is (U,O)-
enforceable. Let A ⊆ Σ∗ be the set of inputs accepted by a Turing machine M determined
by Definition 2.1. The set A satisfies the following properties: (a) (trunc(A) · O) ∩ U ⊆ A,
(b) cl(trunc(A)) ∩ U = P ∩ U , and (c) ε ∈ A.

First, we prove that P is (U,O)-safety. Let σ ∈ U be a trace such that σ 6∈ P . Then,
from (b), we have that σ 6∈ cl(trunc(A)). Hence there is a position i ∈ N such that σ<i 6∈ A.
Let i be the minimal position with this property. Then i > 0 and all proper prefixes of σ<i

are in A, and hence σ<i−1 is in trunc(A). Let a ∈ Σ be such that σ<i = σ<i−1a. We have
that a 6∈ O, as otherwise, from (a), σ<i ∈ A, which is a contradiction. Hence σ<i 6∈ Σ∗ ·O.
Moreover, as σ<i 6∈ A, for any trace τ ∈ Σ∞, we have that σ<iτ 6∈ cl(trunc(A)), that
is, σ<iτ 6∈ P ∩ U . This shows that σ satisfies the right-hand side of the implication in
Definition 3.1. Hence P is (U,O)-safety.

Second, note that A is not necessarily decidable, as M need not halt on all inputs in Σ∗.
Since U∩Σ∗ is decidable by assumption, there is a Turing machine MU that terminates on Σ∗

and that accepts U ∩Σ∗. Let Mtrunc be the following Turing machine. For an input σ ∈ Σ∗,
Mtrunc executes steps 1 to 5 until it either accepts or rejects σ:

1. if MU rejects σ, then Mtrunc rejects σ;
2. if σ = ε, then Mtrunc accepts σ;
3. if n is the length of σ and Mtrunc rejects σ<n−1, then Mtrunc rejects σ;
4. if M accepts σ, then Mtrunc accepts σ;
5. otherwise, Mtrunc rejects σ.

It follows by induction over the length of σ that Mtrunc halts on σ and that Mtrunc accepts σ
iff σ ∈ trunc(A) ∩ U . To prove this, we use in the step case property (i) of Definition 2.1,
which guarantees that M halts in step 4. We obtain that trunc(A) ∩ U is decidable. Since
pre∗(P ∩ U) = pre∗(cl(trunc(A)) ∩ U) = trunc(A) ∩ U , so is pre∗(P ∩ U).

Third, as ε ∈ A and ε ∈ U , we have ε ∈ cl(trunc(A)) ∩ U = P ∩ U ⊆ P .
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We now prove the implication from right to left. Assume that P is (U,O)-safety,
pre∗(P ∩ U) is a decidable set, and ε ∈ P . We prove properties (i)–(iv) of Definition 2.1. As
pre∗(P ∩U) is decidable, there is a Turing machine that halts on all inputs in Σ∗ and accepts
the set A := pre∗(P ∩ U). Property (i) follows trivially. Property (iv) is also immediate as
ε ∈ P ∩ U . As A is prefix-closed, trunc(A) = A = pre∗(P ∩ U). It remains to be shown
that (ii) (pre∗(P ∩ U) · O) ∩ U ⊆ pre∗(P ∩ U) and (iii) cl(pre∗(P ∩ U)) ∩ U = P ∩ U . By
Lemma 3.7, and since P is (U,O)-safety, we have:

— (pre∗(P ∩ U) ·O) ∩ U ⊆ cl(pre∗(P ∩ U) ·O∗) ∩ U ∩ Σ∗ = P ∩ U ∩ Σ∗ ⊆ pre∗(P ∩ U);
— P ∩ U ⊆ cl(pre∗(P ∩ U)) ∩ U ⊆ cl(pre∗(P ∩ U) ·O∗) ∩ U = P ∩ U .

Therefore, P is (U,O)-enforceable.

Note that if U ∩Σ∗ is not decidable, then the conditions (1), (2), and (3) in Theorem 3.8
are sufficient for the set P ⊆ Σ∞ to be (U,O)-enforceable. However, they are no longer
necessary. To see this, let U ⊆ Σ∗ be an undecidable trace universe. Such undecidable
trace universes exist. For instance, if Σ = {0, 1} and if A ⊆ {0}∗ is an undecidable set,
then U := pre(A · {1}) ⊆ Σ∗ is an undecidable trace universe. The Turing machine M
that halts on and accepts every input satisfies the conditions of Definition 2.1 for the
property of traces P = Σ∞ and the set O = ∅ of observable actions. Therefore, P is (U,O)-
enforceable. However, condition (2) in Theorem 3.8 does not hold in this case, that is, the
set pre∗(P ∩ U) = U is undecidable.

4. REALIZABILITY

In this section, we investigate the realizability problem for enforcement mechanisms for
security policies. We examine this problem for two policy specification formalisms, based
on automata and temporal logic.

4.1. Automata-based Specification Languages

Automata may be used to give direct, operational specifications of security policies [Schnei-
der 2000; Ligatti et al. 2005; 2009]. For instance, Schneider [2000] introduces security
automata—also known as truncation automata [Ligatti et al. 2005; 2009]—as a formalism
for specifying and implementing the decision making of enforcement mechanisms. Given a
deterministic security automaton A, the enforcement mechanism E stores A’s current state
and whenever E intercepts an action, it updates the stored state using A’s transition func-
tion. If there is no outgoing transition and the action is controllable, then E terminates the
system. Nondeterministic security automata are handled analogously by storing and updat-
ing finite sets of states. In this case, E terminates the system if the set of states becomes
empty during an update.

Roughly speaking, if all actions are controllable then the existence of a security automaton
specifying a policy implies that the policy is enforceable. This is because security automata
characterize the class of trace properties that are∞-safety. However, if there are actions that
are only observable, the existence of a security automaton is insufficient to conclude that the
policy is enforceable. Additional checks are needed. We show that these checks can be carried
out algorithmically for policies described by finite-state automata. In contrast to security
automata, a finite-state automaton has a finite set of states and a finite alphabet, and not
all its states are accepting. Furthermore, we delimit the boundary between decidability and
undecidability by showing that for a more expressive automaton model, namely, pushdown
automata, the problem is undecidable.

4.1.1. Automata. We start by defining pushdown and finite-state automata. Since trace
properties are sets of finite and infinite sequences, we equip the automata with two sets of
accepting states, one for finite sequences and the other for infinite sequences.

A pushdown automaton (PDA) A is a tuple (Q,Σ,Γ, δ, qI, F,B), where
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c /push c

fail

top = # ∧ c /push c

top = c ∧ c−1 /pop c

top = # ∧ fail

Fig. 1: Pushdown automaton, where c ranges over the elements in C.

— Q is a finite set of states,
— Σ is a finite nonempty alphabet,
— Γ is a finite stack alphabet with # ∈ Γ,
— δ : Q × Σ × Γ → 2Q×Γ∗ is the transition function, where δ(q, a, b) is a finite set, for all
q ∈ Q, a ∈ Σ, and b ∈ Γ,

— qI ∈ Q is the initial state,
— F ⊆ Q is the set of accepting states for finite sequences, and
— B ⊆ Q is the set of accepting states for infinite sequences.

The size of A, denoted by ‖A‖, is the cardinality of Q. A is deterministic if δ(q, a, b) is
either the empty set or a singleton, for every q ∈ Q, a ∈ Σ, and b ∈ Γ. If δ(q, a, b) is always
nonempty, for q ∈ Q, a ∈ Σ, and b ∈ Γ, then A is complete.

A configuration of A is a pair (q, u) with q ∈ Q and u ∈ Γ∗. A run of A on the finite
sequence a0 . . . an−1 ∈ Σ∗ is a sequence of configurations (q0, u0)(q1, u1) . . . (qn, un) with
(q0, u0) = (qI,#) and for all i ∈ N with i < n, it holds that ui = vb, (qi+1, w) ∈ δ(qi, ai, b),
and ui+1 = vw, for some v, w ∈ Γ∗ and b ∈ Γ. The run is accepting if qn ∈ F . Runs
over infinite sequences are defined analogously. The infinite sequence (q0, u0)(q1, u1) · · · ∈
(Q × Γ∗)ω is a run on the infinite sequence a0a1 . . . ∈ Σω if (q0, u0) = (qI,#) and for
all i ∈ N, it holds that ui = vb, (qi+1, w) ∈ δ(qi, ai, b), and ui+1 = vw, for some v, w ∈ Γ∗

and b ∈ Γ. The run is accepting if it fulfills the Büchi acceptance condition, that is, for
every i ∈ N, there is some j ∈ N with j ≥ i and qj ∈ B. In other words, the run visits a
state in B infinitely often. We define L(A) := L∗(A) ∪ Lω(A), where

L◦(A) := {σ ∈ Σ◦ | there is an accepting run of A on σ} ,

for ◦ ∈ {∗, ω}.
We say that A is a finite-state automaton (FSA) if its transitions do not depend on the

stack content, that is, δ(q, a, b) = δ(q, a, b′), for all q ∈ Q, a ∈ Σ, and b, b′ ∈ Γ. In this case,
we may omit the stack alphabet Γ and assume that δ is of type Q × Σ → 2Q. Runs over
finite and infinite sequences then simplify to sequences in Q∗ and Qω, respectively.

The following example illustrates PDAs, their expressiveness, and their use in specify-
ing policies. Furthermore, we illustrate the characterization in Theorem 3.8 to determine
whether a specified policy is enforceable.

Example 4.1. Let C and C−1 be finite nonempty sets of actions with C−1 = {c−1|c ∈ C}.
That is, every action c ∈ C has a corresponding “undo” action c−1 ∈ C−1. Consider the
policy stating that whenever a fail action is executed, the system must backtrack before
continuing. That is, consider the language L := pre(F ∗ · Cω) ∪ Fω over the alphabet Σ :=
C ∪ C−1 ∪ {fail}, with F := {c1 . . . cn fail c−1

n . . . c−1
1 | n ∈ N and c1, . . . , cn ∈ C}, where

the superscripts ∗ and ω denote here the finite and infinite concatenation of languages,
respectively. The PDA in Figure 1, where both states are accepting for both finite and
infinite sequences, recognizes this language. However, no FSA recognizes this language.

Observe that this policy is (Σ∞, ∅)-enforceable. Indeed, the conditions in Theorem 3.8 are
satisfied: (1) L contains the empty sequence, (2) pre∗(L) = F ∗ · (C∗∪pre∗(F )) is decidable,
and (3) cl(pre∗(L)) = F ∗ · (C∗∪pre∗(F ))∪F ∗ ·Cω ∪Fω = L is (Σ∞, ∅)-safety. The policy is
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¬request
¬deliver∧
¬tick

¬deliver∧
¬tick

¬deliver∧
¬tick

¬deliver∧
¬tick

request tick tick tick

deliver deliver deliver deliver

Fig. 2: Finite-state automaton.

not (Σ∞, {fail})-enforceable, since an enforcement mechanism must terminate the system
when intercepting the second fail action in the trace c1c2 fail c−1

2 fail c−1
1 .

4.1.2. Decision Problems. We now turn to the decision problem of checking whether a policy
given as a PDA or FSA is enforceable. In each case, we first analyze the related decision
problem of checking whether a policy is a safety property.

Theorem 4.2. Let Σ be the alphabet {0, 1}. For a PDA A with alphabet Σ, it is unde-
cidable whether L(A) is (Σ∞, ∅)-safety.

Proof. Recall that the universality problem for context-free grammars is undecid-
able [Hopcroft and Ullman 1979]. That means, we cannot decide if L∗(A) = Σ∗, for a
given PDA A.

Given a PDA A, we build a PDA A′ with L(A′) = L(A) ∪ Σω. Thus we have that
L(A′) = L∗(A) ∪ Σω and cl(pre∗(L(A′))) = Σ∞. Then, from Lemma 3.7, L(A′) is (Σ∞, ∅)-
safety iff L∗(A) = Σ∗.

Theorem 4.3. Let Σ be the alphabet {0, 1}. For a PDA A with alphabet Σ, it is unde-
cidable whether L(A) is (Σ∞, ∅)-enforceable.

Proof. From A we build a PDA A′ with L(A′) = L(A) ∪ Σω ∪ {ε}. Note that
pre∗(L(A′)) = Σ∗ is decidable and that ε ∈ L(A′). Moreover, one can decide whether
ε ∈ L∗(A) but not whether L∗(A) = Σ∗. Hence one cannot decide whether Σ∗ = L∗(A)∪{ε}.
By Theorem 3.8, the language L(A′) is (Σ∞, ∅)-enforceable iff L(A′) is (Σ∞, ∅)-safety iff
Σ∗ = L∗(A) ∪ {ε}.

It is straightforward to define FSAs that recognize the languages P1 and P2 from Ex-
ample 2.2. For instance, the FSA depicted in Figure 2 recognizes P2. Since this FSA is
deterministic, it is easy to check that the recognized language is not (U,O)-safety and there-
fore also not (U,O)-enforceable, where U and O are as in Example 2.2. There is a state
from which the observable tick action leads to the nonacceptance of the input sequence. In
general, the problem is PSPACE-complete as shown in Corollary 4.5 below.

Theorem 4.4. The decision problem of determining whether L(A) is (L(U), O)-safety
is PSPACE-complete, where A and U are FSAs with alphabet Σ, L(U) is a trace universe,
and O ⊆ Σ.

Proof. Recall that the universality problem for FSAs, that is, deciding whether
L∗(A) = Σ∗ for a given FSA A, is PSPACE-complete [Hopcroft and Ullman 1979].

Given an FSA A, we build an FSA A′ with L(A′) = L(A) ∪ Σω. As in the proof of
Theorem 4.2, L(A′) is (Σ∞, ∅)-safety iff L∗(A) = Σ∗. Hence checking whether L(A′) is
(L(U), O)-safety is PSPACE-hard.

To establish membership in PSPACE, we first show how to build, for a given FSA X =
(Q,Σ, δ, qI, F,B), two FSAs Y and Z such that L(Y) = pre∗(L(X)) and, if L(X) ∩ Σ∗ =
pre∗(L(X)) then L(Z) = cl(L(X) ∩ Σ∗):
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— Let B′ be the set of states q ∈ B that are on a cycle in X. Let FY be the set of states
q ∈ Q for which there is a path in X starting in q and ending in a state of F ∪ B′. The
FSA Y := (Q,Σ, δ, qI, FY, ∅) recognizes the language L(Y) = pre∗(L(X)).

— If pre∗(L(X)) = L(X) ∩ Σ∗, the FSA Z := (Q,Σ, δ, qI, F, F ) recognizes the language
L(Z) = cl(L(X) ∩ Σ∗).

Consider an FSA A. Using the two previous constructions, we build an FSA B whose
size is polynomial in ‖A‖ + ‖U‖, such that L(B) = cl(pre∗(L(A) ∩ L(U)) · O∗) ∩ L(U). By
Lemma 3.7, L(A) is (L(U), O)-safety iff L(B) ⊆ L(A). Since the inclusion problem for FSAs
is in PSPACE (see, for example, [Vardi 1995]), our problem is therefore also in PSPACE.

Corollary 4.5. The decision problem of determining whether L(A) is (L(U), O)-
enforceable is PSPACE-complete, where A and U are FSAs with alphabet Σ, L(U) is a
trace universe, and O ⊆ Σ.

Proof. The proof, similar to that of Theorem 4.3, is an easy consequence of Theo-
rems 3.8 and 4.4.

4.1.3. Extensions. The usefulness of a yes-no answer to the question of whether a policy P is
(U,O)-enforceable, for a trace universe U and a set O of observable actions is often limited.
We can extend our algorithmic solution for this decision problem, where P and U are given
as FSAs, so that a more detailed answer is provided.

Case I: P is (U,O)-enforceable. In this case, the FSAs A for P and U for U can serve as
a basis for implementing an enforcement mechanism. Similar to how Schneider [2000] uses
his security automata, we can use A and U directly to build an enforcement mechanism E
for the policy P : E initially stores the singleton set consisting of A’s initial state and the
singleton set consisting of U’s initial state. Whenever E intercepts a system action a ∈ Σ,
it updates these sets by determining the successor states of the stored states using the
transition functions of A and U. We remove from A’s updated set the states from which we
do not accept any sequence that is accepted from some state from the updated set of U.
E terminates the system if A’s set becomes empty. This set will only be empty when the
intercepted action a is controllable since P is (U,O)-enforceable. Otherwise, E continues by
intercepting the next system action. Note that we must take U into account since a trace
might be extendable to sequences in L(A), all of which are not in L(U).

Alternatively, instead of using A and U directly, we can first construct a deterministic
FSA B that recognizes the language L(A) ∩ L(U) and use B instead of A and U. We can
ignore here A’s and U’s acceptance condition for the infinite sequences, since the enforce-
ment mechanism does not need to handle infinite traces. We can therefore use the standard
powerset construction and product construction for finite word automata [Rabin and Scott
1959] to build B. We can also remove the states from which no accepting state is reach-
able. Furthermore, we can minimize the resulting FSA [Hopcroft 1971]. Note that with the
deterministic FSA B we obtain a more efficient enforcement mechanism: whenever the en-
forcement mechanism intercepts an action it must only update B’s current state instead of
updating the sets of states of A and U. However, B’s size may be exponential in ‖A‖+‖U‖.
This exponential blow-up can be avoided when building a nondeterministic FSA recognizing
the intersection of the languages L∗(A) and L∗(U). However, the enforcement mechanism
then still needs to update a set of states.

Case II: P is not (U,O)-enforceable. In this case, we can return a witness that explains
why the policy P is not enforceable. This witness can be computed analogously to find-
ing counterexamples in finite-state model checking, where they are extremely helpful for
understanding why a given system does not fulfill the specification and for fixing the sys-
tem [Clarke et al. 2007].
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Let A be the given FSA for the policy P and let U be the FSA for the trace universe U . If
ε 6∈ L(A), the empty sequence ε is such a witness; this suggests some vacuity with respect to
the policy specification A. If ε ∈ L(A), a witness is either a sequence in U \P for which there
is a suffix in P or a sequence in U \ P that would not be prevented. The first case demon-
strates that an enforcement mechanism cannot guarantee the transparency requirement.
The second case demonstrates that the soundness requirement cannot be guaranteed while
also guaranteeing the transparency requirement. We can use techniques from the automata-
theoretic approach to finite-state model checking (see, for example, [Vardi 1995; 2007] and
references therein) to determine a witness. One possibility is, given the FSA B from the
proof of Theorem 4.4, to construct an FSA that recognizes the language L(B)\L(A), which
is the set of all witnesses. We can utilize standard constructions for finite and infinite word
automata for complementation and intersection to construct such an FSA.

Alternatively, or in addition to returning a witness, we can determine the maximal trace
universe W ⊆ Σ∞ in which P is (W,O)-enforceable, if ε ∈ P . It is easy to see by Lemma 3.6
that such a maximal trace universe W always exists. As shown by the following theorem,
we can build an FSA for this trace universe.

Theorem 4.6. For every FSA A with ε ∈ L(A), there is an FSA W with the following
properties:

— L(W) is a trace universe.
— L(A) is (L(W), O)-enforceable.
— For every trace universe V ⊆ Σ∞, if L(A) is (V,O)-enforceable then V ⊆ L(W).

Proof. We sketch the construction of the FSA W. We first determinize A using the
powerset construction for finite word automata, where we ignore A’s acceptance condition
for infinite sequences. Let F be the set of accepting states for the finite sequences of the
resulting FSA and F̄ its complement.

From this deterministic and complete FSA, we obtain the FSA W1 as follows. We remove
every transition that reaches a state in F̄ from a state in F via an action in O. We also
remove every transition that reaches a state in F from a state in F̄ . Finally, we make every
state accepting for the finite sequences. The FSA W1 recognizes the trace universe that is
maximal for L(A)’s enforceability with respect to finite sequences. For the infinite sequences,
we build the FSAs W2 and W3, which we obtain from W1: Let W2 be the FSA W1 with the
empty set of accepting states for the finite sequences and where F is the set of accepting
states for the infinite sequences. Analogously, let W3 be the FSA W1 with the empty set of
accepting states for the finite sequences and where F̄ is the set of accepting states for the
infinite sequences.

Let W be the FSA that recognizes the language L∗(W1)∪ (Lω(W2)∩Lω(A))∪ (Lω(W3)\
Lω(A)), which we can obtain by standard constructions for finite and infinite word au-
tomata. It is straightforward to check that L(W) is a trace universe and that L(A) is
(L(W), O)-enforceable. By Lemma 3.6, there is a maximal trace universe W ⊆ Σ∞ in which
L(A) is (W,O)-safety. It suffices to show that W = L(W).

We start with the inclusion L(W) ⊆ W . Consider some σ ∈ L(W). If σ ∈ L(A), then
either σ ∈ Σ∗ or σ ∈ Σω ∩ Lω(A), that is, σ ∈ L∗(W1) ∩ L∗(A) or σ ∈ Lω(W2). In both
cases, we have pre∗(σ) ⊆ L(A) and therefore σ ∈ W . If σ /∈ L(A), then either σ ∈ Σ∗ or
σ ∈ Σω \ Lω(A), that is, σ ∈ L∗(W1) \ L∗(A) or σ ∈ Lω(W3). In both cases, there is some
i ∈ N such that σ<i /∈ L(A). Let i be the smallest such nonnegative integer. Note that i ≥ 1.
Then, we have σ<i /∈ Σ∗ ·O, and for all j ∈ N, σ<j ∈ L(A) iff j < i. It follows that σ ∈W .

It remains to show the inclusion W ⊆ L(W). First, consider some σ ∈ Σ∞ with pre∗(σ) ⊆
L∗(W1) as well as its unique run, that is, the unique sequence of states s0s1 . . . of the run
of W1 on σ. Note that if si ∈ F̄ , for some i ∈ N, then sj ∈ F̄ , for every j ≥ i. From this we
infer the equalities Lω(W2) = cl(L∗(W1))∩cl(L∗(A)) and Lω(W3) = cl(L∗(W1))\cl(L∗(A)).
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Now, consider some σ ∈W . Since W is prefix-closed, we have that σ ∈W iff pre(σ) ⊆W ,
for every σ ∈ Σ∞. It follows from the Lemmas 3.5 and 3.6 that σ ∈W iff L(A) is (pre(σ), O)-
safety. This is equivalent to ∀i ≤ |σ|. σ<i /∈ L(A)→ ∃j ∈ N. j ≤ i ∧ σ<j /∈ Σ∗ · O ∧ ∀k ≥ j.
σ<k /∈ L(A). It follows from the above equivalence that L(A) ∩ pre(σ) is prefix-closed.
Moreover, if σ /∈ L(A), then there is some i ∈ N such that σ<i /∈ L(A). If we consider the
smallest such i, then σ<i /∈ Σ∗·O. Therefore, pre∗(σ) ⊆ L∗(W1). We have the following cases:

(1) If σ ∈ Σ∗, then σ ∈ L∗(W1).
(2) If σ ∈ Σω ∩ L(A), then pre∗(σ) ⊆ L∗(W1) ∩ L∗(A). In this case, σ ∈ Lω(W2) and thus

σ ∈ Lω(W2) ∩ Lω(A).
(3) If σ ∈ Σω\L(A), then pre∗(σ) ⊆ L∗(W1) but pre∗(σ) 6⊆ L∗(A). In this case, σ ∈ Lω(W3)

and thus σ ∈ Lω(W3) \ Lω(A).

This proves that W ⊆ L(W).

We can use the FSA W to check whether the policy P can be enforced on a given
system S, where O is the set of observable actions and Σ \ O is the set of controllable
actions. To answer this question, it suffices to check that every trace of S is in L(W). If S is
a finite-state system, this can be done again by automata-theoretic techniques. Note that
the trace universe is not fixed here. Instead, we first construct the largest trace universe in
which P is enforceable and then check whether the behavior of S is included in it.

4.2. Logic-based Specification Languages

Temporal logics are prominent specification languages for expressing properties on
traces [Pnueli 1977]. In the following, we consider the realizability of an enforcement mech-
anism for policies specified in a linear-time temporal logic with future and past operators,
and metric constraints [Koymans 1990; Alur and Henzinger 1992].

4.2.1. Temporal Logic. We fix a finite set P of propositions, where we assume that they
are classified into observable propositions O ⊆ P and controllable propositions P \ O. The
syntax of the metric linear-time temporal logic MLTL is given by the grammar

ϕ ::= true | p | ¬ϕ |ϕ ∨ ϕ |  I ϕ | #I ϕ |ϕ SI ϕ |ϕ UI ϕ ,

where p ranges over the propositions in P and I ranges over the nonempty intervals over N,
that is, subsets of the form {n, n+ 1, . . . ,m} and {n, n+ 1, . . . } with n,m ∈ N and n ≤ m.
The size of a formula ϕ, denoted by ‖ϕ‖, is the number of ϕ’s subformulas plus the sum of the
representation sizes of the interval bounds occurring in ϕ, which are dlog(1+min I+max I)e
for a finite interval I, and dlog(1 + min I)e for an infinite interval I.

The truth value of a formula ϕ is defined over timestamped sequences of propositional
models, where time is monotonically increasing and progressing. To formalize this, we in-
troduce the following notation. We denote the length of a sequence σ by |σ| and the letter
at the (i + 1)st position in σ by σi, where i ∈ N and i < |σ|. We define T as the set that
consists of the sequences t ∈ N∞ with the following properties:

(i) For each i, j ∈ N with i ≤ j < |t|, ti ≤ tj .
(ii) If t is infinite, then for each k ∈ N, there is an i ∈ N with ti ≥ k.

Furthermore, for sequences σ ∈ (2P)∞ and t ∈ T with |σ| = |t|, we define σ ⊗ t as the
sequence of length |σ| with (σ ⊗ t)i := (σi, ti), for i ∈ N with i < |σ|. For L ⊆ (2P)∞, we
define L⊗ T := {σ ⊗ t | σ ∈ L, t ∈ T , and |σ| = |t|}.
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For σ ∈ (2P)∞, t ∈ T , and i ∈ N with |σ| = |t| and i < |σ|, we define the relation |=
inductively over the formula structure:

σ, t, i |= true
σ, t, i |= p iff p ∈ σi
σ, t, i |= ¬ϕ iff σ, t, i 6|= ϕ
σ, t, i |= ϕ ∨ ψ iff σ, t, i |= ϕ or σ, t, i |= ψ
σ, t, i |=  I ϕ iff i > 0 and ti − ti−1 ∈ I and σ, t, i− 1 |= ϕ
σ, t, i |= #I ϕ iff i < |σ| − 1 and ti+1 − ti ∈ I and σ, t, i+ 1 |= ϕ
σ, t, i |= ϕ SI ψ iff there is an integer j ∈ N with j ≤ i such that

ti − tj ∈ I and σ, t, j |= ψ and
σ, t, k |= ϕ, for all k ∈ N with j < k ≤ i

σ, t, i |= ϕ UI ψ iff there is an integer j ∈ N with i ≤ j < |σ| such that
tj − ti ∈ I and σ, t, j |= ψ and
σ, t, k |= ϕ, for all k ∈ N with i ≤ k < j

The temporal operators  I (“previous”), #I (“next”), SI (“since”), and UI (“until”) allow
us to express both quantitative and qualitative properties with respect to the ordering of
elements in the sequence σ and their timestamps in the sequence t. Note that the temporal
operators are labeled with intervals I and the sequences σ and t only satisfy a formula of
the form  I ϕ, #I ϕ, ϕSI ψ, or ϕUI ψ at the time point i, if it is satisfied within the bounds
given by the interval I of the respective temporal operator, which are relative to the current
timestamp ti.

Finally, for a formula ϕ, we define L(ϕ) := {ε} ∪ {σ ⊗ t ∈ (2P)∞ ⊗ T | σ, t, 0 |= ϕ}.
We also define Lω(ϕ) and L∗(ϕ) that consist of the infinite and finite sequences in L(ϕ),
respectively. Note that different semantics exist for linear-time temporal logics over finite
traces [Eisner et al. 2003], each with their own artifacts. Since our semantics is not defined
for the empty sequence, we include it in L(ϕ).

The time model over which MLTL’s semantics is defined is discrete and point-based. See
Alur and Henzinger’s survey [Alur and Henzinger 1992] and [Basin et al. 2012b] for an
overview of alternative time models and their relationships. We briefly justify our chosen
time model. The use of the discrete time domain N instead of a dense time domain like
Q≥0 or even R≥0 is justified by the fact that clocks with arbitrarily fine precision do not
exist in practice. The choice of a point-based time model is justified by our action-based
view of system executions, where an action happens at some point in time. Furthermore,
an enforcement mechanism does not monitor the system continuously, but only at specific
points in time.

In the following, we use standard syntactic sugar. For instance, ϕ∧ψ abbreviates ¬(¬ϕ∨
¬ψ), �I ϕ (“eventually”) abbreviates true UIϕ, and �I ϕ (“always”) abbreviates ¬ �I(¬ϕ).
We drop the interval attached to a temporal operator if it is N and we use constraints like
≤ n and ≥ n to describe intervals of the form {0, 1, . . . , n} and {n, n+ 1, . . . }, respectively.
Furthermore, we use standard conventions concerning the binding strength of operators
to omit parentheses. For instance, ¬ binds stronger than ∧, which in turn binds stronger
than ∨. Boolean operators bind stronger than temporal ones.

Example 4.7. We return to the policies from Example 2.2. Let P be the proposition set
{fail , login, request , deliver}. The formula

ϕ1 := � fail → �≤3 ¬login

formalizes the first policy and the second policy is formalized by the formula

ϕ2 := � request → �≤3(deliver ∨ ¬# true) .
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The trace properties described by ϕ1 and ϕ2 differ from the trace properties P1 and P2

from Example 2.2 in the following respects. First, the progression of time in P1 and P2 was
explicitly modeled by tick actions. In L(ϕ1) and L(ϕ2), time is modeled by timestamping the
letters in the sequences in (2P)∞. We only consider timestamped sequences that adequately
model time, that is, the sequences in the trace universe (2P)∞ ⊗ T , which is a subset of
(2P ×N)∞. Second, the traces in Example 2.2 contained only one system action at a time.
Here, we consider traces in which multiple system actions can happen at the same time
point. Instead of using the trace universe (2P)∞ ⊗ T , we can alternatively use the trace
universe P∞ ⊗ T by filtering out the traces where a letter (a, t) ∈ 2P × N occurs and a is
not a singleton. However, the trace universe P∞ ⊗ T is more restrictive.

The trace properties described by ϕ1 and ϕ2 match the trace properties P1 and P2 from
Example 2.2 with respect to enforceability. Here O = {fail} and a letter (a, t) ∈ 2P × N is
only observable iff a does not contain any controllable actions, that is, iff a = ∅ or a = {fail}.
To see, for instance, that L(ϕ2) is not enforceable, consider the trace σ = ({request}, 0) and
the letter a = (∅, 4). Then σ ∈ L(ϕ2) and σa 6∈ L(ϕ2), while a is only observable.

In general, we assume that a ∈ 2P is observable if a ⊆ O. In particular, the empty set
is not controllable. We define Ô := {a ∈ 2P | a ⊆ O}. The rational behind this definition
is that whenever the enforcement mechanism intercepts a set a of actions in which at least
one action is controllable, it can terminate the target system and prevent all the actions
in a from happening.

4.2.2. Realizability. In the remainder of this section, we analyze the complexity of two re-
lated realizability problems where policies are specified in MLTL. We start with the re-
alizability problem for the untimed fragment of MLTL, which we call LTL. The interval
attached to a temporal operator occurring in a formula of this fragment is N. Hence, an
LTL formula does not specify any timing constraints and, instead of (2P)∞⊗T , we consider
trace universes that are subsets of (2P)∞.

Lemma 4.8. The decision problem of determining whether L(ϕ) is (L(U), Ô)-enforceable
is PSPACE-complete, where ϕ is an LTL formula, U is an FSA such that L(U) ⊆ (2P)∞ is
a trace universe, and O ⊆ P.

Proof. By Theorem 3.8 L(ϕ) is (L(U), Ô)-enforceable iff L(ϕ) is (L(U), Ô)-safety: note
that ε ∈ L(ϕ) by definition and pre∗(L(ϕ)∩L(U)) is regular and therefore decidable. Hence

it suffices to show that determining whether L(ϕ) is (L(U), Ô)-safety is PSPACE-complete.
We first prove that the problem is PSPACE-hard. Recall that the satisfiability problem

for LTL over infinite sequences is PSPACE-complete [Sistla and Clarke 1985]. Given an
LTL formula ϕ, we define ϕ′ := ϕ ∨ �¬# true. Then L(ϕ′) = L(ϕ) ∪ (2P)∗. Moreover,
using Lemma 3.7, we have that L(ϕ′) is ((2P)∞, ∅)-safety iff Lω(ϕ) = (2P)ω iff Lω(¬ϕ) = ∅.
Hence determining if L(ϕ) is ((2P)∞, ∅)-safety is PSPACE-hard.

To show membership in PSPACE, let ϕ be an LTL formula of size n ∈ N. There exist FSAs
A and A′ with L(A) = L(ϕ), L(A′) = L(¬ϕ), and ‖A‖, ‖A′‖ ∈ 2O(n). These two FSAs can be
obtained by straightforwardly extending the translations of LTL over infinite sequences into
nondeterministic Büchi automata [Vardi and Wolper 1994; Dax et al. 2010]. Using standard
automata constructions and the constructions from the proof of Theorem 4.4, we build an
FSA B with ‖B‖ ∈ 2O(n) and L(B) = L(A′) ∩ L(U) ∩ cl(pre∗(L(A) ∩ L(U)) · Ô∗) \ {ε}.
It follows that L(ϕ) is (L(U), Ô)-safety iff cl(pre∗(L(ϕ) ∩ L(U)) · Ô∗) ∩ L(U) ⊆ L(ϕ) iff
L(B) = ∅. Since the emptiness problem for FSAs is in NLOGSPACE [Jones 1975] and since
we can construct B on the fly, our problem is in PSPACE.
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If L(ϕ) is (L(U), Ô)-enforceable, we can use the FSA U and the FSA A constructed in the
proof of Lemma 4.8 to obtain an enforcement mechanism for L(ϕ). Building a deterministic
FSA from A and U for the enforcement mechanism, as discussed in Case I of Section 4.1.3,
might be prohibitive here since the size of A is in the worst case already exponential in ‖ϕ‖.

For MLTL, the corresponding decision problem can be solved by reducing it to the one for
LTL. However, the decision problem for MLTL has higher complexity, namely, EXPSPACE-
complete, as shown in the following theorem. Intuitively, this blow-up is caused by trans-
lating MLTL to LTL formulas by unfolding the metric constraints that are represented by
intervals attached to the temporal operators. This unfolding causes an exponential blow-up
in the formula size. Note that the (syntactic) size of an interval is logarithmic in its bounds.

Theorem 4.9. The decision problem of determining whether L(ϕ) is (L(U)⊗T, Ô×N)-
enforceable is EXPSPACE-complete, where ϕ is an MLTL formula, U is an FSA such that
L(U) ⊆ (2P)∞ is a trace universe, and O ⊆ P.

Proof. Let tick 6∈ P be a new proposition modeling clock ticks. Let Σ := 2P, Σ :=
2P∪{tick}, UT := L(U) ⊗ T , and T := Σ∞ ⊗ T . We first map each MLTL formula ϕ to an

LTL formula ϕ, each FSA A to an FSA A, and each trace τ in T to a trace τ in Σ
ω

such that

— τ ∈ L(ϕ) iff τ ∈ L(ϕ) and

— τ ∈ L(A)⊗ T iff τ ∈ L(A).

For a trace τ = σ ⊗ t in T , we define the trace τ in Σ
∞

as follows:

— if τ is infinite, then τ := {tick}t0σ0{tick}d1σ1{tick}d2σ2 . . . ,
— if τ = ε, then τ := {tick}ω, and
— if τ 6= ε is finite, then τ := {tick}t0σ0{tick}d1σ1{tick}d2σ2 . . . σ|τ |−1{tick}ω,

where di := ti − ti−1, {tick}i is the sequence {tick} . . . {tick} of length i and {tick}ω is the
infinite sequence {tick}{tick} . . . . For a set of traces L ⊆ T , we abbreviate by L the set

{τ ∈ Σ
∞ |τ ∈ L}. This mapping is one-to-one and therefore induces a bijection from L to L.

For an MLTL formula ϕ, we define the formulas pϕq and ϕ as follows:

— ptrueq := true,
— ppq := p if p ∈ P,
— p¬ϕq := ¬pϕq,
— pϕ ∨ ψq := pϕq ∨ pψq,
— p#I ϕq := p#I trueq ∧ p#ϕq if I 6= N and ϕ 6= true,
— p#I trueq := #(tick ∧ p#I−1 trueq) if 0 /∈ I, where I − 1 := {t− 1 | t ∈ I},
— p#[0,a] trueq := #(¬tick ∨ p#[0,a−1] trueq) if a ≥ 1,
— p#[0,0] trueq := #¬tick ,
— p#ϕq := #(tick U (¬tick ∧ pϕq)),
— pϕ UI ψq := (¬tick ∧ pϕq) U (tick ∧#(pϕ UI−1 ψq)) if 0 /∈ I,
— pϕ U[0,a] ψq := (¬tick ∧ pϕq) U ((¬tick ∧ pψq) ∨ (tick ∧#(pϕ U[0,a−1] ψq))) if a ≥ 1,
— pϕ U[0,0] ψq := (¬tick ∧ pϕq) U (¬tick ∧ pψq),
— pϕ U ψq := (tick ∨ pϕq) U (¬tick ∧ pψq),
— p I ϕq and pϕ SI ψq are defined analogously to p#I ϕq and pϕ UI ψq, and
— ϕ := (� tick) ∨ (tick U (¬tick ∧ pϕq)).

By induction over ϕ, one verifies that σ, t, i |= ϕ iff τ , t′, i + ti |= pϕq for all i < |τ |,
where τ = σ ⊗ t and t′ is any sequence of timestamps. Note that the timestamps in t′ are
irrelevant since the temporal operators in pϕq do not contain any metric constraints, that is,
the interval attached to any temporal operator is N. It follows that τ ∈ L(ϕ) iff τ ∈ L(ϕ).
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For an FSA A = (Q,Σ, δ, qI, F,B), we define the FSA A := (Q,Σ, δ, qI, F ,B) with Q :=
Q×{0, 1, 2}, qI := (qI, 0), F := ∅, B := (B×{0})∪(F×{2}), and for any q ∈ Q, i ∈ {0, 1, 2},
and a ∈ Σ,

δ((q, i), a) :=


{(q′, 0) | q′ ∈ δ(q, a)} if a ∈ Σ and i ∈ {0, 1},
{(q, 1), (q, 2)} if a = {tick} and i = 0,
{(q, i)} if a = {tick} and i ∈ {1, 2},
∅ otherwise.

It is easy to check that τ ∈ L(A)⊗ T iff τ ∈ L(A). Note that L(A) ⊆ T .

Note that T = L(θ) ∩ Σ
ω

, where θ := (� � tick) ∧ �(tick →
∧
p∈P ¬p). Then UT =

L(U)∩T . Moreover, UT ∩ (Σ×N)∗ is decidable, and a finite trace τ in UT is in pre∗(L(ϕ))

iff τ<|τ |+t|τ|−1 is in pre∗(L(ϕ)∩T ). Since pre∗(L(ϕ)∩T ) is decidable, so is pre∗(L(ϕ)∩UT ).

Thus L(ϕ) is (UT , Ô × N)-enforceable iff L(ϕ) is (UT , Ô × N)-safety.
Recall now that the satisfiability problem for MLTL with infinite timed words is

EXPSPACE-hard [Alur and Henzinger 1994]. Given an MLTL formula ϕ, we define the

formula ϕ′ := ϕ∨ �¬# true. We have L(ϕ′) = L(ϕ)∪ (T ∩ (Σ×N)∗). L(ϕ′) is (UT , Ô×N)-
safety iff Lω(ϕ) = T ∩ (Σ×N)ω iff Lω(¬ϕ) = ∅. This proves that checking whether L(ϕ) is

(UT , Ô × N)-safety is EXPSPACE-hard.
To prove membership in EXPSPACE, consider an MLTL formula ϕ of size n ∈ N. It is

easy to see by induction over ϕ that ‖ϕ‖ ∈ 2O(n). Moreover, note that T ∩ (Σ× N)ω =

L(θ′) ∩ Σ
ω

, where θ′ := θ ∧ (� �¬tick). For convenience, we also let Ot := O ∪ {tick}
and Sϕ := cl(pre∗(L(ϕ) ∩ UT ) · (Ô × N)∗) ∩ UT . We have that Sϕ is mapped to Sϕ =(

pre∗(L(ϕ)∩UT ) ·Ôt
ω
∪
(

cl(pre∗(L(ϕ)∩UT ))∩L(θ′)
))
∩UT . Therefore, L(ϕ) is (UT , Ô×N)-

enforceable iff Sϕ ⊆ L(ϕ).

As in the proof of Theorem 4.4, we build an FSA B of size 22O(n)

such that L(B) =

Sϕ ∩L(¬ϕ). Then L(ϕ) is (UT , Ô×N)-enforceable iff L(B) = ∅. As the emptiness problem
for FSAs is in NLOGSPACE and since we can build B on the fly, checking whether L(ϕ) is

(UT , Ô × N)-safety is in EXPSPACE.

If L(ϕ) is (L(U)⊗T, Ô×N)-enforceable, we can use—similar to the LTL case—the FSAs

A and U from the proof of Theorem 4.9 to obtain an enforcement mechanism E. See also
Case I in Section 4.1.3. We first construct an FSA C that recognizes the intersection of
L(A) and L(U). The enforcement mechanism E initializes the state set to the singleton
set consisting of C’s initial state. Additionally, E stores the current timestamp, which is
initially 0. Whenever E intercepts a system action (a, t) ∈ 2P×N, it performs the following
updates on the state set and the current timestamp.

1. E updates the state set with respect to the progression of time, that is, E determines
the states reachable by the sequence tickd, where d is the difference of the timestamp t
and the stored timestamp.

2. E stores t as the current timestamp.
3. E updates the state set with respect to the system action a.
4. E removes the states from the state set from which C does not accept any sequence.

E terminates the system if the state set becomes empty. Otherwise, it continues by inter-
cepting the next action.
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5. RELATED WORK

Schneider [2000] initiated the study of which security policies are enforceable. He showed
that every security policy enforceable by execution monitoring must be a property of traces
and an ∞-safety property. Furthermore, he introduced an automaton model, called secu-
rity automata, that recognizes ∞-safety properties. This spurred considerable follow-up
research both practical and theoretical. For example, Erlingsson and Schneider [1999; 2000]
implemented and evaluated enforcement mechanisms based on execution monitoring.

With respect to theoretical follow-ups, Ligatti et al. [2005; 2009] introduced edit au-
tomata, which are transducers with infinitely many states. Edit automata can recognize
trace properties that are not ∞-safety. They were motivated by enforcement mechanisms
that can insert and delete system actions in addition to terminating a system in case of a
policy violation. However, it remains unclear how to use edit automata as general-purpose
enforcement mechanisms, in particular, how an edit automaton and a system interact with
each other in general. Ligatti and Reddy [2010] introduced mandatory-result automata for
enforcement and analyzed their expressive power. In contrast to edit automata, mandatory-
result automata have an interface for interacting with a system. Namely, a mandatory-result
automaton obtains requests from the system and sends outputs back to the system. Before
sending output, it can interact with the execution platform. Fong [2004] analyzed classes
of security policies that can be recognized by shallow-history automata, a restricted class
of security automata. Talhi et al. [2008] extended the work by Fong [2004] by introducing
so-called bounded-history automata, which are security automata and edit automata with
bounded memory. Falcone et al. [2011] studied the trace properties that can be recognized
by different automaton models in terms of the safety-progress hierarchy [Chang et al. 1992]
of regular languages and classical finite-state automaton models. Hamlen et al. [2006] related
the policies that can be enforced by program rewriting to those that can be recognized by
security automata. The notion of policy enforcement relative to a trace universe was briefly
mentioned by Ligatti et al. [2009] and further developed by Chabot et al. [2011].

With the exception of Talhi et al. [2008] and Chabot et al. [2011], none of the above
works examine the problem of realizing an enforcement mechanism from a policy description
and the computational complexity of the associated decision problem. For a finite-state
automaton, which describes the security policy, the algorithm presented in [Talhi et al. 2008]
decides whether a bounded-history automaton for enforcement exists, if the language of the
given finite-state automaton is from a certain subclass of the regular languages, the so-called
locally testable languages [McNaughton and Papert 1971]. If the described language is not
locally testable, it returns unknown. The algorithm presented in [Chabot et al. 2011] takes
as input a finite-state automaton and a finite-state transition system, which respectively
describe the security policy and the target system. It then checks whether the policy can
be enforced on the given system. Moreover, if the policy is enforceable, it returns a secured
finite-state transition system.

All the above works assume that all system actions are controllable. In contrast, we
distinguish between actions that are controllable and those that are only observable by an
enforcement mechanism. To the best of our knowledge, this is the first investigation of the
impact of this distinction in the domain of policy enforcement.

Note that similar classifications of system actions, signals, transitions, and states into
ones that are controllable and observable are common in other areas, like control theory
and software testing. In particular, the Ramadge-Wonham framework from control the-
ory [Ramadge and Wonham 1987] has several similarities with our setting, and the domain
of policy enforcement in general. In this framework, processes are modeled as deterministic
transition systems. A process S, called the supervisor, can block a transition of another
process G, called the generator, if it is labeled with a controllable event. Transitions la-
beled with observable events cannot be blocked by the supervisor S. Furthermore, S has no
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means of forcing G to take a transition. S plays the role of an enforcement mechanism in
the domain of policy enforcement and G’s role is that of a target system. The characteris-
tics of controllable and observable events are similar to our classification of system actions.
The fundamental problem in supervisory control theory is whether a supervisor S exists for
a given process G such that the behavior of their combination, denoted by S/G, fulfills a
specification that is given by two languages Lg and La, where Lg contains the legal behavior
and La contains the minimal acceptable behavior, that is, the language of S/G is a subset
of Lg and a superset of La. This problem is closely related to the problem of whether a
policy P is enforceable in our setting. In particular, when identifying Lg with P and La
with the behavior of G that is policy compliant, one asks the question whether the policy P
can be enforced on the target system G. Note that in this question the target system G is
part of the input instance and is a deterministic transition system. If one further identifies
the behavior of G with the trace universe U , one asks the question whether P is enforceable
on systems for which their executions are in U . It remains to be seen whether and how the
domain of policy enforcement can benefit from the Ramadge-Wonham framework and the
results around it (and also vice versa).

The problem of checking whether a system’s observed behavior is compliant with security
policies, regulations, and laws has recently attracted considerable attention. This problem is
simpler than policy enforcement since one needs only to detect and report policy violations.
For this, system actions need only to be observable. Monitoring approaches have proved use-
ful here, based either on offline algorithms [Garg et al. 2011] or online algorithms [Basin et al.
2008; Hallé and Villemaire 2012]. See also [Basin et al. 2011; Basin et al. 2010]. A closely
related topic to the enforcement of security policies by execution monitoring and compliance
checking is runtime verification, where processes analyze systems during their execution. In
particular, the monitoring processes detect and report violations with respect to specifica-
tions, which are often given by temporal logic formulas. See, for example, [Havelund and
Roşu 2001; Kim et al. 1999; Barringer et al. 2004; Havelund 2000] for some of the pioneering
work in this field.

Another generalization of the standard definition of safety [Alpern and Schneider 1985]
has been given by Ehlers and Finkbeiner [2011]. They distinguish between the inputs and
outputs of a reactive system. The corresponding decision problems are EXPTIME-complete
and 2EXPTIME-complete when the properties are given as automata and LTL formulas,
respectively. Since enforcement mechanisms based on execution monitoring do not produce
outputs, their generalization does not apply to our setting. However, a combination of their
safety generalization and ours seems promising when considering more powerful enforcement
mechanisms like those based on mandatory-result automata [Ligatti and Reddy 2010].

6. CONCLUSION

We have refined Schneider’s setting for policy enforcement based on execution monitoring
by distinguishing between controllable and observable system actions. This allows us to
reason about enforceability in systems where some actions cannot be controlled. Using
our characterization, we have provided, for the first time, both necessary and sufficient
conditions for enforceability. We have also examined the problem of determining whether a
specified policy is enforceable, for different specification languages, and provided results on
the complexity of this decision problem.

Note that our system architecture, described in Section 2.1, implicitly assumes that an
enforcement mechanism E does not affect the executed trace other than shortening it due to
system termination. This means that no observable action can be executed by the system S
during the time E processes a previously intercepted action. This assumption on S and
E’s interaction is analogous to the synchronicity hypotheses [Benveniste and Berry 1991] in
reactive languages, where one assumes that systems produce their outputs synchronously
with their inputs. If we wish to build enforcement mechanisms for systems with hard real-
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time requirements then the notion of enforceability needs to be refined to account for the
enforcement mechanism’s processing times. In particular, tick actions can occur while E
processes an action. As future work we plan to investigate the problem of enforceability in
the general setting where observable actions may happen during E’s execution.

As future work, we will also investigate the realizability problem for more powerful en-
forcement mechanisms and for more expressive specification languages, such as those not
limited to finite alphabets. We would also like to provide tool support for synthesizing
enforcement mechanisms from declarative policy specifications.
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