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Abstract
Most EMV transactions require online authorization by the

card issuer. Namely, the merchant’s payment terminal sends
an authorization request to the card issuer over a payment
network, typically operated by the company that brands the
card such as Visa or Mastercard. In this paper we show that
it is possible to induce a mismatch between the card brand
and the payment network, from the terminal’s perspective.
The resulting card brand mixup attack has serious security
consequences. In particular, it enables criminals to use a vic-
tim’s Mastercard contactless card to pay for expensive goods
without knowing the card’s PIN. Concretely, the attacker fools
the terminal into believing that the card being used is a Visa
card and then applies the recent PIN bypass attack that we
reported on Visa. We have built an Android application and
successfully used it to carry out this attack for transactions
with both Mastercard debit and credit cards, including a trans-
action for over 400 USD with a Maestro debit card. Finally,
we extend our formal model of the EMV contactless protocol
to machine-check fixes to the issues found.

1 Introduction

There are more than 3.3 billion Visa credit and debit cards
in circulation worldwide [23]. Under the Mastercard brand
(excluding Maestro and Cirrus products) there are over 2 bil-
lion cards [22]. These two companies, together with Europay,
are the founders of EMV, the de facto protocol standard for
in-store smartcard payments. Other companies like American
Express, JCB, Discover, and UnionPay have also joined the
EMV consortium.

EMV transactions for high amounts require online autho-
rization from the card issuer. For this, the payment terminal
sends an authorization request to the card issuer, carrying
transaction details and a cryptographic Message Authentica-
tion Code (MAC) computed by the card over these details.
Upon reception, the card issuer performs various checks, in-
cluding that the associated account has sufficient funds and
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Figure 1: Communication flow for online transaction autho-
rization. Upper and lower arrows represent the authorization
request and response, respectively.

that the MAC is correct. While these checks offer cryptograph-
ically verifiable guarantees to cardholders and merchants, one
must understand the properties of the payment system as a
whole, including the process by which terminals and issuers
exchange requests and responses.

Figure 1 displays the communication flow of the online
authorization process, involving four parties: (1) the payment
terminal; (2) the merchant’s acquirer, which is a bank or fi-
nancial institution that processes card payments on behalf of
the merchant; (3) the payment network, which connects the
acquirer and the card issuer; and (4) the issuer itself. There are
several payment networks, such as the Visa or Mastercard net-
works, and the mechanism by which the acquirer chooses the
one which the authorization request is sent to is called routing.
Typically, routing is based on the payment card’s brand. For
example, if the card is Visa branded, then the authorization
request is routed to the Visa payment network.

The payment terminal can determine the card brand from
different data objects supplied by the card during the trans-
action. These objects include the Primary Account Number
(PAN) and the Application Identifiers (AID). From the PAN,
more commonly known as the card number, the card brand
can be inferred from the leading digits. For example, if the
PAN starts with 4 then it is a Visa card. From the AIDs, which
indicate the EMV applications that the card supports (e.g.,
Visa Electron or V Pay), the card brand can be inferred from
the shared prefix, called the Registered Application Provider
Identifier, which is usually a 10-digit value (5 bytes).

In this paper we show that it is possible to deceive a termi-



nal, and by extension the acquirer, into accepting contactless
transactions with a PAN and an AID that indicate different
card brands. Concretely, we have identified a man-in-the-
middle attack that tricks the terminal into completing a Visa
transaction with a Mastercard card.

Our attack, which we call a card brand mixup, has catas-
trophic consequences. In particular, it allows criminals to use
a victim’s Mastercard card to pay for expensive goods without
entering a PIN. The attack effectively turns the card into a
Visa card and then applies our recent PIN bypass attack [6].
In other words, the PIN can be bypassed for Mastercard cards
too, which so far had been considered protected against unau-
thorized purchases for amounts that require the entry of the
card owner’s secret PIN.

This new attack abuses two fundamental shortcomings of
the EMV contactless protocol: (1) the lack of authentication
of the card brand to the terminal, and (2) an attacker can
build all necessary responses specified by the Visa protocol
from the ones obtained from a non-Visa card, including the
cryptographic proofs needed for the card issuer to authorize
the transaction.

We have built a proof-of-concept Android application and
successfully used it to bypass PIN verification for transactions
with Mastercard credit and debit cards, including two Maestro
debit and two Mastercard credit cards, all issued by different
banks. One of these transactions was for over 400 USD.

We have extended our formal model of the EMV protocol,
first presented in [6]. Concretely, we generalize its specifica-
tion of the issuer and the terminal-issuer channel to model
communication between the terminal and the issuer, even
when they do not agree on the brand of the payment card
used. Our extended model, available at [3] and specified in
the Tamarin model checker [26, 28], is precise enough that
its analysis uncovers the attack described here. We have also
used our extended model to construct security proofs for two
sets of fixes. The first set is the one we proposed in [6], which
is specific to the Visa kernel. The second set of fixes, first
presented in this paper, prevents card brand mixups in general
and applies to all EMV kernels.

Contributions. First, by carefully analyzing the EMV pro-
tocol with a focus on the terminal-issuer interaction, we dis-
cover a novel attack that allows criminals to trick the terminal
into believing that the card being used is of a brand that it is
not. Surprisingly, this is possible even for transactions autho-
rized online by the card issuer, who clearly does know the
right card brand.

Second, we demonstrate that this card brand mixup is not
just a mere disagreement between the card issuer and the
terminal, but that it has serious consequences. In particular,
the PIN does not protect Mastercard cardholders from lost
or stolen cards being used in fraudulent purchases for large
amounts. Consequently, the consumer should not be liable
for fraudulent transactions in which the cardholder was pre-

sumably verified. This is known as the liability shift in the
banking industry.

Finally, we analyze fixes that prevent both the card mixup
and the PIN bypass attack. Namely, we extend our previous
formal models and provide computer-checked security proofs
for these fixes.

Organization. In Section 2 we provide technical back-
ground on our previous PIN bypass on Visa cards, which
we leverage for our new attack, and the EMV contactless
protocol. We then describe our card brand mixup attack and
the resulting PIN bypass in Section 3. We also report on our
proof-of-concept implementation and the results of our exper-
iments. In Section 4 we analyze and verify countermeasures
that secure online-authorized transactions. In Section 5 we
elaborate on previous work that exposes and exploits flaws
on the EMV standard and we draw conclusions in Section 6.

Ethics and Disclosure. No merchant, bank, or any other
entity was defrauded. To test our attack, we setup and used
our own SumUp terminal and merchant account. Note that,
although the merchant infrastructure we used was our own, it
is a fully realistic and functional one. We did not tamper with
the hardware or software in any way.

After a successful disclosure process with Mastercard, they
confirmed that our attack is effective. Mastercard identified
all 9 transactions that were routed to their network when we
carried out our Mastercard-Visa mixup attack. Mastercard
has since implemented and rolled out defense mechanisms
on their network and, in collaboration with Mastercard, we
have conducted experiments where our attack failed with their
mechanisms in place. Further details are given in Section 4.4.

2 Background

We first provide background on contactless payments and
common attacks against them. We briefly recall our previ-
ous work [6], which we build upon. Afterwards, we provide
technical details on the EMV contactless transaction.

2.1 Relay Attacks and PIN Bypass for Visa

Despite the undeniably smooth experience of a payment with
the tap of a card, contactless payment technology has been
exposed to numerous security issues. Payment terminals com-
municate wirelessly with the cards, and so can attackers. In
particular, Near Field Communication (NFC), which is the
communication technology that contactless payments use, al-
lows any suitable NFC-enabled device to communicate with
a contactless card and engage in fraudulent transactions.

While the range of an NFC signal is normally just a few
centimeters, it can be extended to a much larger range by



WiFi

WiFiNFC NFC

Figure 2: A relay attack on contactless payment. Devices
from left to right: payment terminal, attacker’s first mobile
device, attacker’s second mobile device, and victim’s card.

relay attacks [7, 8, 11, 19, 30]. A relay attacker uses two mo-
bile devices, connected wirelessly, to make the victim’s card
engage in a transaction with a distant payment terminal. See
Figure 2 for a graphical representation.

Relay attacks, however, do not appear lucrative for crimi-
nals because they are presumably feasible only for purchases
for low amounts (e.g., under 25 EUR in most European coun-
tries), due to the need for the card’s PIN for transactions with
higher amounts. However, in our previous work, we discov-
ered a man-in-the-middle attack that allows criminals not
only to perform relay attacks but also to bypass the PIN for
contactless transactions with Visa cards.1

At a technical level, this attack consists simply in setting the
Card Transaction Qualifiers (CTQ) to the value 0x0280. The
CTQ is a data object transmitted from the card to the terminal
and instructs the latter which Cardholder Verification Method
(CVM) must be used for the transaction. The CTQ value
0x0280 tells the terminal that PIN verification is not required
and that the cardholder has been verified on the consumer’s
device (see [17], pp. 69–70). The flaw in the Visa protocol
that leads to this attack is the lack of authentication of the
CTQ data object.

This attack does not apply to the Mastercard protocol be-
cause, in contrast to the Visa protocol, the card’s (lack of) sup-
port for cardholder verification on the consumer’s device is
cryptographically protected against modification. A computer-
checked proof of this can be found at [4].

2.2 The EMV Contactless Protocol
EMV’s specification for contactless transactions comprises
over 1,200 pages of documentation. In this section we sum-
marize this specification. We split our summary into the four
overlapping phases of a contactless transaction and briefly
indicate, where applicable, the underlying security shortcom-
ings that our attack exploits.

2.2.1 Application Selection

A transaction is performed using one of the six EMV contact-
less protocols. Every transaction starts with the application

1Demo at https://youtu.be/JyUsMLxCCt8.

selection process, where the terminal issues a SELECT com-
mand and the card submits the Application Identifiers (AIDs)
for the supported applications (a.k.a. kernels or protocols).
Based on the AIDs received, the terminal activates a kernel
for the transaction, which is one of:

• Kernel 2 for Mastercard AIDs,

• Kernel 3 for Visa AIDs,

• Kernel 4 for American Express AIDs,

• Kernel 5 for JCB AIDs,

• Kernel 6 for Discover AIDs, and

• Kernel 7 for UnionPay AIDs.

The most relevant kernel for our work is Mastercard’s, which
we outline in Figure 3 and is specified in the 590-page docu-
ment [16].

2.2.2 Offline Data Authentication

After a kernel has been activated and announced to the card
via a second SELECT command, the card requests the Pro-
cessing Data Object List (PDOL), which indicates some of
the transaction-specific data objects needed by the card for
the protocol. These data objects include, but are not limited
to, the transaction amount, the terminal’s country code, and a
terminal-generated random number.

Using the GET PROCESSING OPTIONS command, the
terminal supplies the requested PDOL data to the card. The
latter responds with the Application Interchange Profile (AIP)
and the Application File Locator (AFL). The AIP informs
the terminal of the card’s capabilities and the AFL is a data
object that the terminal uses to request the card’s static data
(also known as records) using the READ RECORD command.
These records include:

• Primary Data such as the card number (called the Pri-
mary Account Number), the card’s expiration date, and
the list of the supported CVMs;

• PKI Data such as the card’s Public Key (PK) certificate,
the card issuer’s PK certificate, and the PK index of the
Certificate Authority (CA);

• Processing and Risk Data such as the first and sec-
ond Card Risk Management Data Object Lists (CDOL1
and CDOL2, respectively), which typically include the
PDOL and further transaction-specific data.

At this point, the terminal cryptographically authenticates
the card. This process is called Offline Data Authentication
(ODA) and uses one of the three methods:

1. Static Data Authentication (SDA): the card transmits
a signature by the card issuer on the card’s static data

https://youtu.be/JyUsMLxCCt8
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SDAD = signprivC(NC,CID,AC, [T, ]UN)
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AC [,aencpubI(PIN)]
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Figure 3: Overview of the Mastercard contactless transaction using the most common card authentication method, called
Combined Dynamic Data Authentication (CDA). There are other two authentication methods, which we omit here for sim-
plicity. Notation: ⊕ is exclusive-OR; f is a key derivation function; (privC,pubC), (privI,pubI), and (privCA,pubCA) are the
private/public key pairs of the card, the issuer, and the Certificate Authority, respectively; certk(cont) is the PKI certificate on
cont signed with the private key k; signk(m) is the signature on m with the key k; aenck(m) is the asymmetric encryption of m
with the key k; MACk(m) and MAC′k(m) are cipher-based Message Authentication Codes (MAC) on m with the key k; pb(m)
is the right-padding of m with b zero bytes. Note that there is some overlap between the Offline Data Authentication and the
Transaction Authorization phases. This occurs when the terminal and the card agree on using the Combined Dynamic Data
Authentication (CDA) method. For the sake of simplicity, we have omitted the middle entities (acquirer and payment network)
that participate in the terminal-issuer exchanges before they reach their recipient.



such as the Primary Account Number (PAN), the card’s
expiration date, and the AIP. This signature, called the
Signed Static Authentication Data (SSAD), is generated
and stored on the card during production.

2. Dynamic Data Authentication (DDA): in this method
the terminal sends the INTERNAL AUTHENTICATE
command with the Dynamic Data Object List (DDOL)
as payload. The DDOL is a data object that must include
the terminal’s fresh number, called the Unpredictable
Number (UN). The card replies with the Signed Dynamic
Authentication Data (SDAD): a signature on its own
fresh number NC and the DDOL.

3. Combined Dynamic Data Authentication (CDA): this
method also involves the SDAD, but includes additional
transaction data in the signature such as the amount. No
INTERNAL AUTHENTICATE command is used and
instead the SDAD is later supplied by the card, if re-
quested by the terminal’s GENERATE AC command.
This ODA method actually belongs, chronologically
speaking, to another phase of the transaction, called the
Transaction Authorization, which we describe later in
Section 2.2.4.

The ODA method chosen is typically the last one (which is
also the strongest one) in the above list that both the terminal
and the card support. The ODA methods that the card supports
are encoded within the AIP.

2.2.3 Cardholder Verification

The Cardholder Verification Methods (CVMs) are as follows:

1. Online PIN: the terminal sends to the card issuer the
encryption of the PIN entered on the terminal’s pad for
verification.

2. Consumer Device CVM: the cardholder verification is
performed on the consumer’s device. This method is
intended primarily for use with mobile payment apps
such as Google Pay and Apple Pay, where the cardholder
is verified through biometrics such as fingerprint or face
recognition.

3. Paper Signature: the cardholder signs (with a pen) the
purchase receipt and the cashier checks it against the
physical signature on the card’s backside.

If applicable, typically when the amount is above the CVM-
required limit, the terminal verifies the cardholder by choosing
one (or two) of the above three methods. The choice depends
on the card’s list of supported CVMs, if supplied by the card.
If this CVM list is not supplied (e.g., in Visa transactions),
then the terminal proposes online PIN verification, and this
proposal is encoded within the Terminal Transaction Quali-
fiers (TTQ) or a similar data object, depending on the kernel.
The TTQ is typically part of the PDOL.

Notably relevant for our previous PIN bypass attack, and
therefore this new attack, is the Consumer Device CVM (CD-
CVM). With respect to how and whether the CDCVM is used,
the kernels can be divided into two groups:

The Visa group composed of the Visa, Discover, and Union-
Pay kernels, where the card’s support for the CDCVM is
announced to the terminal through the cryptographically
unprotected CTQ or similar data object, depending on
the specific kernel.

The Mastercard group composed of the Mastercard, Amer-
ican Express, and JCB kernels, where the card’s support
for the CDCVM is announced to the terminal through the
cryptographically protected AIP and possibly additional
data objects, depending on the specific kernel.

Our previous PIN bypass attack targets the cards within
the Visa group, which is weaker than the Mastercard group
in terms of the protection it offers. While the CDCVM is not
meant for physical cards, attackers can abuse it by tricking
the terminal into accepting this CVM for a purchase with a
victim’s physical card. The key point here is that, whenever
an attacker convinces the terminal that the CDCVM was suc-
cessfully performed, the latter wrongfully assumes that the
actual verification was delegated to an external device and
thus does not ask for the PIN. This is the essence of the flaw
that our previous attack exploits.

Our new attack also exploits the Consumer Device CVM,
but in combination with a flaw on EMV’s application selec-
tion. This attack thereby targets the cards within the presum-
ably better protected Mastercard group.

2.2.4 Transaction Authorization

Transaction authorization is implemented by having the card
compute and transmit the Application Cryptogram (AC). This
is a MAC-based cryptographic proof of the transaction, com-
puted over the transaction details, the AIP, and the Application
Transaction Counter (ATC, which is incremented on every
transaction). Besides the AC and additional data that depends
on the kernel, the card transmits:

• the Cryptogram Information Data (CID), which encodes
the type of authorization being requested;

• the Application Transaction Counter (ATC);

• the Signed Dynamic Authentication Data (SDAD), if
CDA was requested in the command payload; and

• the Issuer Application Data (IAD), which contains pro-
prietary application data that is transmitted to the issuer.

The computation by the card (and verification by the issuer)
of the AC uses a session key s, which is derived from the ATC
and a symmetric key mk only known to the issuer and the
card. The terminal therefore cannot verify the AC.



A transaction can be authorized offline by the terminal,
sent online for authorization by the issuer, or declined offline
by the card. The choice depends on factors including checks
made by both the terminal and the card on transaction details
such as the amount, the currency (transaction versus card’s),
the country (transaction versus issuer’s), and the limit number
of consecutive offline transactions. The most common type
of transaction authorization is online by the issuer.

For transactions performed with the kernels within the
Visa group, the AC is sent within the card’s response
to the GET PROCESSING OPTIONS. Typically, no Of-
fline Data Authentication process is performed and no
GENERATE AC command is used. For those kernels within
the Mastercard group, the AC is transmitted in response to
the GENERATE AC command.

If the transaction is to be authorized online by the issuer,
then the AC is called the Authorization Request Cryptogram
(ARQC) and the CID equals 0x80. The actual authorization
follows from a request-response exchange between the termi-
nal and the issuer. The terminal’s request carries the ARQC
and the issuer’s response is encoded in the Authorization Re-
sponse Code (ARC). This exchange is not further specified
by EMV.

If the transaction is to be accepted offline by the terminal,
then the AC is called the Transaction Cryptogram (TC) and
the CID equals 0x40 in this case. Also, the terminal is as-
sumed to have already validated the transaction in the Offline
Data Authentication phase. The transaction can be also de-
clined offline, in which case the AC is called the Application
Authentication Cryptogram (AAC) and the CID equals 0x00.

Note that the AIDs are not authenticated by the card to the
terminal. That is, the terminal has no cryptographic proof that
the card supports the AIDs it advertised during the application
selection phase. This turns out to be the new, fundamental
security shortcoming that our attack exploits. Also note that
EMV does not specify any mechanisms to match up the card’s
PAN with the advertised AIDs.

3 PIN Bypass via Card Brand Mixup

We describe our attack in detail here. We start in Section 3.1
by describing the threat model considered for this attack. We
next give a step-by-step description in Section 3.2. After-
wards, in Section 3.3 we outline the hardware and software
infrastructure we used in our proof-of-concept implementa-
tion and present the results of our experiments.

3.1 Threat Model

The threat model considered for this attack and for our formal
analysis described in Section 4 is as follows:

1. The attacker has access to the victim’s card.

2. The attacker has the capabilities of an active (so-called
Dolev-Yao) attacker over the wireless channel between
cards and terminals. Namely, the attacker can read, block,
and inject messages on this channel.

3. The channel between the payment terminal and the bank-
ing infrastructure is secure in that it satisfies authenticity
and confidentiality.

This models is realistic in practice. The attacker may ac-
cess a victim’s card that is lost or stolen. Indeed, in practice
it may suffice simply to be physically close (within a few
centimeters) to the victim’s card. Moreover, as we will see in
Section 3.3, using standard NFC-enabled smart phones one
can carry out active man-in-the-middle attacks on the wireless
channel.

3.2 Description of the Attack
As stated in [6, 21], the PIN verification cannot be bypassed
for transactions where the payment terminal executes the
Mastercard kernel (recall Figure 3). According to this kernel’s
specification [16], the AIP (specifically bit 2 of byte 1) is the
only data object that indicates the card’s support for on-device
cardholder verification. Thus, modifying the AIP would lead
to a declined transaction given that it is authenticated using
the card’s PK certificate, the Application Cryptogram (AC),
and the Signed Dynamic Authentication Data (SDAD). We
have validated this with several cards.

Unlike the AIP, the card’s Application Identifiers (AIDs)
are not protected. In fact, the AIDs are only used during
the SELECT command exchanges. After these exchanges
are completed, the terminal activates the corresponding ker-
nel based on the AIDs received from the card. For example,
if the preferred AID (or first, depending on the terminal’s
selection method) is AIDVisa = 0xA0000000031010, then
the terminal activates the Visa kernel. If the AID is instead
AIDMastercard = 0xA0000000041010, then the terminal acti-
vates the Mastercard kernel.

Due to this lack of authentication of the AIDs, an attacker
can maliciously replace them and thereby activate a desired
kernel on the terminal. This is the fundamental security short-
coming that our attack exploits. An overview of the attack is
displayed in Figure 4 and a step-by-step description follows.

1. Activation of the Visa Kernel: The terminal first acti-
vates the Visa kernel. For this, the attacker applies the
trick just described, namely the replacement of the card’s
legitimate AIDs with AIDVisa.

2. Request Processing Options: After the AID is negotiated,
the attacker receives from the card the request (i.e., tags
and lengths) for the Processing Data Object List (PDOL).
The attacker forwards this request to the terminal with
the addition of the request for the Terminal Transaction
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Figure 4: Overview of our PIN bypass attack for Mastercard, exploiting the card brand mixup. The attacker poses as (a) a card to
the payment terminal and runs a Visa session with it, and (b) a payment terminal to the card with which it runs a Mastercard
session. For simplicity, we have omitted the messages between the terminal and the issuer, which are the same as in Figure 3 but
without the PIN block.



Qualifiers (TTQ) and all other processing data objects
specified by the Visa kernel. The attacker’s request also
includes the data objects referenced by the First Card
Risk Management Data Object List (CDOL1) specified
by the Mastercard kernel, which usually are the Termi-
nal Type (TT) and the Cardholder Verification Method
Results (CVMR).

3. Run the Mastercard Session: Once the attacker has re-
ceived the GET PROCESSING OPTIONS from the ter-
minal, the attacker runs a Mastercard session with the
card. The terminal is not involved during this step. The
sub-steps are as follows.

(a) The attacker builds and sends to the card the
GET PROCESSING OPTIONS command along
with the card’s requested PDOL data, which is
filled up from the terminal’s command payload.
The card responds to the attacker’s command with
the Application Interchange Profile (AIP) and the
Application File Locator (AFL).

(b) The attacker proceeds to read the card’s records,
using the received AFL. The relevant records col-
lected are the PAN, the card’s expiration date, the
issuer country code, the Application Usage Control,
and the CDOL1 tags and lengths.

(c) The attacker builds and sends to the card
the GENERATE AC command, whose payload
is the CDOL1 data filled up with the PDOL
data parsed from the payload of terminal’s
GET PROCESSING OPTIONS command. The
CDOL1 typically is a superset of the PDOL. If
the card supports CDA (i.e., bit 1 of byte 1 of the
AIP is set), then the command should request CDA.
Also, the bits 7 and 8 of the command’s reference
control parameter (i.e., byte 3) must be cleared and
set, respectively. This tells the card that an ARQC
is being requested (see [15], pp. 54–55).

(d) From the card’s response to the GENERATE AC
command, the attacker collects the CID, the ATC,
the IAD, and the AC or SDAD, depending on
whether CDA was requested. If the SDAD is sent,
then the attacker must extract the AC, using the
card’s Public Key (PK) (see [14], pp. 68–69).
Using the received card’s records, the attacker re-
trieves the card’s PK using the following steps
(see [14], pp. 60–65):

i. retrieve the CA’s PK from the CA’s index,
ii. retrieve the issuer’s PK from the issuer’s PK

certificate, using the CA’s PK, and
iii. retrieve the card’s PK from the card’s PK cer-

tificate, using the issuer’s PK.

4. PIN Bypass: At this point, our PIN bypass attack on Visa
is applied. That is, the attacker injects a CTQ data object
valued 0x0280, which instructs the terminal that online
PIN verification is not required and that the Consumer
Device CVM was performed (see [17], pp. 69–70).

Together with the CTQ, the attacker supplies the AIP, an
artificial AFL with value 0x18010100, the AC, the IAD,
and all other data objects specified by the Visa kernel.

5. Transmit Records: In response to the terminal’s
READ RECORD command, which is 0x00B2011C00

due to the artificial AFL, the attacker replies with the
PAN, the expiration date, the Application Usage Control
(AUC), and the issuer country.

3.3 Carrying out the Attack
To demonstrate our PIN bypass attack, we developed a proof-
of-concept Android application, comprising roughly 3,700
lines of Java code. On the merchant side, we used the pay-
ment kit commercialized by SumUp: an EMV and PCI DSS
(Payment Card Industry Data Security Standard) certified
company licensed under the UK’s Financial Conduct Author-
ity. The kit costs about 50 USD and includes a card reader,
which works with both contact and contactless cards, and a
back-end mobile application available for iOS and Android
devices. The SumUp card reader is PCI PTS (Payment Card
Industry PIN Transaction Security) certified. Figure 5 dis-
plays the components of our testing environment.

Our attack is implemented using two Android phones, con-
nected through a relay channel built using TCP/IP server-
client communication over WiFi. One phone runs our app
in POS Emulator mode (Device 4 in Figure 5) and the other
phone runs our app in Card Emulator mode (Device 3 in Fig-
ure 5). Both devices must support NFC and run Android 4.4
KitKat (API level 19) or later. Moreover, the Card Emulator
device must support Android’s host-based card emulation [2]
so that the phone can launch the NFC payment service imple-
mented by our app. The actual man-in-the-middle function-
ality runs on the POS Emulator device (although this choice
is irrelevant) and the Card Emulator acts as the proxy for the
relay channel.

Using our app, we successfully bypassed PIN entry for
transactions with four different cards: two Mastercard credit
cards and two Maestro debit cards. A video demonstration of
the attack and other information can be found at [1].

The results of our experiments are summarized in Table 1.
Some of these transactions were performed with the Google
Pay and Apple Pay apps using non-Visa cards. Such trans-
actions do not require PIN verification and thus no bypass
is needed, yet they showcase unauthentic uses of the Visa
kernel.

Critical here is that the transactions in Table 1 were all au-
thorized online by the issuer. Moreover, this was without any



Brand Card Amount Processed with Bypassed
(CHF) the Visa kernel PIN

Visa
Visa Credit 200 NA Yes
Visa Debit 100 NA Yes
V Pay 100 NA Yes

Mastercard

Maestro(1) 400 Yes Yes
Maestro(1) on Google Pay 1 Yes NA
Maestro(1) on Apple Pay 1 Yes NA
Maestro(2) 200 Yes Yes
Mastercard Debit(3)(∗) 10 Yes NA
Mastercard Debit(3) on Google Pay 1 Yes NA
Mastercard Debit(3) on Apple Pay 1 Yes NA
Mastercard Credit(4) 100 Yes Yes
Mastercard Credit(5) 100 Yes Yes

Legend:
NA: not applicable (1) to (5): each of the five different physical cards we tested
(∗): card for which we unsuccessfully attempted our PIN bypass for a 100 CHF transaction but

the terminal requested to insert the card to complete the transaction using the contact chip instead

Table 1: Summary of the transactions during our experiments. All of these transactions were authorized online and were
subsequently debited from the cardholder’s account and credited to the merchant’s account. For some cards, we performed
multiple transactions and we show here the one with the highest value.

adversarial intervention beyond the terminal-card interaction
and despite the different views between the terminal and the
issuer on the AID selected for the transaction. The EMV pro-
tocol does not unambiguously specify what transaction data
is sent to the issuer for authorization. Clearly, since our attack
is possible, the AID and any other kernel-identifying data is
either not sent, or not checked by the issuer. We cannot how-
ever confirm that this is the case for all EMV implementations
in terminals.

Our card brand mixup suggests that merchants (in particu-
lar, their terminals) accepting Visa cards can also be fooled
into accepting other EMV card brands, like Mastercard, even
if they would not normally accept them. This could result in
violations of contracts, market regulations, sanctions, embar-
goes, and credit card fees. Note that our attack could even be
done in collusion with the merchant to evade taxes or fees. An-
other scenario where criminals might exploit our card brand
mixup attack is the following. They might perform a high-
value transaction with their own Mastercard-branded card
turned into a Visa and then request reimbursement, claiming
a terminal malfunction or fraud based on the fact that they do
not own a Visa card. To support their claim, on the purchase
receipt both the ‘Visa’ label and the Visa AID will be printed,
which looks suspicious under scrutiny.

Usability and Scope. Our attack requires minimal hard-
ware to carry out, namely two NFC-enabled Android phones,

which can be purchased for under 300 USD. This represents
a one-time investment for the criminals, and might even be
unnecessary when they can use their own phones. In addi-
tion, the use of this hardware is inconspicuous since only one
phone need be visible during payment and it easily escapes
detection by store clerks since our app’s appearance is very
similar to legitimate payment apps such as Google Pay and
Apple Pay.

For our attack to work, clearly the authorization request
must reach the card issuer. For this, it is necessary that the
merchant’s acquirer routes the request to either:

• a payment network that matches the real card brand,
regardless of what the terminal thinks the brand is, or

• a payment network that handles transactions with cards
of different brands, including Mastercard and Visa.

It is likely that the SumUp acquirer employs the first ap-
proach. The second approach is enforced by legal means in
some countries, making the scope of our card brand mixup
attack very broad. For example, in the US, the 2010 federal
law known as the Durbin Amendment [10] legislates that all
domestic debit transactions must be given the choice, if so
opted by the merchant, the cardholder, or the card (through
the AIDs), to be routed to a common payment network,
called the US Common Debit Network. This network for-
wards authorization requests to the card issuer, regardless of



Figure 5: Setup of the testing environment for our proof-of-
concept implementation, displaying the following devices:
(1) SumUp Plus Card Reader, (2) mobile phone running the
SumUp app and connected over Bluetooth to the SumUp
reader, (3) Android phone running our app in Card Emulator
mode, (4) Android phone running our app in POS Emulator
mode, and (5) contactless card. Note that the device (2) is not
part of the attacker’s equipment since in an actual store this
device and (1) would be the payment terminal. In this scenario,
the devices (3) and (4) would be the attacker’s equipment and
(5) would be the victim’s card.

the card brand. Thus, if the victim’s card is a Mastercard-
branded debit card issued in the US and the merchant is
also in the US, our attack should be effective by using the
Visa US Common Debit AID 0xA0000000980840 instead of
AIDVisa = 0xA0000000031010 during the application selec-
tion phase. This replacement would also deceive the terminal
into running the flawed Visa kernel.

Other countries like Australia and New Zealand are also
pushing for similar approaches for routing debit transactions
to local payment networks as opposed to global ones. The
Electronic Funds Transfer at Point of Sale (EFTPOS) system
is an example of such an initiative in these countries.

Unsuccessful Attempts. We attempted to execute our at-
tack to pay with a Mastercard card in a Discover and a Union-
Pay transaction, as these two kernels are similar to the Visa
kernel. We did not succeed in either case. In these tests, we
observed that the terminal did not pass the selection phase
and requested us to insert the card or to try with another card.
This suggests that the usage of cards of these brands over
the contactless interface might be restricted in Switzerland,
where we carried out our experiments.

We have performed additional tests on other payment ter-

minals, including two by SIX.2 From our disclosure process
with Mastercard we learned that none of these transactions
were routed to the Mastercard network, and so the SIX ac-
quirer presumably routed the authorization requests to the
Visa payment network, which flagged the card as non-Visa
and declined the transaction.

Clearly the EMV standard should specify an unambiguous,
cryptographic mechanism to detect and avoid mismatches
between the AID and the PAN, in terms of the card brand they
advertise. In the next section we analyze countermeasures
that achieve this.

4 Countermeasures

This section discusses countermeasures to our card brand
mixup attack. After reviewing our previous EMV model and
our new extensions (Sections 4.1 and 4.2 respectively), we
present both formally-verified countermeasures at the kernel
level (Section 4.3) and countermeasures already implemented
at the network level by Mastercard (Section 4.4).

4.1 Previous EMV Model
To design and verify kernel-level countermeasures to our
attack, we extend our previous model [4] of the EMV con-
tactless protocol. We developed this model focusing on the
following three security properties:

1. The issuer accepts all transactions accepted by the ter-
minal.

2. All accepted transactions are authenticated to the ter-
minal by the card and, if authorized online, the issuer.

3. All accepted transactions are authenticated to the is-
suer by both the card and the terminal.

The first property expresses a causality of accept and de-
cline events: whenever the terminal accepts a transaction, so
will the issuer (or equivalently, the issuer will not decline
it). For the authentication properties, we use injective agree-
ment [9, 25]. In short, an agreement property validates that
whenever the agent, whom the transaction must be authen-
ticated to, reaches a state where the transaction is accepted,
then that agent observes the same transaction details as the
authenticating agent does. The transaction details to agree on
for the properties are: the PAN, the AIP, the CVM, the ATC,
the AC data input (i.e., X in Figure 3), the AC itself, and the
IAD.

We specify a generic model of the EMV contactless proto-
col that allows for the analysis of transactions performed with
the Visa and Mastercard kernels. The remaining four kernels
can be modeled by one of these, which is their group repre-
sentative as per the two groups introduced in Section 2.2.3.

2https://www.six-group.com/

https://www.six-group.com/


Parameter Possible values Comments

Brand - Mastercard Brand of
- Visa the card used

Strongest ODA - SDA Mastercard
method supported - DDA cards
by the card - CDA only

Processing mode - DDA Visa cards
- EMV only

Strongest - No PIN Mastercard
CVM supported - Online PIN cards
by the card only

Transaction value - Low Whether CVM
- High is required

Table 2: Parameters that define target configurations.

Our analysis methodology, which we used in both our pre-
vious work and the current work, is structured by target con-
figurations. A target configuration is a choice of up to four
parameters (depending on the kernel) from Table 2. A target
model is derived from the EMV contactless protocol model
and allows any execution of the latter while only assessing
the security of accepted transactions sharing the same target
configuration.

The use of multiple configurations enables one to focus
the security analysis on those transactions of interest, defined
by the corresponding choice of target configurations. For
example, one might be interested in whether authentication
to the terminal holds for high-value transactions performed
using the Mastercard kernel and cards supporting DDA as the
Offline Data Authentication method and online PIN as the
Cardholder Verification Method. Further details can be found
at [4].

4.2 Extended Model with PAN-based Routing

Our previous model of the EMV contactless protocol speci-
fies the terminal-issuer channel in a way that these two par-
ties always agree on the kernel used for online-authorized
transactions. In other words, we assumed that the transaction
authorization request is routed to a payment network that only
processes cards of the brand determined by the kernel used (or
equivalently the AID chosen during the application selection
phase). For example, if the transaction was processed with
the Visa kernel, then the authorization request is routed to a
network that handles Visa cards only.

This modeling assumption means that Mastercard cards can
only be used for transactions performed using the Mastercard
kernel. Clearly, our brand mixup attack demonstrates other-
wise. That is, in some cases the authorization request reaches
the card issuer, even when the card is not of the brand deter-

mined by the kernel used by the terminal. We have extended
our previous model with a more general model of routing,
where the terminal routes the authorization to the payment
network determined by the card’s PAN. The employed mod-
eling techniques are standard ones, but we generalized the
formalization of our previous model to consider this PAN-
based routing choice.

In Table 3 we summarize the results of our analysis, con-
ducted using our extended model. All target models have
56 Tamarin rules and about 800 lines of code on average.
Remarks 1 and 2 in the table indicate authentication issues,
which were first identified by the original model (see [6],
Table 2, p. 11).

Remarks 3 and 4 indicate the newly discovered lack of
authentication of the AID and the CVM used in the EMV
contactless transaction. This is the underlying flaw that leads
to our card brand mixup attack. For each of the affected target
models, our Tamarin analysis reveals an accepted transaction
where the following statements hold:

• the card used was a Mastercard,

• the terminal ran the transaction using the Visa kernel,

• no cardholder verification was performed, and

• if the transaction value was high, then the CDCVM was
successfully performed from the terminal’s perspective.

We remark that our current findings do not contradict those
from our previous work. Our claim in [6] is that the Master-
card protocol is secure, whereas in this paper we show that
Mastercard cards are not secure. In fact, as we have explained,
our attack is possible precisely because one can use Master-
card cards for transactions not performed with the Mastercard
protocol!

4.3 Verified Countermeasures
In [6], we proposed two fixes to the PIN bypass attack on
Visa. These fixes are:

1. The terminal must always set the bit 1 of byte 1 of the
Terminal Transaction Qualifiers (TTQ).

2. The terminal must always verify the Signed Dynamic
Authentication Data (SDAD).

The above fixes ensure that high-value transactions pro-
cessed with the Visa kernel use Visa’s secure configuration
(DDA on online authorizations), where the card is requested
to supply the SDAD and the terminal verifies it. As can be
observed in our results (Table 3, Line 4), we have verified that
this configuration, and by extension the two fixes listed above,
prevents one from turning a Mastercard card into a Visa
card. The fixes work because of the kernel-specific format
of the data that cards sign to produce the SDAD. Namely,



No. Target model
Properties

issuer accepts auth. to terminal auth. to issuer

1 Visa_EMV_Low_PaynetPAN X ×(1) ×(1)

2 Visa_EMV_High_PaynetPAN X ×(1) ×(1)

3 Visa_DDA_Low_PaynetPAN ×(2) ×(2) X

4 Visa_DDA_High_PaynetPAN X X X

5 Mastercard_SDA_OnlinePIN_Low_PaynetPAN ×(2) ×(2) ×(3)

6 Mastercard_SDA_OnlinePIN_High_PaynetPAN X X ×(3,4)

7 Mastercard_SDA_NoPIN_Low_PaynetPAN ×(2) ×(2) ×(3)

8 Mastercard_SDA_NoPIN_High_PaynetPAN – – –
9 Mastercard_DDA_OnlinePIN_Low_PaynetPAN ×(2) ×(2) ×(3)

10 Mastercard_DDA_OnlinePIN_High_PaynetPAN X X ×(3,4)

11 Mastercard_DDA_NoPIN_Low_PaynetPAN ×(2) ×(2) ×(3)

12 Mastercard_DDA_NoPIN_High_PaynetPAN – – –
13 Mastercard_CDA_OnlinePIN_Low_PaynetPAN X X ×(3)

14 Mastercard_CDA_OnlinePIN_High_PaynetPAN X X ×(3,4)

15 Mastercard_CDA_NoPIN_Low_PaynetPAN X X ×(3)

16 Mastercard_CDA_NoPIN_High_PaynetPAN – – –

Legend:
X: property verified ×: property falsified –: not applicable (1): disagrees with the card on the CVM

(2): disagrees with the card on the AC (3): disagrees with the terminal on the AID (4): disagrees with the card on the CVM

Table 3: Analysis results for the EMV contactless protocol where the authorization is routed to a payment network determined by
the brand indicated by the PAN. Each target model is named according to the corresponding target configuration.

the Visa protocol specifies that the input to the SDAD has
the header 0x95 for online authorizations (see [17], p. 128),
whereas the Mastercard kernel specifies the usage of the 0x05
header (see [16], p. 310 and [14], p. 73). In other words, no
SDAD generated by a Mastercard card will pass the verifi-
cation by a terminal running the Visa kernel for transactions
requiring online authorization.

Additionally, we propose the following novel EMV-wide
countermeasures that kernels can implement internally to
guarantee secure online-authorized transactions, without hav-
ing to rely on Visa-specific countermeasures.

1. All transactions must have the card generate the SDAD
and the terminal verify it.

2. The selected AID must be part of the input to the SDAD.

Our first countermeasure generalizes the two fixes we pro-
posed in [6], listed earlier in this section. The second coun-
termeasure defends precisely against the card brand mixup
attack that we have described in this paper. We have produced
machine-checked security proofs for these countermeasures,
using our extended model. This means that they effectively
prevent the card brand mixup attack as well as both PIN by-

pass attacks. Note that the second countermeasure will be
costly as it requires reissuing cards.

4.4 Countermeasures by Mastercard
We shared our countermeasures with Mastercard, as part of
the disclosure process, and learned from them the following:

1. Mastercard acquirers are required to include the AID in
the authorization data, allowing issuers to check the AID
against the PAN.

2. Mastercard has other data points in the authorization
request that can be used to identify our attack.

As a result of the disclosure process and once Mastercard
learned that not all issuers check the AID or these other data
points, they implemented these checks on their network. Our
interaction with Mastercard also provided us additional in-
sights on how certain terminals, such as the ones from SIX,
can detect a mismatching AID and PAN and thus decline the
transaction from the start.

With the mentioned checks in place, we again attempted
our attack. This time it failed: the terminal requested the



insertion of the card into the terminal and the entry of a PIN.
Our experiments therefore provide evidence that these checks,
deployed now by Mastercard, prevent our Mastercard-Visa
mixup attack.

5 Related Work

In this section we review some of the related work on EMV
(in)security, focusing on other practical attacks against the
payment standard. As can be seen in our and others’ work,
the EMV contactless protocol is a prime target for hackers,
given the ease of eavesdropping and modifying transaction
data on the NFC channel. Widely available hardware such as
mobile phones, Arduino boards, and Raspberry Pi boards can
easily be used for these attacks.

Ten years ago, Murdoch et al. [27] reported the first PIN
bypass attack against the EMV payment system.3 The authors
demonstrated that, for transactions where the card verifies the
PIN entered on the terminal’s PIN pad, a man-in-the-middle
can simply reply with the “PIN verified” response to any PIN
entered, right or wrong. The security flaw leading to this at-
tack is the lack of authentication of the card’s response to
the terminal’s PIN verification request, used in offline Card-
holder Verification Methods (CVMs). Our prior research [6]
showed that this flaw still exists in old cards that support
neither asymmetric cryptography nor online PIN verification.

Ferradi et al. [18] described the forensic analysis of a series
of credit card fraud events where criminals used 40 modified
cards and carried out 7,000 fraudulent transactions, totaling
about 600,000 Euros. The technical flaw that was presumably
exploited by these criminals is that of [27].

Barisani et al. [5] presented a PIN harvest attack, also
against EMV contact cards. Their attack works by downgrad-
ing the card’s list of supported CVMs to a Plaintext PIN-only
list. The authors showed that the protection against modifica-
tion that the Offline Data Authentication (ODA) offers to the
CVM list can be bypassed by setting the card-sourced Issuer
Action Code (IAC)-Denial object to zero. This prevents the
terminal from declining transactions with ODA failure. The
terminal’s selection of the CVM is determined by the card’s
list of supported CVMs. The authors found out that, even
if this list is authenticated to the terminal during the offline
authentication of the card, the list can be downgraded to a
Plaintext PIN-only list. This is possible by setting the Issuer
Action Code (IAC)-Denial data to zero, which prevents the
terminal from declining the transaction.

EMV’s specification v4.3 [15] (p. 115) recommends using
a non-zero Terminal Action Code (TAC)-Denial object, which
results in ODA-failing transactions being declined and thus
prevents the PIN harvest of [5]. Indeed, during the (contact-
less) tests we performed using our app, all the transactions

3BBC News coverage at https://youtu.be/1pMuV2o4Lrw.

where we modified the IAC-Denial object were declined. We
exposed a similar PIN harvest attack in [6].

Another PIN-related issue for EMV was observed by Emms
et al. in [13]. The authors reported that some Visa contactless
cards issued in the UK do not request PIN verification for non-
GBP transactions. We note that this is unlikely to be exploited
with modern cards and terminals. The reasons are two-fold:
(1) the current Visa kernel establishes that if the terminal
requires cardholder verification for a given transaction, then
the card must offer at least one method to do so, and (2) Emms
et al.’s observation seems to work only for transactions in
EMV’s magstripe mode, which is now deprecated.

Various relay and other NFC attacks have been presented in
hacking conferences, such as [21,24,29,31]. In particular, [29]
presents a relay attack implementation that uses two Software
Defined Radio (SDR) boards, which offer a faster and more
controlled relay channel than the ones implemented using
mobile phones over WiFi, according to the authors. However,
the transmission speed of WiFi-based relay channels has not
been an issue in any of our tests using our Android app.

Galloway and Yunusov [21] were the pioneers in bypassing
PIN verification for modern Visa contactless cards. Their man-
in-the-middle attack, implemented using wired Raspberry Pi
boards, modifies both the Terminal Transaction Qualifiers
(TTQ) before delivering it to the card and the Card Trans-
action Qualifiers (CTQ) before transmitting it back to the
terminal. The authors did not however weaponize their attack
in a way that it could be inconspicuously used in real stores.

Galloway recently showed [20] that it is possible, still in
2020, to clone a card and use the clone for swiped transactions.
The author shows that the cloning can be made effortlessly,
using the MSR605 magnetic card reader/writer, which costs
around 100 USD. This research also shows that the data used
to create the counterfeit magstripe cards can be read from the
EMV interfaces (both NFC and contact chip) with a skimmer
device. The data needed is part of the Track 1 and Track 2
Equivalent Data objects, provided by the card during an EMV
session. Back in 2008, Drimer et al. [12] also demonstrated
cloning from EMV chip data to magstripe; thus this problem
has remained unfixed even after 12 years.

As explained throughout this paper, our card brand mixup
attack builds on our previous work [6]. In a nutshell, there
are three main differences between our previous work and
this new work. First, the card brand mixup attack is com-
pletely novel and exposes a serious weakness in EMV that
permits payments with Mastercard cards for fraudulent Visa
transactions. Second, we have extended our previous model
of the issuer and of the terminal-issuer channel to support
the completion of online transactions where the terminal and
issuer do not observe the same card brand. We have used our
extended model to verify our new fixes that prevent the card
brand mixup. Finally, concerning the implementation of our
attack, nearly 1,000 lines of Java code in our software instru-
ment the NFC message modifications specific to the attack as

https://youtu.be/1pMuV2o4Lrw


well as the required cryptographic mechanisms such as the
retrieval of PKs from PK certificates. Our PIN bypass attack
on Visa does not require any of these mechanisms.

6 Conclusions

We have identified a serious, easily exploitable vulnerabil-
ity in the EMV contactless protocol, namely the Application
Identifiers (AIDs) are not authenticated to the payment ter-
minal. The AIDs define what instance (a.k.a. kernel) of the
protocol must be activated for the transaction. As a result,
an adversary can maliciously replace the legitimate AIDs to
deceive the terminal into activating a flawed kernel.

We have shown how to exploit this vulnerability using a
man-in-the-middle attack that tricks the terminal into trans-
acting with a Mastercard card, while believing it to be a Visa
card. This card brand mixup, in combination with our recently
developed PIN bypass attack [6] on Visa, results in a novel,
critical attack where criminals can bypass the PIN for Master-
card cards. The cards of this brand were previously presumed
protected by PIN. Shockingly, this is even possible for trans-
actions that are authorized online in which the terminal and
the card issuer do not agree on the payment card’s brand.

To carry out our exploit, we developed a proof-of-concept
Android application and successfully tested our attack on a
real-world payment terminal. For example, we bypassed the
PIN in a transaction for 400 CHF with a Maestro debit card.
We have also extended our formal model of EMV by mod-
eling the terminal-issuer channel in a way that allows for
communication even when these agents disagree on the card
brand. We used our extended model to formally verify that
the ready-to-deploy fixes applicable to the Visa kernel that
we proposed in [6] are an effective countermeasure to our
Mastercard-Visa mixup attack. Additionally, we have speci-
fied and verified two new intra-kernel countermeasures that
can be implemented on the Mastercard kernel without relying
on Visa’s defenses. Furthermore, Mastercard has implemented
an alternative defense mechanism at the network level, which
we have experimentally confirmed as effective against our
attack.

Acronyms Used

AAC Application Authentication Cryptogram. 6

AC Application Cryptogram. 5, 6, 8, 10, 12

AFL Application File Locator. 3, 8

AID Application Identifier. 1–3, 6, 9–12, 14

AIP Application Interchange Profile. 3, 5, 6, 8, 10

ARC Authorization Response Code. 6

ARQC Authorization Request Cryptogram. 6, 8

ATC Application Transaction Counter. 5, 8, 10

AUC Application Usage Control. 8

CA Certificate Authority. 3, 4, 8

CDA Combined Dynamic Data Authentication. 4, 5, 8, 11

CDCVM Consumer Device CVM. 5, 8, 11

CDOL Card Risk Management Data Object List. 3, 8

CID Cryptogram Information Data. 5, 6, 8

CTQ Card Transaction Qualifiers. 3, 5, 8, 13

CVM Cardholder Verification Method. 3, 5, 10–13

CVMR Cardholder Verification Method Results. 8

DDA Dynamic Data Authentication. 5, 11

DDOL Dynamic Data Object List. 5

IAC Issuer Action Code. 13

IAD Issuer Application Data. 5, 8, 10

MAC Message Authentication Code. 1, 4, 5

NFC Near Field Communication. 2, 3, 6, 8, 13

ODA Offline Data Authentication. 3–6, 11, 13

PAN Primary Account Number. 1–3, 5, 6, 8, 10–12

PDOL Processing Data Object List. 3, 5, 6, 8

PK Public Key. 3, 6, 8, 14

RID Registered Application Provider Identifier. 1

SDA Static Data Authentication. 3, 11

SDAD Signed Dynamic Authentication Data. 5, 6, 8, 11, 12

SDR Software Defined Radio. 13

SSAD Signed Static Authentication Data. 5

TAC Terminal Action Code. 13

TC Transaction Cryptogram. 6

TT Terminal Type. 8

TTQ Terminal Transaction Qualifiers. 5, 6, 8, 11, 13

UN Unpredictable Number. 5
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