
1

Predictable Mobile Routing for Spacecraft
Networks

Daniel Fischer, David Basin, Knut Eckstein, and Thomas Engel

Abstract —In predictable mobile networks, network nodes move in a predictable way and therefore have dynamically changing but
predictable connectivity. We have developed a model that formalizes predictable dynamic topologies as sequences of static snapshots.
We use this model to design and evaluate a predictable mobile-routing protocol based on link-state routing, whose performance is
superior to its static and ad-hoc counterparts. Our routing protocol accounts for occurrences of additional, unpredictable changes, as
well as their interaction with predictable changes.
We evaluate our protocol using simulations based on randomly generated topologies and spacecraft-network scenarios. In both cases,
we show that our protocol outperforms traditional routing protocols and is well suited for routing in next-generation space networks.

Index Terms —routing, predictable mobility, spacecraft networks, space-link.

✦

1 INTRODUCTION

Problem Context and Motivation: Spacecraft net-
works are a topic of growing importance within space
agencies and industry. Existing and emerging applica-
tions call for efficient routing within an interconnected
space environment [1].

Future spacecraft networks will exhibit characteris-
tics different from existing terrestrial networks. Space-
craft networks are mobile networks with independent,
heterogeneous nodes but without spontaneous move-
ment. In regular operation, each spacecraft flies along
a predictable trajectory that can be computed well in
advance. Hence, spacecraft networks constitute a sub-
class of mobile ad-hoc networks that is characterized
by its predictability. As in other networks, unpredictable
changes may still occur and influence the evolution of
the topology, in particular, when nodes or links fail.

Approach: We present a formal topology model for
predictable mobile networks that describes the topology
evolution by a sequence of static network-topology snap-
shots. In this way, we incorporate predictability while
abstracting away from details such as flight dynamics for
individual orbits and flight paths. We used this model to
develop a general purpose Predictable Link-State Rout-
ing (PLSR) protocol that accounts for both predictable
and unpredictable changes and their interaction.

We evaluate the performance of PLSR in two ways.
First, we use simulations based on randomly generated
topologies and mobility patterns to show that PLSR’s
performance exceeds that of LSR. We also make com-
parisons with OLSR. Second, we evaluate PLSR by sim-

• D. Fischer is with the European Space Agency, Darmstadt
• T. Engel is with the Department of Sciences, Technology and Communi-

cation, University of Luxembourg
• D. Basin is with the Institute of Information Security, ETH Zurich
• K. Eckstein is with European Space Agency

ulating communication using data from future space-
mission scenarios based on realistic mobility patterns
and failure assumptions. In particular, we investigate
two mid-term spacecraft-network scenarios that are un-
der consideration by ESA, NASA, and other agencies [2].

1) A hybrid Low Earth Orbit (LEO)/Geostationary
Earth Orbit (GEO) spacecraft network that sup-
ports Earth observation operations.

2) A communication infrastructure for a surface mis-
sion, such as a Mars rover.

We use the AGI Satellite Toolkit (STK) [3] to construct
sequences of topology snapshots for the above scenarios.
STK is a state-of-the art tool for solving location and
inter-visibility problems associated with space scenarios.
Afterwards, for both scenarios, we perform network
traffic routing simulations using an implementation of
PLSR in the ns-2 network simulator and we measure
PLSR’s performance against that of link-state routing.

Contributions: Our main contribution is a topol-
ogy model and routing protocol for predictable mobile
networks, in particular spacecraft networks. We prove
our routing protocol correct and we demonstrate its
superiority over alternative approaches in terms of pro-
tocol overhead and data throughput. Our results provide
strong evidence that PLSR is well-suited for near-term
and next-generation spacecraft networks.

Organization: In Section 2, we provide background
on spacecraft networks and our network scenarios. In
Sections 3 and 4, we introduce our snapshot topology
model, and address topology information management,
and distribution. In Section 5, we present our PLSR
protocol. In Section 6, we describe how we generate
snapshot sequences using a flight-dynamics simulator
and, in Section 7, we perform a performance analysis in a
setting with random node movement. In Sections 8 and
9, we evaluate our protocol using the two application
scenarios described above. Finally, we review related

2

work and draw conclusions in Section 10.

2 SPACECRAFT NETWORKS

Satellite communication is traditionally one of two kinds:
either (1) direct point-to-point links from control centers
to spacecraft or (2) bent-pipe communication applica-
tions, where spacecraft relay a data stream. Neither
approach uses network routing technologies. Earlier at-
tempts to use more sophisticated spacecraft communi-
cation models in the form of Low Earth Orbit constel-
lations with inter-spacecraft links [4], [5] had limited
commercial success due to their inability to integrate the
spacecraft network with other terrestrial networks [1].

Emerging application areas for space missions [2] re-
quire integrated multi-purpose spacecraft networks and
constellations supporting spacecraft of different sizes,
types, and flight dynamics. These spacecraft may also
communicate with different terrestrial end-user termi-
nals or networks, ranging from rovers on Mars to satel-
lite telephones on Earth. Spacecraft routing solutions us-
ing the traditional communication methods introduced
above would result in a setup that is solely based on
manual commanding of the individual point-to-point
links. As the number of nodes grows, such a non-
autonomous setup becomes unmanageable from the per-
spective of planning and commanding. Hence, a topol-
ogy model and a routing protocol for space networks
must cope with a large variety of differently behaving
nodes and links with the property of predictability.

Spacecraft networks are controlled and managed by a
control center that is connected to the network via one
or more ground stations. We will restrict our attention
to the case of a single ground station in this paper. This
is without loss of generality as multiple ground stations
can always synchronize over a terrestrial network.

NASA, ESA, and other space agencies are planning
the next generation of networked space infrastructures
to support current and future space missions. NASA has
identified a number of realistic mid-term scenarios [2],
including LEO/GEO and Mars networks.

Spacecraft Network Properties

Spacecraft networks have the following properties,
which we take into consideration when developing our
topology model and routing protocol.

• Predictable high mobility: Spacecraft move at
high velocities and the communication opportuni-
ties between them are therefore often very short
and change rapidly. However, since spacecraft fol-
low predictable flight paths, the network topology
changes in a predictable way. Hence, one can com-
pute in advance the time points when nodes or links
come or go as well as changes in link properties.

• Presence of one or more central processing units:
All spacecraft networks are controlled from ground

control centers, which have substantial computa-
tional resources. This effectively allows one to re-
distribute tasks from the spacecraft to the ground.

• Rare occurrences of unpredictable changes: While
unpredictable changes can occur at any time in
spacecraft networks, e.g. due to solar flares or equip-
ment failures, they are uncommon.

3 TOPOLOGY MODEL

In this section, we present a formal topology model for
predictable mobile networks that also handles unpre-
dictable topology changes. While our work is motivated
by spacecraft networks and their properties, our model
is general and covers all predictable mobile networks.

Designing and reasoning about algorithms for space-
craft networks requires a topology model that describes
networks with predictable and unpredictable changes,
as described in the last section. We first formalize a
topology model that handles predictable changes based
on a notion of snapshots. A snapshot describes the static
state of the network topology during a time interval and
a snapshot sequence describes the expected evolution of
this state over time. We formalize predictable changes by
a snapshot transition function. In contrast, unpredictable
changes must be discovered and corrected for, essentially
by superimposing them upon the snapshot sequences.

3.1 Predictable Topology Changes

We specify the behavior of the network topology in the
presence of predictable changes and introduce a model
that characterizes predictability in mobile networks. The
concept of snapshots was informally introduced in [6],
where the authors describe the mobility of a LEO space-
craft network. They state that a snapshot represents
the topology of the spacecraft network at a particular
instance of time. We formalize the snapshot concept,
associating it with a time interval, not a time instance.

Definition 1: Time Intervals and Transitions. A time set is
a triple (T,≤, t0). The elements of the set T are called
time points, ≤ is a total order on T , and t0 is the smallest
element of T under ≤. We will often leave ≤ and t0
implicit and simply speak about the time set T . For
t′, t′′ ∈ T , we will use the notation [t′, t′′[, for t′ < t′′,
to represent the time interval {t ∈ T | t′ ≤ t < t′′}.

Let I be a countably infinite subset of T . We call I a
set of transition points if for all t ∈ T there are t′, t′′ ∈ I
with t ∈ [t′, t′′[. Since t0 is also the initial time point, it
follows that t0 ∈ I . We will enumerate the elements of I
as t0, t1, ..., where for all i ∈ N, ti < ti+1. ♦

We can now describe the topology during a given time
interval [ti, ti+1[.

Definition 2: Connectivity Graph and Snapshots. The pre-
dicted network topology during an interval [ti, ti+1[is
described by a directed connectivity graph Gi = (Vi, Ei),
where Vi is the set of network nodes and Ei is the set of
active communication links.

3

For ti ∈ I , a snapshot Si = 〈ti, Gi〉 represents the
predicted topology in the time interval [ti, ti+1[. The pre-
dicted evolution of the topology over time is described
by a snapshot sequence S = 〈S0, ...〉. A transition point ti,
for i > 0, represents the time point when the topology
changes from Si−1 to Si. ♦

A sequence of snapshots describing predictable
changes can be defined by an initial snapshot S0 and
a transition function δ that maps snapshots to snap-
shots. The transition function describes how the network
connectivity is expected to change over time. Note that
δ may be different for each network topology and se-
quence of snapshots. The snapshot sequence defined is
〈S0, S1, S2, ...〉, where δ(Si) = Si+1, for i ∈ N.

Defining δ for a spacecraft network requires sophisti-
cated calculations using the orbital mechanics and flight
dynamics of the involved spacecraft. We abstract away
from these considerations for now and focus on the
nature of such snapshot transitions. In Section 6, we
describe the functions δ that we use in the LEO/GEO
spacecraft and Mars networks.

3.2 Unpredictable Topology Changes

Although predictable changes constitute the vast major-
ity of the events that determine the topology dynamics
in a spacecraft network, unpredictable changes, which
cannot be anticipated, can also occur at any time, also
between snapshot transition points.

Unpredictable changes are not covered by the transi-
tion function and must be discovered by the nodes using
link-sensing. This means that nodes must check their
neighborhood for unpredictable changes either proac-
tively, at regular time intervals, or reactively.

Unpredictable changes transform the reality that is
represented by a given snapshot. Let Si be the current
snapshot and let u be an unpredictable change that
occurs within the interval [ti, ti+1[associated with Si

that describes the addition or removal of an edge in
the topology graph Gi. After u occurs, the snapshot
Si no longer correctly represents reality. The reality
corresponds instead to a modified snapshot Ŝi, whose
topology graph Ĝi accounts for u. Said another way,
the reality can be abstracted to a snapshot Ŝi, where Ŝi

differs from Gi only in the presence of the unpredicted
change. Figure 1 illustrates this and that the deviation
accumulates with each additional unpredictable change.

This raises two problems that must be resolved when
designing protocols for predictable mobile networks. The
first problem is related to the interaction of predictable
and unpredictable changes at transition points. As the
predictable snapshot sequence does not include unpre-
dictable changes, such changes may be overwritten by
the snapshot topology images. The second problem is the
need for regular realignment of the original predicted
snapshot sequence 〈S0, S1, S2, ...〉 given by δ with the
real sequence 〈Ŝ0, Ŝ1, Ŝ2, ...〉 to incorporate modifications
due to past unpredictable changes. In this paper, we

Fig. 1. Deviation between reality and the predicted snap-
shot sequence caused by unpredictable changes

provide solutions to both problems. Note that these
problems (and opportunities) do not arise in mobile ad-
hoc settings without the a-priori topology knowledge of
node movement and communication opportunities since
all changes are unpredictable.

4 MANAGING TOPOLOGY INFORMATION

In predictable mobile networks, routing protocols can
benefit from predictability only if the nodes that per-
form routing have access to information about upcoming
snapshots. In this section, we describe the distribution
and management of this topology information. Distri-
bution is required because it is generally infeasible to
store all topology management information in the nodes
at the time of network initialization (snapshot S0). We
present a topology information management algorithm
that supports our link-state based routing scheme.

4.1 Snapshot Distribution

Spacecraft memory is adequate for storing snapshot
sequences of reasonable length [7]. Each node stores a
sequence 〈Sj ,..,Sj+k〉 of k+1 snapshots, with k ≥ 0, and
requires an update with a new sequence 〈Sj+k+1,...〉 be-
fore time tj+k+1. This update process must also modify
snapshot updates to account for unpredictable changes
that have affected previous snapshots.

Recall that spacecraft networks contain a ground sta-
tion that has extensive computational resources and
can therefore pre-compute sets of snapshots. Further-
more, by participating in the network as a node, the
ground station also receives information on unpre-
dictable changes and can incorporate them in future
snapshots. To facilitate this, all unpredictable changes
are time-stamped. This allows the nodes to distinguish
between those unpredictable changes that have been
used as an input for the snapshot computation and those
that occur between the snapshot computation and the
time point at which the computed snapshot becomes
valid (i.e. the time point ti for a snapshot Si). Information
on unpredictable changes that reach the ground station
is stored in a data structure UC, which holds the changes
together with their time stamps.

Providing an initial pre-computed snapshot sequence
to all network nodes eliminates the need for an initial-
ization phase in the routing protocol. Nodes that are

4

added to the network by a predictable change can also
be equipped with an initial sequence of snapshots.

We will use the following definitions in our formaliza-
tion of snapshot distribution and our routing algorithm.

Definition 3: Restricted Graphs and Neighborhood. Let
G = (V,E) be a graph and V ′ ⊆ V a subset of nodes.
Then E |V ′ = E ∩ (V ′ × V ′) denotes the restriction of
E to V ′ and G |V ′ = (V ′, E |V ′) denotes the restriction
of G to V ′. We define the edges neighboring v in the
graph G = (V,E) as {(x, y) ∈ E | x = v ∨ y = v}.
Similarly, the neighbors of v in the graph G = (V,E) are
{w ∈ V | (v, w) ∈ E ∨ (w, v) ∈ E}. ♦

Definition 4: Transition-affected subgraph. Let ti ∈ I be a
transition point and Si the corresponding snapshot. We
define V Ti = {v ∈ Vi | ∃(x, y) ∈ Ei \Ei+1 : (x = v)∨ (v =
y)} ∪ {v ∈ Vi | ∃(x, y) ∈ Ei+1 \ Ei : (x = v) ∨ (y = v)}.
This is the set of nodes v in Vi for which the application
of a snapshot transition at time ti+1 causes v to update
its information on neighboring nodes or edges. We then
define GTi = Gi |V Ti

, the restriction of G to V Ti, as the
transition-affected subgraph associated with a transition
from snapshot Si to Si+1. ♦

Distribution Scheme: Let 〈Si, ..., Si+k〉 be a se-
quence of pre-computed snapshots that is to be dis-
tributed. Algorithm 1 describes, in high-level pseudo-
code, the steps taken by the ground station for each
sequence of k snapshots. A new snapshot Sj is calculated
from Sj−1 using δ (line 3). The computed snapshot
is then updated with the information stored on past
unpredictable changes (line 4). Afterwards, a time stamp
is added, indicating the time point at which the most
recent unpredictable change has reached the ground
station (line 6). Then, all entries are removed from the
data structure UC (line 7), which holds all unpredictable
changes received since the last computation. Finally, the
new snapshot sequence is distributed to the other nodes
in the network (lines 8–10).

Algorithm 1 Snapshot Sequence Calculation and Distri-
bution Function snap_calc(i, k) for a ground station

Input: i (first snapshot index of the new sequence)
and k (number of snapshots in the sequence).

1: var Si−1,...,Si+k /* Snapshot variables, where Si−1 con-
tains the last computed snapshot change */

2: for all j=0 to k do
3: Si+j ← δ(Si+j−1)
4: Si+j ← ApplyStoredUnpredictableChanges(Si+j)
5: end for
6: UpdateTimeStamp(〈Si, ..., Si+k〉)
7: DeleteAllChanges(UC)
8: for all Neighbors x of GS do
9: Send (〈Si, ..., Si+k〉, x)

10: end for

Distribution Scheme Efficiency: The change in the
topology δ(Si) is limited to the subgraph GTi of Gi.

Adding or deleting an edge from Ei involves two nodes
x and y and one edge (x, y) in GTi and adds only
a constant amount of space to the size of the update
for Si+1. For each node that is added or deleted from
Vi, the number of edges that can change is limited to
the number of neighboring edges, which is 2 |Vi| edges,
in the worst case. Given this, we can reduce the data
overhead by propagating just the differences between
the snapshots Si and Si+1. Note that instead of using
flooding (as in Algorithm 1), one could alternatively use
a more efficient multicast solution. Snapshot updates
can be distributed to the nodes at any time before the
snapshots are needed by the nodes.

5 ROUTING PROTOCOL

We now specify our PLSR protocol for predictable mo-
bile networks. We build it on top of (basic) link-state
routing [8], which we briefly introduce.

5.1 Link-State Routing Algorithm

Each unpredictable change u describes the addition or
deletion of a single edge in the topology graph. When a
node v changes its Link-State Database (LSDB) to incor-
porate such a modification, we say that v has updated its
LSDB with the change u. Since u affects only one edge
in the network, only the adjacent nodes can discover
the occurrence of u using link-sensing. The adjacent
nodes will, after detecting the change, initiate a Link-
State Advertisement (LSA), describing u. Note that more
than one unpredictable change may occur at the same
time point. For example, this occurs when a node with
more than one adjacent edge fails.

If two consecutive unpredictable changes u and u′

affect the same edge, then u′ will reverse u. In this case,
we say the unpredictable change u is superseded by u′.

Algorithm Description: Algorithm 2 shows the
routing main loop of the basic link-state protocol for a
node v in the network as introduced in [8]. Note that
periodic beaconing is omitted for reasons of clarity. In
the algorithm, if v detects a change on the link to another
node x (line 4), it adjusts its own LSDB and creates an
LSA message for the change (lines 5–6). The shortest
path first (SPF) tree is then updated (line 7) and an LSA
is flooded to all other nodes in the topology (lines 9–11).
If v receives an LSA from a node w (line 13), it checks
its freshness and the LSA is either processed (lines 15–
19) or dropped (line 21). Processing an LSA includes
updating the local LSDB with the changes, continuing
the flooding, and storing the LSA for future freshness
checks. This flooding mechanism rapidly propagates
network changes through the network at the cost of
increased traffic overhead.

5.2 Assumptions and Requirements

We adapt the basic link-state routing protocol from
Algorithm 2 for use in predictable mobile environments

5

Algorithm 2 Basic link-state main loop for a node v

1: var x /* Variable x describes a change */
2: var lsa /* Variable lsa contains an LSA as described in

Section 5.1*/
3: while true do
4: if x = DetectChange() then
5: UpdateLSDB(x) /* Updates LSDB with x */
6: lsa← CreateLSA(x) /* New LSA from x */
7: ModifySPFTree()
8: /* LSA Flooding */
9: for all neighbors y of v /* v is the current node */

do
10: Send (lsa, y) /* Send lsa to y */
11: end for
12: end if
13: if (lsa, w)← Receive() /* Receive lsa from w */ then
14: if IsFresh(lsa) then
15: UpdateLSDB(lsa)
16: ModifySPFTree()
17: for all neighbors s of v except w /* LSA

Flooding */ do
18: Send(lsa, s)
19: end for
20: else
21: Drop(lsa) /* LSA not recent */
22: end if
23: end if
24: end while

by incorporating information from snapshot sequences.
Before describing our adaptations, we state our assump-
tions and requirements for the protocol.

Assumptions: We design our routing algorithm to
work correctly under the following assumptions:

1) Spacecraft clocks are synchronized.
2) The time period required for local node computa-

tions is negligible.
3) The network topology does not change too quickly.

In particular, a flooding algorithm, initiated by a set
of nodes V ⊆ Vi during a snapshot Si, reaches all
other nodes w ∈ Sj , for some j ∈ T and j ≥ i.

4) The topology graph is always connected (also after
both predictable and unpredictable changes).

Although clock synchronization is a common problem
in distributed systems, spacecraft employ high-precision
clocks as many of their commands are time critical.
Therefore, only small clock deviations are expected and
this assumption is reasonable. Assumption 2 is also
reasonable given the capacities of modern spacecraft
on-board computers. Restricting the network dynamics
in Assumption 3 expresses the need for the stability
of the network topology and its evolution in terms of
predictable changes. In particular, it excludes anomalies
such as a topology that grows faster than the time
required for messages to spread through the network.
We describe the reasons for Assumption 4 below.

Network Separation through Unpredictable
Changes: Consider an unpredictable change u that
separates the topology into a main topology that
contains the ground station and an isolated topology.
This isolated topology can neither propagate any further
unpredictable changes that affect its edges nor can it
receive snapshot-sequence update messages from the
ground station. Observe that when the nodes in the
separated subgraph run out of snapshots, all predictable
changes must be treated as unpredictable changes.

We do not consider this pathological case in this paper
since it is very unlikely to occur in spacecraft networks.
For example, spacecraft networks use redundant nodes
to avoid network separation. If the topology is such that
this case has a non-negligible probability of occurring,
one can adapt routing to handle it. We only sketch a
solution here. Namely, we can equip all nodes with the
capability of switching into a full, ad-hoc mode that
becomes active as soon as the nodes of an isolated
topology exhaust their snapshot information. When the
connection to the ground station is restored and fresh
snapshot sequences can be acquired, the nodes switch
back to predictable mobile routing mode and notify the
main topology about unpredictable changes that may
have occurred during the time of separation.

Predictable and Unpredictable-change consis-
tency: We require two notions of consistency.

Definition 5: Change Consistency.

Let Si be the current snapshot. Predictable-change con-
sistency concerning a predictable change at time ti+1

holds if there exists a t ∈ T with ti+1 < t < ti+2

and all nodes v ∈ Vi+1 have a consistent view of the
predictable change at ti+1 by time point t. Unpredictable-
change consistency concerning an unpredictable change u
that occurs at time point t, with ti ≤ t < ti+1, holds if
at some time point t̂ associated with some snapshot Sk,
with k > i and tk ≤ t̂ < tk+1 one of the following has
occurred: (1) all nodes v ∈ Vk have updated their LSDB
with the change u, (2) u has been superseded by another
unpredictable change u′ that occurs at a time point t′

with t ≤ t′ ≤ t̂, or (3) all nodes that have updated their
LSDB with the changes.♦

Predictable-change consistency is achieved when the
nodes have updated their LSDB with the last predictable
change. Due to clock synchronization, the time interval
of inconsistency is very small in practice and no com-
munication is required to achieve predictable-change
consistency. In contrast, for an unpredictable change u,
it cannot be guaranteed that the propagation process
is completed within in the same snapshot in which u
occurs. The conditions state:

• either all nodes have learned of the change u or
• the change is no longer relevant as it has (1) been

superseded or (2) all information on u has been
deleted from the topology

Note that unpredictable-change consistency is also a
requirement for a basic link-state algorithm.

6

The LSDBs of all network nodes reflect the reality
at time t (in snapshot Ŝt) only if predictable-change
consistency holds for all previous snapshot transitions
and unpredictable-change consistency holds for all un-
predictable changes that have occurred prior to t. As un-
predictable changes occur rarely in spacecraft networks,
the nodes’ LSDBs often reflect reality.

Protocol Requirements: Our requirements are
twofold: (1) following a predictable change in the net-
work topology, predictable-change consistency holds
and (2) following an unpredictable change in the net-
work topology, unpredictable-change consistency holds.

Meeting the first requirement increases the quality of
the packet forwarding process since all routing decisions
made by PLSR are correct whenever no unpredictable
changes are currently propagating through the network.
As predictable-change consistency holds following each
snapshot transition Si to Si+1, the time interval [ti+1, t],
for t ∈ T with ti+1 < t < ti+2, where the routing
tables are inconsistent with the network topology is
negligible. If packets are forwarded during [ti+1, t], then
errors may arise as either the previous snapshot is used
or the LSDB of the forwarding node is in an inconsistent
state. However, if the forwarding process is delayed
until the routing tables are rebuilt, then all packets
will be correctly forwarded with respect to the current
network topology. Note that this effect on the quality of
packet forwarding is a property just of topologies where
predictable-change consistency holds.

5.3 Routing Protocol Definition

Algorithm 3 presents our link-state routing algorithm
for predictable mobile networks. This algorithm handles
both predictable and unpredictable changes, as well as
their interaction. Because unpredictable changes cause
snapshots to deviate from reality, their interaction with
predictable changes must be specifically addressed.

Predictable Changes: For each transition point ti+1,
GTi is the transition-affected subgraph. We modify the
core routing protocol to handle predictable changes and
update the topology image at each transition point ti+1

(line 6). Information on snapshot changes for the next
snapshot has already been received and hence the LSDBs
can be updated locally at the transition point ti+1 (line
8). Since only nodes in GTi are affected, a complete re-
run of the Dijkstra algorithm is not required (only an
incremental update) to compute the local SPF trees (line
13). However, if a node is added by a predictable change,
this node must learn of any recent unpredictable changes
from one of its neighbors. Therefore neighbors of the
newly added node create an LSA for each unpredictable
change that they have stored in their LSDB_UC and send
them to the new node (line 10).

Unpredictable Changes: During the time interval
]ti, ti+1[within a snapshot Si, PLSR operates as the basic
link-state routing. Moreover, an unpredictable change
that is detected during]ti, ti+1[, or is received via an

Algorithm 3 PLSR main loop for a node v.

1: var x /* describes a change */
2: var lsa /* LSA as described in Section 5.3 */
3: var Si,...,Si+k /* Snapshot variables, contain a snapshot

sequence consisting of k snapshots updates */
4: var n, s, v, w /* Variables describe nodes */
5: while true do
6: if CurrentTime() == NextTransitionPoint() then
7: t← CurrentTime()
8: newNodes ← UpdateLSDB(LoadChanges(t))
9: for all neighbors n in newNodes do

10: SendAllChanges(LSDB UC, n)
11: end for
12: LoadUnpredictableChanges()
13: ModifySPFTree()
14: end if
15: if x ← DetectChange() then
16: n← GetNeighborNode(x)
17: if n /∈LSDB then
18: Send(LSDB, n) /*Send LSDB to node n*/
19: end if
20: UpdateLSDB(x) /* Updates LSDB */
21: ModifySPFTree()
22: UpdateLSDB UC(x)
23: lsa← CreateLSA(x) /* New LSA from x */
24: for all neighbors y of v do
25: Send (lsa, y) /* Send lsa to y */
26: end for
27: end if
28: /* Receive an LSA lsa from a node w */
29: if (lsa, w) ← Receive() then
30: if IsFresh(lsa) then
31: UpdateLSDB(lsa)
32: ModifySPFTree()
33: UpdateLSDB UC(lsa)
34: for all neighbors s of v except w /* LSA

Flooding */ do
35: Send(lsa, s)
36: end for
37: end if
38: end if
39: /* Receive a new snapshot sequence from a node w*/
40: if (〈Si, ..., Si+k〉, w) ← Receive() then
41: timestamp ← StoreSequence(〈Si, ..., Si+k〉)
42: DeleteOldEntriesFromLSDB UC(timestamp)
43: for all neighbors s of v except w do
44: Send (〈Si, ..., Si+k〉, s)
45: end for
46: end if
47: if newLSDB ← Receive() then
48: SetLSDB(newLSDB)
49: end if
50: end while

7

LSA, is stored in an additional data structure LSDB_UC
(lines 22 and 33) together with a time stamp indicating
the reception or detection time of the most recent un-
predictable change. If an unpredictable change results
in the addition of a new node (line 16), this node must
be provided with the current LSDB (line 18).

Interaction: Interaction between predictable and
unpredictable changes occurs at transition points when
an unpredictable change directly affects an edge with
a neighboring node in GTi. In this situation, the order
in which the changes are applied is important. We first
apply the predictable changes to the LSDB (line 8) and
then the unpredictable changes from the data structure
LSDB_UC (line 12). Thus, the effects of unpredictable
changes are preserved across snapshot transitions.

Reception of Snapshot Sequences: If a new snap-
shot sequence is received from another node (line 40), its
time stamp is retrieved and the new sequence is stored
for later use (line 41). Afterwards, obsolete entries are
deleted from LSDB_UC (line 42) and the new sequence
is further distributed (lines 43–45).

5.4 Protocol Correctness

We state the following theorem, which we proved in [9].

Theorem 1 (PLSR Protocol Correctness): The PLSR Pro-
tocol satisfies the requirements defined in Section 5.2.

6 TOPOLOGY GENERATION

Before we evaluate the performance of PLSR, we de-
scribe how we generate the snapshot topologies for our
simulations. First we explain how we generate random
topologies. Afterwards, we describe how we generate
topology information from real flight-dynamics data for
our application scenario.

6.1 Random Topology Generation

Our tool for random topology generation simulates the
movement of nodes using a random waypoint model
[10]. To achieve this, we assign a maximum commu-
nication range to each node. The nodes then move
randomly inside a simulated area. As long as two nodes
are in communication range with each other, they have
a communication link in the topology. The time points
when a link is created or dropped become snapshot-
transition points. In the random-movement scenario, we
use the same propagation delays of either 33, 330 or 3300
ms for each link. Also, all links are assigned an identical
cost value. We created a UDP packet transfer between
two random network nodes for a fixed time interval
and two different packet production rates (20 and 2000
packets per second). Each packet has a size of 999 bytes.
We measured the traffic arriving on the destination node.

6.2 Topology Generation from Flight-Dynamics Data

The current state-of-the art tool for producing flight
dynamics information is the commercial Satellite Tool
Kit (STK) [3], which is used by many space agencies
and commercial operators. STK can accurately simulate
the movement of any body or spacecraft within the solar
system or on celestial bodies. It can also model spacecraft
antenna pointing, visibility widows, and other spacecraft
properties. We use STK to compute the lines-of-sight and
distance between network nodes.

Visibility and Communication Windows: As the
distance between nodes in space networks can be sub-
stantial, propagation delays may affect the topology by
reducing communication possibilities. To account for
this, we define two key notions: visibility windows and
communication windows. These are used by the flight-
dynamics simulator and the topology generator when
calculating snapshots.

Definition 6: Visibility and Communication Windows.
Let a and b be two nodes in the topology and let

t1, t2 ∈ T be two time points. We say that [t1, t2[is a
visibility window between a and b if the following two
conditions hold.

1) During [t1, t2[, there is a continuous direct line-of-
sight between a and b.

2) This time interval cannot be extended. Namely,
there is no time interval [t′1, t

′

2[, with t′1, t
′

2 ∈ T ,
such that [t1, t2[([t′1, t

′

2[and a continuous direct
line-of-sight exists between a and b during [t′1, t

′

2[.

Given a visibility window [t1, t2[, let d ∈ R be the
propagation delay between the two spacecraft a and b at
the time point t2. Then, the corresponding communication
window is defined as [t1, t2 − d[. ♦

The difference between a visibility window and the
associated communication window is substantial when
large distances are involved, such as between Earth and
Mars. In our approach, the topology model that is used
by the topology generator provides snapshots based on
communication windows rather than visibility windows.
Note that the communication window does not extend
earlier in time than the visibility window because earlier
communication attempts starting at time t1 − d1, where
d1 ∈ R represents the (non-negative) propagation delay
at t1, may still be blocked by celestial bodies.

We calculate the visibility window information for our
scenarios together with distance information using STK.
Afterwards, we process the flight-dynamics simulator
output to derive a common input format for the topology
generator. From this information, the topology generator
computes the sequence of communication windows.

Snapshot Computation: Let t, t′ ∈ T be two time
points. The topology generator computes a snapshot
sequence from the communication windows provided as
input for the time period [t, t′] as follows. Let V be the set
of all nodes in the topology and let W ⊆ T ×T ×(V ×V)
be a set of communication windows within [t, t′]. The
snapshot generation algorithm takes W , t, and t′ as input

8

and computes the sequence of snapshots S = 〈S0, ...〉
and thus also the δ function that represents the topol-
ogy evolution in [t, t′]. Namely, for each communication
window (ti, tj , (a, b)) ∈ W , it computes the respective
edges (a, b) and (b, a) for the affected snapshot topology
graphs Gi, ..., Gj−1 in the time period [ti, tj].

Propagation Delay Metric: In the topology models
for our two application scenarios, we use cost metrics
that include scenario-specific cost factors, primarily de-
lay. We extend the snapshot definition to store informa-
tion on link-propagation delays by annotating each edge
with a value denoting the delay.

6.3 Network Simulation

We use the generic network simulator ns-2 [11] for all our
simulations. Since we are only interested in simulating
the network or higher-layer behavior, we do not simulate
the physical properties of the communication medium.
Hence, our simulations are independent of the signal-
transport medium at the physical layer, such as radio
modulation or optical links. We can therefore use the
standard ns-2 communication model with the following
modifications. (1) Links have a delay label and nodes
only recognize link changes after an idle time of twice
the delay value for the affected link, representing the
minimal round-trip delay. (2) Node connectivity infor-
mation over time is taken from the snapshot-sequence
output of the topology generator. Using this information,
ns-2 can activate or deactivate links at transition points.

With this approach, we cleanly separate physical-
medium properties and topology properties. This makes
our simulations independent of the actual physical-layer
media used in the network. Moreover, since the network
simulator is separate from the flight-dynamics tools and
the random-movement generator, no modeling of node
movement is required in the network simulator. In our
two application scenarios, this allows us to optimize the
spacecraft constellation simply by making changes in the
flight-dynamics tools and then directly observing their
impact on the network model. In our simulations, we
compare different properties of PLSR with those of LSR.1

LSR and OLSR: Optimized Link-State Routing
(OLSR) [12] is an optimization of LSR well-suited for mo-
bile ad-hoc networks. We do not experimentally compare
PLSR to OLSR. OLSR is specialized to efficiently handle
large, dense ad-hoc networks. Spacecraft networks have
quite different characteristics. Namely, they consist of
a small number of nodes that are sparsely distributed
over a vast area, with dense concentrations only around
planets. This leads to an asymmetric situation, where the
topology may change rapidly around the planets while

1. For LSR, our starting point was the implementation distributed
with ns-2. This implementation is for static networks and therefore
does not address the failure-detection latency caused by the prop-
agation delay. We therefore adapted the protocol implementation to
include this latency. We further disabled periodic topology discovery
messages since they are of limited use in the LEO/GEO inter-spacecraft
network and only increase the routing overhead of LSR.

remaining stable for long time periods in other parts of
the network. OLSR’s enhancements, which benefit from
dense, frequently changing topologies, do not work effi-
ciently in such an environment and produce additional
overhead. In our simulation summary, we return to this
point and discuss the differences between LSR and OLSR
in our evaluation scenarios.

Measurement Metrics: For all scenarios, our sim-
ulations measure routing message overhead and traffic
throughput, which are the most relevant metrics for
spacecraft networks. We do not measure the convergence
time for unpredictable changes since the majority of
the changes are predictable and therefore PLSR routing
is still possible during convergence, even if routing is
suboptimal. We have implemented the PLSR protocol,
described in Algorithm 3, by adapting an implementa-
tion of the OLSR protocol for ns-2.

Snapshot Distribution: Our PLSR simulations in-
clude the upload of snapshot sequences from the ground
station to spacecraft. In our simulations, transition infor-
mation on each snapshot is encoded in 15 bytes of data.
Since the number of snapshots and the required flooding
messages differ for each simulation topology, the traffic
overhead related to snapshot distribution also varies.

Unpredictable Changes: In the random-movement
setting, the vast majority of changes are predictable, but
an unpredictable change occurs with a 10% probabil-
ity within an entire simulation run. In the application
scenarios, we use a more realistic approach to model
unpredictable changes. Spacecraft and link failures of
varying degrees of severity frequently occur on space-
craft due to technical malfunctions or environmental
problems (caused by temperature, radiation, and the
like). These failures can affect nodes’ routing capabilities.
Most failures are non-critical in practice and we assume
that failures rarely occur and are quickly repaired. We
modeled the failure cases based on failure events that
currently occur in existing spacecraft operations.

7 RANDOM MOVEMENT SCENARIO

We now assess the performance of the PLSR protocol in
a simulation setting with random node movement, inde-
pendent of any specific spacecraft-network scenario. For
these experiments, our topology generator simulates the
random movement of nodes as described in Section 6.1.
This random topology setting emphasizes the generic
properties of the PLSR protocol but also leads to a large
confidence interval (i.e. topologies with extremely low
or high measurement results may exist). We therefore
performed many simulation runs (each 10000 seconds
of simulated time) for all configurations from Section 6.1
and averaged the results. We simulated both protocols,
LSR and PLSR, on the same topologies. We performed
simulation runs for random, connected topologies with
5, 10, 15, and 20 nodes. Note that these are realistic sizes
for typical spacecraft networks.

9

����

����

����

� �� �� ��

�����
�������	

��������	
���������	

���
������
��
	

�
�

��

�
�
��
�
��
�
�
�

	

Fig. 2. Random Setting Routing Overhead

����

����

����

���

���

���

���

� �� �� ��

��������	����
��

�
���

�������

��������

���������

�
��
��
��
��
�
�	

�
�

�

Fig. 3. Random Setting Traffic Throughput

Routing Overhead: We measured the overhead
produced by PLSR and LSR. Figure 2 shows our results.
Note that PLSR produces little overhead in all cases. The
overhead produced stems from the snapshot updates
that are required for PLSR. Although the size of these
updates grows with the number of nodes, the growth is
minimal and far below the growth rate of LSR overhead.
LSR shows a strong increase of traffic overhead caused
by flooded LSA messages. With 20 nodes, LSR already
produces around 3 MBytes of traffic overhead. This
would continue with an increasing number of nodes.

Traffic Throughput: Figure 3 shows the traf-
fic throughput measurements for the two packet-
production rates of 20 and 200 packets per second. The
figure shows that PLSR provides constant maximum
throughput since it has access to topology information
and can reroute packets before a link actually goes
down. Therefore, it is not impacted by variations in the
propagation delay. We also see that the traffic throughput
supported by LSR is reduced as the number of nodes in-
creases. This behavior is similar for the different packet-
production rates. The throughput degradation results
from the fact that the number of changes increases with
the number of nodes and traffic is lost during routing
table synchronization of the nodes. Finally, we see that
a high propagation delay causes more packets to be lost
since the LSA messages need longer to reach the nodes.

Unpredictable Changes: We measured the effect
of unpredictable changes on the PLSR protocol. We
simulated LSR and PLSR for topologies with 10 and
20 nodes, using the same configurations as above. In

���

����

����

����

� � � �� �� �� ���

�
��
		

�
�

���
��
�
�
��
�

��������	��
����
����������
���

�������������
������������

�������������
������������

Fig. 4. Impact of Unpredictable Changes

addition, a number of unpredictable changes occur in
each configuration. Figure 4 shows our results. In a 20
node topology, PLSR performs substantially better than
LSR, even with many unpredictable changes. In fact,
PLSR’s overhead with less than 5 unpredictable changes
is negligible. Note that we did not make measurements
for more than 20 changes in the 10 nodes setting.

8 LEO/GEO SPACECRAFT HYBRID NETWORK

LEO spacecraft are increasingly used by Earth observa-
tion missions. Their high-resolution measurements gen-
erate substantial quantities of scientific payload data that
must be sent to Earth. This is problematic as, due to their
low orbit, LEO spacecraft have only small communica-
tion windows with ground stations.

The small communication windows constrain the di-
rect downlink capacity of LEO spacecraft for data trans-
mission to ground stations and result in a communica-
tion bottleneck. To address this problem, space agencies
are examining the use of GEO spacecraft as stationary
relay points. The GEO spacecraft will have long com-
munication windows with the LEO spacecraft as well as
continuous connectivity with the ground stations. This
eliminates the communication bottleneck and provides
a continuous failure-resistant, data-stream downlink for
payload data from LEO spacecraft. This new, more
complex, topology requires a fast switching, efficient
routing scheme. It cannot be managed using traditional,
manually commanded, point-to-point communication.

8.1 Properties and Infrastructure

We describe the participating entities and links that are
present in the LEO/GEO scenario.

• LEO spacecraft: Five LEO spacecraft orbiting the
Earth at ca. 600 km. They maintain links to all visi-
ble GEO spacecraft. Additional inter-LEO spacecraft
communication can be used.

• GEO spacecraft: Three spacecraft in a geostationary
orbit.

• Ground Stations: Three interconnected ground
stations, one of which acts as a traffic sink.

10

��������	�
���

��������	�
���

�
����

�������

Fig. 5. LEO/GEO Network

We assume that all entities employ the same packet-
switched networking protocol. LEO/GEO spacecraft net-
works are highly mobile, which results in a large num-
ber of snapshots. Furthermore, each ground station has
constant visibility with at least one GEO spacecraft.

Figure 5 shows our constellation of the five LEO and
three GEO spacecraft orbiting the Earth as well as some
of the possible communication links. (For clarity, not all
possible inter-LEO spacecraft links are shown.)

Unpredictable Changes: Should one GEO space-
craft fail and a continuous data relay no longer be
possible, the LEO spacecraft in our model can use other
LEO spacecraft in their communication range as data
relays. This contingency situation provides a backup to
avoid the loss of payload data.

8.2 Simulation

We simulate PLSR and LSR in the LEO/GEO scenario.
We compute the topology model as described in Section
6 and then simulate the network dynamics as well as the
behavior of PLSR and LSR in ns-2.

We do not compare PLSR to other, highly specialized,
space-routing protocols since they are not generic and
their use is limited to particular constellation setups.

For the LEO/GEO scenario, we choose a simulation
time period of one day. This provides a reasonable num-
ber of snapshots (605). Also, the LEO spacecraft have
repeated ground tracks (i.e., the trace of the satellite’s
path over the ground) after this time period.

Since we want to simulate the network behavior dur-
ing the generation and transfer of spacecraft payload
data, our traffic model contains five data streams, one
originating from each LEO spacecraft. In ns-2, we imple-
mented each stream as a CBR UDP traffic stream with a
100 byte packet transmitted every 50 ms. Note that the
size of the traffic packets only affects the packet-to-bytes
ratio but does not affect the simulation results as long
as the packets are small enough to avoid fragmentation.
The traffic stream starts at simulation time 1 second and
stops at 86,300 seconds. For PLSR, we use the delay
metric given in Section 6.2 to model the link costs.

Spacecraft Link Failures: We conduct measure-
ments for nominal operations (that is, without any space-
craft failures) and for three failure configurations:

�

��

���

����

�����

������

� � � �

�
�
�
�	

�

�
�

�
��

�
�
��

�

���
����

���

����

�����

������

�����

� � � �

�
�
�
�	

�

�
�

�
��

�
�
�
��

����
�

� �!"�#�$���
��
%&��'	
�(��

� ��)��*)���
���+

&,�������������

� �*)��*���
���+

&,�������������

� �*)��*���
���+

&,���������������

Fig. 6. LEO/GEO Network Routing Overhead

1) The failure of a LEO-GEO spacecraft link, which
lasts for a duration of 1,000 seconds (≈ 17 minutes)

2) The failure of a GEO spacecraft to ground station
link for a period of 1,000 seconds

3) The failure of a GEO spacecraft to ground station
link for a period of 10,000 seconds (≈ 2.7 hours)

8.2.1 Routing Overhead
We compare PLSR’s routing protocol overhead to that
of LSR. Figure 6 shows the overhead measurements for
nominal operations and the three failure configurations.
The x-axis shows the simulation configurations and the
y-axis shows the traffic overhead on a logarithmic scale.

As was expected, by exploiting network predictability,
PLSR has a clear advantage over LSR. This advantage is
largest for the simulation without unpredictable changes,
where LSR produces about 2,000 times more packet over-
head and 1,000 times more byte overhead. In this non-
failure case, PLSR produces only the minimal overhead
required to upload snapshot sequences and no overhead
related to the distribution of LSA messages.

Impact of Failures: As seen in Figure 6, for all
three failure configurations, unpredictable failures cause
a slight increase in PLSR’s routing overhead. This comes
from the need to communicate these changes to all
nodes. Still, PLSR’s advantage is substantial.

For the failure configurations (2) and (3), the duration
of an unpredictable failure does not significantly impact
the overhead produced by PLSR. This is because PLSR
stores the currently valid unpredictable changes at each
node. At snapshot transition points, the nodes modify
their new LSDBs with the unpredictable changes that
they have currently stored. If an unpredictable change
is invalidated by a predictable change or another un-
predictable change, the information is deleted from the
nodes. This obviates the need for generating additional

11

LSAs after each transition point. Also, once information
on an unpredictable change has propagated through the
network, no additional messages occur until another
unpredictable change occurs.

The slight drop in PLSR routing overhead in configu-
ration (3) results from the minimal network connectivity
at the time when the link comes back up again. Fewer
links are active at this time and therefore fewer LSA
messages are required during flooding.

8.2.2 Traffic Throughput

We measure the stability of the payload-data streams
and, in particular, the number of traffic packets and bytes
successfully transmitted from the LEO spacecraft to the
sink ground station. We conduct these measurements in
the nominal (non-failure) situation as well as in the three
failure configurations. Figure 7 shows our results.

In all configurations, PLSR has a higher throughput
than LSR, although the differences are not substantial.
The additional loss of packets in LSR only occurs in
the time between a change and its discovery through
link sensing as well as during the time required for
the LSA messages to propagate the change. Therefore,
in the LEO/GEO spacecraft scenario, the difference in
throughput performance can be explained by the fact
that the communication delays between the spacecraft
are low, the LSA messages in LSR will quickly reach all
nodes, and the routing tables converge.

In the absence of unpredictable changes, we see that
PLSR provides maximum throughput and no packets
are lost. This is because link breakdowns are known in
advance (through the use of communication windows)
and PLSR can react before a link goes down and choose
another link if a route is affected.

In real-world scenarios, the inter-spacecraft links
would be bandwidth-optimized to achieve maximum
link saturation. Additional traffic on these links, caused
by routing overhead, thereby reduces payload-data
throughput. Therefore, in reality, the total traffic through-
put in LSR would actually be less since traffic pack-
ets are dropped in favor of LSA packets if the links
are saturated. In PLSR, this effect only takes place for
rare snapshot updates and LSAs associated with unpre-
dictable changes, and is negligible in the measurements.
Note also that, should the control and data transfer links
be separate, which is often the case in practice, the low
bandwidth (4-6 Kbit/s) control links will be much more
affected by the routing overhead.

9 MARS NETWORK COMMUNICATION

Rovers will play an increasingly important role in ex-
ploring the solar system and Mars in particular. They
gather scientific data and communicate frequently with
the Earth. Rovers have limited energy and computing re-
sources. Their communication sessions and data transfer
opportunities must therefore be optimized. This option
introduces a topology complexity that challenges the

������

���

� � � �

	

�

��

�

�
�

�
�
��

�

������ ���
������ ����

����
��

�� !" #�$
�%
����&� '(��)��

�� �*+�,*+ �
�- .�
&/
� 0�����0���

�� ,*+�,� �
�- .�
&/
� 0�����0���

�� ,*+�,� �
�- .�
&/
� 0������0���

Fig. 7. LEO/GEO Network Traffic Throughput

������

��	��

����
�������

����

������

����
�������������

�������

������

�������

����
�������

�
�
�����������

������
��������

��

��

��

��

 �

!��

"��

Fig. 8. Mars Network

manual commanding of point-to-point data transfer and
requires an autonomous, fast reacting routing mecha-
nism. While direct communication with a large antenna
on Earth is possible, the costs are high both in terms
of energy consumption and monetary cost. Hence, other
communication options are preferred. An attractive op-
tion here is to use existing science orbiters around Mars
with larger computational and energy-related resources
to relay data between the rover and Earth.

9.1 Properties and Infrastructure

We describe below the participating entities in our Mars
rover scenario. Although the rover mission that we
use is fictive, it is based on the ExoMars mission [13].
Moreover, the Mars infrastructure components use as-
sets that are part of present or planned missions. Note
that the Mars orbiters that participate in the network
have very different orbital configurations and therefore
illustrate well the heterogeneity of spacecraft networks.
The overall communication infrastructure is illustrated
in Figure 8 and includes the following entities:

• Mars rover: The rover is mobile and maintains a
link with the base station.

• Lander base station: The base station is used as
a communications relay. It maintains links with
the rover, the deep-space ground station, and all
spacecraft orbiting Mars (when visible). Its direct
link to Earth is costly in terms of energy.

• Mars orbiters: These orbiters maintain links to the
Earth orbiting GEO spacecraft (if applicable, oth-
erwise directly to the ground stations) and to the

12

lander.
• Earth GEO constellations and ground stations:

The GEO spacecraft network is identical to the one
used in the LEO/GEO spacecraft-network scenario
(from Section 8.1) and is only present in two of the
simulation configurations.

Mars networks have two additional special
constellation-specific properties that we must also
account for. The large distance between Earth and Mars
causes long propagation delays on the interplanetary
links. These delays lead to substantial deviations
between the visibility and communication windows.
This also delays the distribution of unpredictable
changes and snapshot updates. Also, while the rover
course follows a pre-determined path, its predictability
is limited to approximately one Mars day. Therefore,
frequent snapshot updates are required if connectivity
is affected by rover movements.

In the Mars rover scenario, we use a more complex
cost function than for the LEO/GEO scenario. The com-
munication cost accounts for energy as well as actual
monetary costs, such as renting a deep-space ground
station or using the spacecraft of another agency as
relays. We have approximated the resulting communi-
cation costs as shown in Figure 8. We also consider dif-
ferent failure configurations that may occur in real Mars
operations. In particular, we investigate the impact of
temporarily loosing the ability to communicate between
a Mars orbiter and the Earth GEO network.

9.2 Simulation

In the Mars rover scenario, we choose a simulation time
period of seven days. This period is longer than in the
LEO/GEO scenario. The reason for this is since topology
changes occur less frequently, paths between the rover
and Earth may not always exist and longer propagation
delays are present. As before, we assume that a sending
antenna will automatically track the receiving antenna.
We measure the routing overhead of the PLSR and LSR
protocols and also the traffic throughput between the
rover and the sink ground station.

All nodes run the routing protocol, including the
ground stations and the Mars ground-based entities.
We use two nominal operations configurations and one
failure configuration for our throughput measurements:

1) A full network, including all entities described
above with no unpredictable failures.

2) A reduced network without the Earth GEO space-
craft. Here, the ground stations on Earth communi-
cate directly with the Mars orbiters. This configu-
ration is used today for communication with Mars.

3) As in (1), but with 10 minutes Mars orbiter failure.

The Mars rover produces a continuous stream of CBR

��

���

����

�����

������

� � �

�
�
�
�	
�

�
�

�
��
�
�
��
�

���

����

�����

������

�����

� � �

�
	
�

�
�
�

��
�
��
�
�
�
�
��

���

����

�������

��	
��
���	
���	���

������������	��	��������

��	
��
���	
������	���

������������	��	��������

��	
��
���	
���	���	

������������	��	 ��	�������

��	������!���	����������

Fig. 9. Mars Network Routing Protocol Overhead

���

���

���

���

���

���

� � �
	

�
��

�
�

�
��
�
�
��
�

�������

��	
��
���	
���	���	������������	��	��������

��	
��
���	
������	���	������������	��	��������

��	
��
���	
���	���	�����������	��	 ��	�������

��	������!���	����������

��������	
�

�������	
�

Fig. 10. Mars Network Traffic Throughput

UDP traffic packets (100 bytes, 50 ms interval).2 The
traffic stream starts at simulation time 1 second and stops
at simulation time 600,000 seconds.

9.2.1 Routing Overhead
We compare PLSR’s overhead, in terms of packets and
bytes, to that of LSR. We perform simulations for the
configurations (1)–(3) above. The results are shown in
Figure 9. As before, the x-axis shows the different sim-
ulation configurations and the y-axis the overhead in
kilobytes and packets.

We see that the performance difference for routing
overhead is comparable to our results for the LEO/GEO
scenario. This is expected since, as in the previous sce-
nario, LSR still initiates a flooding process for every
change, independent of the propagation delay. More-
over, the convergence time, compared to the LEO/GEO
scenario is substantially larger (around 12 minutes) due
to the presence of long-delay links. This affects the
traffic throughput, which we discuss below. Another
major difference is the increased number of hops that
is required for communication in nominal mode.

9.2.2 Traffic Throughput
We measured the total traffic throughput of PLSR and
LSR in the Mars rover communication scenario for all

2. Note that since a route between the rover and the sink ground
station does not always exist (for a total of 184,778 seconds in config-
uration (1) and for a total of 203,650 seconds in configuration (2)), the
rover does not produce traffic during these time periods. This ensures
that packet loss is only related to routing failures.

13

three configurations. Figure 10 shows the results.
In comparison to the LEO/GEO scenario, PLSR per-

forms significantly better than LSR: around 5% in (1),
7% in (2), and 5% in (3). This is the case even though
the number of snapshots in the Mars scenario is lower
than in the LEO/GEO scenario. One reason for this
increased performance benefit is the presence of large
propagation delays, which impair the communication of
LSR link-state advertisements. Furthermore, following a
link change, LSR will only re-route traffic once it is fully
aware of the change. Thus the transport of payload data
may be subject to routing failures until the change has
been propagated to all nodes on the traffic path.

The reason that the performance difference between
PLSR and LSR is not substantially larger is because route
switches (which affect the long delay links between Earth
and Mars) are infrequent. Therefore, additional overhead
due to LSA messages is also limited in LSR.

The results for configuration (3) show that unpre-
dictable changes that affect the high propagation-delay
link between Mars and Earth reduce the performance
of PLSR since these changes require a long time to
propagate.

9.3 Simulation Summary

We draw conclusions from our three simulation scenar-
ios. In all configurations, PLSR is superior to LSR in
terms of throughput and overhead. Furthermore, large
propagation delays have a significant negative impact on
the efficiency of LSR, while PLSR is only affected in the
presence of unpredictable changes. The number of nodes
and the density of snapshots have a negative effect on
PLSR, while LSR is not affected. Thus, we can expect that
the advantage of PLSR with respect to LSR will further
increase in more complex application scenarios.

Efficiency of OLSR: In all three scenarios, OLSR
enhancements would not increase the performance of
LSR. Due to the small number of sparsely distributed
nodes, combined with fast link switching, multipoint
relaying does not enhance LSR’s efficiency. Furthermore,
periodic LSA distribution, as used in OLSR (in contrast
to instant distribution of LSAs upon detection of a link
change), increases the packet loss in sparse networks.

10 RELATED WORK AND CONCLUSIONS

10.1 Related Work

While we use the snapshot approach, other approaches
exist to model dynamically changing topologies. Borrel
et al. [14] investigate Delay Tolerant Network (DTN) net-
work classifications and introduce a notion of evolving
graphs, which are essentially equivalent to snapshot se-
quences. Shao et al. [15] also discuss routing approaches
for DTN networks based on evolving graphs, where a
routing path between two nodes does not always exist
and packets must then wait at intermediate nodes for
links to become available. A similar approach is taken

by Merungu et al. [16]. Snapshot sequences, however,
provide better possibilities for decomposing the topol-
ogy evolution into information that can be distributed
by the ground stations. Ferreira et. al [17] present a com-
binatorial model for MANETs along with approaches for
solving different routing-over-time problems. In deep-
space communication, long propagation delays and in-
termittent connectivity links may be present in the net-
work. The DTN approach [18] addresses this problem
by introducing an overlay layer. DTNs are compatible
with the connectionless packet-switched network that
we assume. In [19], Jain et. al discuss routing problems in
DTNs. While their focus is on routing with finite buffers,
they also address DTN routing and flow control with
complete knowledge. They do not, however, address
unpredictable failures and their impact on the topology
snapshots.

Several routing protocols have been proposed for
Earth-orbiting spacecraft constellations, including data-
gram routing [20], optimal topological design [21], and
routing tailored to Asynchronous Transfer Mode tech-
nology [22]. All of these protocols are limited to LEO
constellations and have numerous architectural restric-
tions (such as a fixed constellation). These are based
on the properties of LEO spacecraft networks that we
introduced in Section 8.1. They lack the level of flexibility
required in modern heterogeneous spacecraft networks.

In [23], the authors describe their ASCoT routing
mechanism which provides a position-based routing
architecture for space networks. Similar to the PLSR
protocol, ASCoT exploits predictability. In contrast to
PLSR, ASCoT treats all nodes as equal in terms of routing
protocol behavior and proactively propagates connection
information on current and future links between nodes.
This increases ASCoT’s overhead compared to PLSR.

10.2 Conclusions

We have presented a model for predictable mobile
topologies and used it to design the PLSR routing proto-
col. Our protocol is correct and performs well compared
to other routing protocols in an topology that has been
generated using a random-waypoint model.

We have carried out the first detailed study of pre-
dictable routing for space networks. Using realistic sim-
ulations based on two application scenarios, we showed
that PLSR is efficient and offers advantages over compet-
ing protocols. Our simulations are based on actual flight-
dynamics data and show the superiority of PLSR over
LSR. Together with the generic simulations, our results
provide strong evidence of PLSR’s general usability.

As future work, we would like to utilize additional
scenario-specific factors to further optimize routing us-
ing PLSR, for example by accounting for the rover’s
energy budget or antenna-pointing information. With
such extensions, PLSR would also support services for
other layers than the network layer (such as the DTN
bundle layer). For the Mars rover scenario, this would

14

allow the autonomous adaptation of the rover to its
changing environment. Finally, since space assets are
part of a critical infrastructure, we will also investigate
how to best integrate security services with PLSR.

REFERENCES

[1] B. Evans, M. Werner, E. Lutz, M. Bousquet, G. E. Corazza,
G. Maral, R. Rumeau, and E. Ferro, “Integration of satellite and
terrestrial systems in future multimedia communicaitons,” IEEE
Wireless Communications, vol. 12, no. 5, pp. 72–80, October 2005.

[2] “Space Communications Architecture Working Group.
NASA Space Communications and Navigation Architecture
Recommendations for 2005-2030,” NASA Technical Report,
Washington D.C., May 2006.

[3] “Analytical Graphics Inc. Satellite Tool Kit Fundamentals,” AGI
Technical Report, Exon, PA, November 2007.

[4] R. J. Leopold and A. Miller, “The iridium communications sys-
tem,” Potentials, IEEE, vol. 12, no. 2, pp. 6–9, April 1993.

[5] D. P. Patterson, “Teledesic: a global broadband network,” in Proc.
of the Aerospace Conference, 1998. Proceedings., IEEE. IEEE, March
1998, pp. 547–552.

[6] V. V. Gounder, R. Prakash, and H. Abu-Amara, “Routing in LEO-
based satellite networks,” in Wireless Communications and Systems,
1999 Emerging Technologies Symposium. IEEE, April 1999, pp. 22.1–
22.6.

[7] AtmelCooperation, “Tsc695f sparc 32-bit space processor - user
manual,” 2003.

[8] J. M. McQuillan, I. Richer, and E. C. Rosen, “The new routing
algorithm for the ARPANET,” IEEE/ACM Transactions on Com-
munications, vol. 28, pp. 711–719, 1980.

[9] D. Fischer, D. Basin, and T. Engel, “Topology dynamics and
routing for predictable mobile networks,” in Proceedings of the 16th
International Conference on Network Protocols (ICNP), 2008. IEEE,
October 2008, pp. 207–217.

[10] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva,
“A performance comparison of multi-hop wireless ad hoc net-
work routing protocols,” in MobiCom ’98: Proceedings of the 4th
annual ACM/IEEE international conference on Mobile computing and
networking. New York, NY, USA: ACM, 1998, pp. 85–97.

[11] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Han-
dley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. McCanne,
R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H. Yu, and D. Zappala,
“Improving simulation for network research,” Technical Report,
University of Southern California, March 1999.

[12] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum,
and L. Viennot, “Optimized link state routing protocol for ad hoc
networks,” in Proceedings of the 5th IEEE Multi Topic Conference,
INMIC 2001. IEEE, 2001, pp. 62–68.

[13] P. Baglioni, R. Fisackerly, B. Gardini, G. Gianfiglio, A. L. Praider,
A. Santovincenzo, J. L. Vago, and M. Winnendael, “The Mars
Exploration Plans of ESA,” IEEE Robotics & Automation Magazine,
vol. vol. 13, no. 2, pp. 83–89, June 2006.

[14] V. Borrel, M. H. Ammar, and E. W. Zegura, “Understanding the
wireless and mobile network space: a routing-centered classifica-
tion,” in CHANTS ’07: Proceedings of the second ACM workshop on
Challenged networks. ACM, August 2007, pp. 11–18.

[15] Y. Shao and J. Wu, “Understanding the tolerance of dynamic
networks: A routing-oriented approach,” in Proceedings of the 28th
International Conference on Distributed Computing Systems Work-
shops, 2008. ICDCS ’08. IEEE, June 2008, pp. 180–185.

[16] S. Merugu, M. Ammar, and E. Zegura, “Routing in space and
time in networks with predictable mobility,” Georgia Institute of
Technology, GA, Tech. Rep. GIT-CC-04-07, 2004.

[17] A. Ferreira, “Building a reference combinatorial model for
manets,” Network, IEEE, vol. 18, no. 5, pp. 24–29, October 2004.

[18] K. Fall, “A delay-tolerant network architecture for challenged
internets,” in SIGCOMM ’03: Proceedings of the 2003 Conference
on Applications, technologies, architectures, and protocols for computer
communications. New York, NY, USA: ACM, 2003, pp. 27–34.

[19] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant net-
work,” in SIGCOMM ’04: Proceedings of the 2004 conference
on Applications, technologies, architectures, and protocols for
computer communications. ACM, 2004, pp. 145–158.

[20] E. Ekici, I. Akyildiz, and M. Bender, “Datagram routing algo-
rithm for LEO satellite networks,” in Proceedings of INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, August 2002, pp. 500–508.

[21] H. Chang, B. W. Kim, C. G. Lee, Y. Choi, S. L. Min, H. S. Yang,
and C. S. Kim, “Topological design and routing for low-earth orbit
satellitenetworks,” in Proceedings of the Global Telecommunications
Conference, 1995. GLOBECOM. IEEE, November 1995, pp. 529–
535.

[22] M. Werner, “A dynamic routing concept for ATM-based satellite
personal communication networks,” IEEE Journal on Selected Areas
in Communications, vol. vol. 15, no. 8, pp. 1636–1648, October 1997.

[23] O. Gnawali, M. Polyakovt, P. Bose, and R. Govindan, “Data-
centric, position-based routing in space networks,” in Proceedings
of the Aerospace Conference, 2005. IEEE, March 2005, pp. 1322–1334.

Daniel Fischer is with the European Space
Agency where he is working as a Data Sys-
tems Engineer. He received his Ph.D. from the
University of Luxembourg in 2010. His research
interests are satellite communication, security
protocols and space networking. He is work-
ing on the specification of security protocols for
ESAs satellite communication systems.

David Basin is a full professor and has the chair
for Information Security at the Department of
Computer Science, ETH Zurich since 2003. He
is also the director of the ZISC, the Zurich Infor-
mation Security Center. He received his Ph.D.
from Cornell University in 1989, and his Habita-
tion from the University of Saarbrcken in 1996.
His research focuses on information security, in
particular methods and tools for modeling, build-
ing, and validating secure and reliable systems.

Knut Eckstein graduated from the University of
Stuttgart with an aerospace engineering degree
in 1993 and doctoral degree (Dr.-Ing.) in 1997
for his research on high-performance computing
for non-linear computational mechanics. After
four years in consulting industry as a network
security analyst and team leader, he joined the
NATO C3 Agency to work on Network Security
R&D. Since 2006, he works at the European
Space Agency as a System Security Engineer.
Dr Eckstein is a member of the ACM.

Thomas Engel is Professor for Computer Net-
works and Telecommunications at the University
of Luxembourg. He studied Physics and Com-
puter Science at the University of Saarbruecken,
where he also received his Ph.D. in 1996. Prof.
Dr. Engel is member of the European Security
Research Advisory Board (ESRAB) and mem-
ber of the Security Taskforce of the European
Commission. He also is the coordinator of the
European Integrated Project u-2010 on Next
Generation Networks.

