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Abstract

The European Union’s General Data Protection Regulation
(GDPR) requires websites to inform users about personal data
collection and request consent for cookies. Yet the majority
of websites do not give users any choices, and others attempt
to deceive them into accepting all cookies. We document
the severity of this situation through an analysis of potential
GDPR violations in cookie banners in almost 30k websites.
We identify six novel violation types, such as incorrect cat-
egory assignments and misleading expiration times, and we
find at least one potential violation in a surprising 94.7% of
the analyzed websites.

We address this issue by giving users the power to pro-
tect their privacy. We develop a browser extension, called
CookieBlock, that uses machine learning to enforce GDPR
cookie consent at the client. It automatically categorizes cook-
ies by usage purpose using only the information provided in
the cookie itself. At a mean validation accuracy of 84.4%,
our model attains a prediction quality competitive with expert
knowledge in the field. Additionally, our approach differs
from prior work by not relying on the cooperation of websites
themselves. We empirically evaluate CookieBlock on a set of
100 randomly sampled websites, on which it filters roughly
90% of the privacy-invasive cookies without significantly
impairing website functionality.

1 Introduction

Browser cookies are the most common method for tracking
the session state of websites. While some cookies are neces-
sary for a website to operate, such as authentication cookies
that keep users logged in, the majority of cookies are used
for user tracking and advertising (as we show later in Fig. 2).
Despite the existence of stateless tracking techniques such
as browser fingerprinting [1], stateful tracking using cookies
remains the primary tracking method. In 2019, Solomos et
al. report that almost 90% of all websites use tracking cook-
ies [48], an increase from 80% observed in a study by Roesner
et al. from 2012 [42].
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Governments have attempted to address user tracking
through regulations. In the European Union, the General Data
Protection Regulation (GDPR) [19] and the ePrivacy Direc-
tive [18] place restrictions on personal data collection and
tracking. Article 6 of the GDPR specifies that a legal basis
is required for a website to collect user data, the most com-
mon basis being consent. Article 7 and Recital 32 specify
that consent must be freely-given, unambiguous, specific, and
informed. The ePrivacy Directive and Recital 30 of the GDPR
specify that the consent requirements also apply to the use
of cookies. Websites must thereby inform users about the
purposes cookies are used for, and they must provide users
with the option to deny consent for specific purposes.

The GDPR has created a demand for prepared consent so-
lutions, from which a new “consent as a service” industry has
emerged [53]. The companies offering these services, called
consent management platforms (CMPs), provide websites
with cookie banner implementations that handle the collection
of consent from users [24], and offer detailed descriptions of
all the purposes that cookies are used for. Unlike the simpler
cookie notices, which only inform users about the mere use
of cookies, CMPs promise to provide users with more control
over their personal data, fulfilling the GDPR’s requirements
in this area. However, Kampanos et al. [30] find that in a sam-
ple of approximately 14k websites from the UK and 3k from
Greece, only 44% and 48%, respectively, show a cookie ban-
ner to the user. With 90% of all websites using tracking cook-
ies, this means that many neglect to comply with the GDPR.

Websites that use CMPs also often do not live up to their
promises, with many violating even basic rules. Nouwens et
al. [39] show that 88.2% out of 680 examined websites that
use a CMP fail in at least one of three simple requirements,
including the requirement of opt-in choices and explicit
consent. Matte et al. [34] found that in a sample of 1426
selected websites, 9.89% register affirmative consent before
the user makes a choice, 2.66% do not allow any cookies to
be rejected, and 1.89% register positive consent even when
rejected by the user. Moreover, prior work has also shown
that many CMPs attempt to influence visitors into accepting
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Figure 1: Overview of the process involved in our study and the (intermediate) results.

all cookies. For example, a study by Utz et al. [52] shows
that 57.4% of 1000 examined websites use nudging, which
involves highlighting the “Accept All” button, or hiding
the option to reject consent. This trend does not appear
to be changing [30], and while high-profile violations are
penalized [29, 38], GDPR enforcement regarding cookies is
lagging behind, as the aforementioned studies show.

Our analysis. We confirm the lack of GDPR compliance
by extending and improving upon past research. We analyze
the accuracy of the information displayed on cookie banners,
using a dataset collected from almost 30k websites. Specifi-
cally, we identify incorrect category assignments, misleading
cookie expiration times, and assess the overall completeness
of the consent mechanism. We define six novel methods to
detect potential GDPR violations and extend two methods
used in prior works. For the selected domains, we find that
94.7% contained at least one potential violation. In 36.4%,
we found at least one cookie with an incorrectly assigned
purpose, and in 85.8%, there was at least one cookie with a
missing declaration or missing purpose. 69.7% of the sites
assumed positive consent before it was given, and 21.3% cre-
ated cookies despite negative consent. Our results indicate
that this problem is more severe than previously indicated.

Note that we refer to the violations found as potential be-
cause only a judicial ruling can provide the legal certainty as
to whether they are actual legal violations. In Section 6 we
argue why they should be considered violations by referring
to relevant regulations and legal precedents.

Browser extension. Based on evidence from prior works
and our own measurements, cookie consent practices violate
the GDPR so frequently that regulatory authorities cannot
hope to keep up. We therefore provide users with a tool to en-
force cookie consent on their web clients, without regulatory
intervention. We develop a browser extension, CookieBlock,
that classifies cookies by purpose, removing those that the
user rejects. In this way, users can remove over 90% of all
privacy-invasive cookies, without having to trust cookie ban-
ners or CMPs. Previous attempts to provide users such control,
like the P3P standard [10], failed due to a lack of willingness
of website administrators to implement the functionality re-
quired. We sidestep this problem by not relying on websites’
cooperation at all.

We evaluate CookieBlock on a set of 100 websites to quan-
tify the extension’s impact on users’ browsing experience.
CookieBlock causes no issues on 85% of the sites, minor
problems involving non-essential website functions on 8%,
and more substantial issues on 7%. The more substantial
problems involved the user’s login status being lost due to the
removal of essential cookies. To resolve these problems, the
user can selectively define website exemptions, and change
the classification of cookies through CookieBlock’s interface.

To classify cookies, CookieBlock uses an ensemble of de-
cision trees model, trained using the XGBoost [8] library. We
gathered a training dataset of cookies from 29 398 websites
that display cookie banners from a specific set of CMPs. Each
CMP maintains its own cookie-to-purpose mapping, which
we use to define the ground truth class-labels for the cookies
in our dataset.

We evaluate the model by comparing its performance with
the “Cookiepedia” repository [40]. Cookiepedia assigns pur-
poses to cookies based on their name, and was constructed
manually over a span of 10 years by experts in the domain
of browser cookies. We query this repository for purpose pre-
dictions and compare the results with our selected ground
truth. In summary, we find that Cookiepedia achieves a bal-
anced accuracy of 84.7%, while our XGBoost-trained model
achieves 84.4%. As such, our model is competitive with the
performance achieved by human experts, showing that it is
possible to automatically classify cookies by purpose using
only the information available in the cookies themselves.

Contributions. First, we identify inaccurate information in
cookie banners, and apply this to a sample of approximately
30k websites, finding potential GDPR violations for 94.7%
of them. Second, we present a machine-learning classifier
that infers purposes from cookies, reaching a performance
that is comparable to that of human experts. Third, we de-
velop a browser extension that automatically removes cookies
according to users’ preferences, which, unlike comparable
approaches, is applicable to any cookie and does not require
websites to cooperate. Finally, we release our tools for web ad-
ministrators, allowing them to verify and improve the cookie
consent compliance of their websites.'

! An extended version of the paper, the datasets, and tools can be found at
https://karelkubicek.github.io/post/cookieblock.


https://karelkubicek.github.io/post/cookieblock

Organization. The remainder of the paper is structured as
follows. Section 2 describes our approach to collecting cookie
information from CMPs, including the purposes used for
training and the data used for the website analysis. Sections 3
and 4 describe the features we extract from cookies and
our classifier model. Section 5 describes and evaluates the
browser extension. Section 6 presents our website analysis
and demonstrates our approaches to detecting potential
GDPR violations. Section 7 discusses the scope of our work
and its limitations. Section 8 describes related work, and
Section 9 draws conclusions.

2 Dataset collection

In this section we describe how we collected our dataset of
cookies annotated with the ground-truth class-labels. This
dataset is then used for both the classifier in Section 4 and
the GDPR compliance analysis presented in Section 6.

We collect cookie purposes from consent management plat-
forms (CMPs). In contrast to Cookiepedia, these purposes
are chosen by the website administrators who control which
cookies are created in the users’ browsers [9,49]. As such, we
collect the ground truth from parties that have full knowledge
about the purposes of cookies, rather than a third-party who
may not know the full context. This also allows us to assign
categories to cookies that are rare and may be unknown to
Cookiepedia. In Section 4.1, we show that more than 20% of
the collected cookies could not be identified by Cookiepedia.

Our first step is to select CMPs that list cookies with their
purposes (Section 2.1). Then, from a set of six million do-
mains, we detect the presence of the selected CMPs (Sec-
tion 2.2). For each website where a CMP is used, a web
crawler gathers both the cookies declared by the CMP and
the cookies that are created in the browser when interacting
with the website (Section 2.3). Finally, we combine the decla-
rations with the cookies, and obtain the training data for use
with our classifier (Section 2.4).

2.1 Suitable CMPs and cookie categories

There are a plethora of CMPs, each offering its own website
plugin [24]. These plugins range from simple notifications
to elaborate cookie banners that allow users to choose from
dozens of possible category options [31]. The purpose assign-
ments we intend to collect can only be retrieved from a small
subset of all CMPs. In this section, we describe the criteria
we used to select them.

Our first criterion is that the CMP must publicly and re-
liably list purposes for each cookie on every website where
the plugin is correctly implemented. This is essential for col-
lecting the purpose labels that we take as the ground truth.
On certain websites, CMPs may offer category choices, but
they do not display which cookies belong to which category.
Our second criterion is that, when this mapping exists, it must

Table 1: Listing of CMPs and their market share in the top
1M websites as reported by BuiltWith [6]. In the third and
fourth columns, we evaluate the CMPs with respect to two
criteria for collecting purpose labels.

CMP Market share Remote? Labels?
Osano 2.25% v X
Cookie Notice 1.29% X X
OneTrust 1.17% v v
OptAnon 1.08% v v
Cookie Law Info 0.95% X X
Cookiebot 0.77% v v
Quantcast CMP 0.68% v X
UK Cookie Consent 0.33% X X
TrustArc 0.26% v X
WP GDPR Compl. 0.20% X X
Moove GDPR Compl. 0.18% X X
tarteaucitron.js 0.16% X X
Usercentrics 0.16% v X
CookiePro 0.15% v v
Borlabs Cookie 0.12% X v
EU Cookie Law 0.12% X v
PrimeBox CookieBar 0.09% X X
Cookie Script 0.07% v v
Cookie Information 0.06% v v
Termly 0.05% v v
Cookie Info Script 0.05% v X
Easy GDPR 0.04% v X

be accessible in a way that can be automatically processed,
ideally hosted remotely on a server by the CMP itself. Some
websites list the cookie-to-purpose mapping in their privacy
policy. This is generally not useful as the HTML structure
of such policies varies greatly between sites, and thus would
require a specialized data extraction for each case.

In Table 1 we list the CMPs with the highest market-
share worldwide, as reported by the technology trend database
BuiltWith [6]. For each entry, we list how suitable they are for
data collection, based on our criteria. We selected the CMPs
OneTrust, OptAnon, Cookiebot, CookiePro, and Termly, here
displayed in boldface, which we will use for all subsequent
steps of data extraction and analysis.

2.1.1 Cookie purpose categories

No law defines which set of cookie purposes the CMPs must
declare. Only cookies that are strictly necessary for website
operation are recognized, which as per Article 5(3) of the
ePrivacy Directive do not require consent from users, and may
therefore be set before interaction with the cookie banner.
Given that the categories are not regulated, this selection
varies across CMPs. For instance, the Transparency and Con-
sent Framework 2.0 (TCF), an industry standard defined by



Table 2: Keywords used to map purposes in CMPs to the se-
lected categories, with the percentage of declarations matched.
By * we group multiple suffixes of similar words. The “Other”
category contains the cookie declarations that did not match
a category, including non-English category names.

Category Fraction Keywords

Necessary 13.2% essential, mandatory, necessary, required

function*, preference, secure, security,

Functional 8.7% .
video

anonym¥*, analytic*, measurement,

Analytics 11.4% ..
Y © performance, research, statistic*,

ad, advertis*, ads, ad selection,
fingerprint*, geolocation, market*,
personalis*, personal info, sale of data,
target*, track™

Advertising 60.9%

Unclassified 3.9% uncategorize*, unclassified, unknown

Other 1.9% -

IABEurope, proposes a set of 12 purposes for cookies [17].
Others, like OneTrust, even support the definition of custom
categories by the website administrator [9]. In this work, we
restrict ourselves to the following four categories, as origi-
nally defined by the UK’s International Chamber of Com-
merce [26]:

1. (Strictly) Necessary cookies, which cannot be omitted
without breaking the website’s main functionality, such
as authentication cookies.

2. Functional cookies, which allow for website customiza-
tion without collecting user data, and are not required
for essential services. Examples include user-specific
localization and layout customization.

3. Analytics cookies, which serve to track and analyze users’
behaviors on a single domain, and are used for aggre-
gated data collection. Google Analytics cookies are com-
mon examples from this category.

4. Advertising cookies, which serve to deliver targeted ad-
vertisements by tracking users across multiple different
domains. DoubleClick or social media websites are com-
mon origins for tracking cookies.

In addition to these categories, we also identify unclassified
cookies, which will be used for the analysis in Section 6. The
advantages of the above four categories are that they represent
an ordering from the least to most privacy-invasive types of
cookies, and that they represent clearly distinct functions. This
makes it easier for users to select and distinguish them.

To map the purposes listed in cookie banners to the cate-
gories we use internally, we use the keyword mapping shown
in Table 2. Purposes that do not contain any of the keywords
are recorded as 'Other’, and are neither used for training the
classifier nor for our analysis.

2.2 CMP presence crawler

After selecting which CMPs to target, we need to find domains
that use these CMPs to show cookie banners. To do so, we
implemented a fast website scanning procedure using the
Python requests library to concurrently fetch the index page
of multiple target websites and scan them for the presence of
the desired CMP. If the CMP is used, the website is recorded
as being a potential candidate for retrieving cookie labels, and
otherwise, the site is filtered out.

Because of the relatively low percentage of websites that
use the selected CMPs, and to maximize the amount of col-
lected data, we initialize the presence crawl using a set of
nearly six million distinct domains. Our primary source is the
Tranco ranking [32] of May 5th, 2021,% which lists domains
ranked by their estimated worldwide popularity.

Our scan was performed on an AWS EC2 server instance
located in Germany, with 32 vCPUs, 64 GB of RAM, and
a 10 Gigabit connection. Special care was taken to perform
the scan from within an EU country, as previous works have
shown that there is significant geographic discrimination with
regards to GDPR enforcement. Cookie banners are generally
less likely to be shown to non-EU visitors [11, 13].

In total, we find 37 587 (~ 0.63% of 5.94M) candidate
domains for the next step of our data collection process.

2.3 Scraping cookie consent information

The second stage of the data collection process is to extract
the cookies and their corresponding purposes from the can-
didate domains. To do so, we utilize the OpenWPM frame-
work, version 0.12.0 [16,35], which runs multiple concurrent
Firefox browser instances via Selenium. OpenWPM instru-
ments the browser such that all cookie creations and updates
are recorded. We call these cookies the observed cookies.

We extend OpenWPM to handle data extraction from the
CMPs. The gathered information includes at least the declared
name, domain, expiration time, and purpose description, as
well as the purpose category of the cookie. We will refer to this
data as the declared cookies. The exact method for retrieving
the declared cookies is specific to the CMP implementation.
Common to all approaches is that we retrieve the informa-
tion directly from the JavaScript files that define the consent
mechanism. As such, the gathered information should directly
relate to which cookies are accepted or rejected depending on
the users’ choices in the cookie banner.

Our crawl then proceeds as follows: For each domain, af-
ter arriving on the landing page, the crawler detects which
CMP is actively present on the site. Then the set of declared
cookies are extracted. If this proceeds without error, the sub-
sequent steps are intended to trigger the creation of cook-
ies in the browser. First, the crawler consents to all cookie
purposes in the cookie banner using the Consent-O-Matic

2 Available at: https://tranco-list.eu/list/P63J/full
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Figure 2: The total number of cookie declarations with the
ratio of observed cookies that match, separated by category.

extension [27,39]. This is required, as otherwise, the lack
of consent would prevent cookies from being created. After-
wards, the browser visits random links leading to subpages
of the domain, scrolling down to the bottom of each page
and performing random cursor movements for each subpage.
Urban et al. [51] reported that browsing subpages increases
the number of observed cookies up to 36%. As a trade-off
between crawling speed and the amount of collected data, we
visit ten randomly selected subpages for each site.

The consent crawl was performed on the same AWS EC2
instance described in Section 2.2, and took approximately
36 hours for the ~ 37.5k candidate domains. In total, we
successfully extracted ~ 2.2 million declared cookies from
the cookie banners of 29 398 websites (~ 72 cookies per site).
In addition, we extracted 602k observed cookies from those
same websites (~ 22 cookies per site). We find that 81.2% of
the declared cookies are third-party entries, while only 46.3%
of the observed cookies stem from third-parties.

There exists a discrepancy between the number of declared
and observed cookies, which we explain as follows:

Limited automated interaction with the website. Our
crawler does not register an account, login or modify the web-
site settings, which can lead to fewer necessary and functional
cookies being observed.

Overabundance of declarations. CMPs may list signifi-
cantly more cookies in their cookie banners than there are
actual cookies to be found on the website. Papadopoulos et
al. [41] find that users will encounter approximately ~ 12
cookies per site. We observe a mean of ~ 22 cookies, indicat-
ing that we do not observe significantly fewer cookies than
the related work in the area.

2.4 Obtaining the training dataset

Our training dataset consists of the observed cookies, with
purposes derived from matching cookie declarations. Each
cookie is uniquely identified by its name, host, and the target
domain of the crawl, and these values are used as the key
to join observed and declared cookies. This produces a
total of 304k cookie samples for training, of which 28.2%
are necessary, 6.2% are functional, 29.0% are analytics,
and 36.7% are advertising. An additional 18k cookies are
unclassified, or declared a purpose that could not be assigned
to any of our categories.

Fig. 2 shows the total number of declarations per category,
together with the ratio of observed cookies. It is important
to note that the category of functional cookies is underrepre-
sented, which we compensate for by weighting the samples
when training the classifier. Moreover, despite the overabun-
dance of declarations, out of 602k observed cookies, only
53.6% could be matched with a declaration. This implies
that there may be many cookies present on websites that are
unknown to the cookie banner. We will discuss this topic in
more detail in Section 6.

3 Feature extraction

Cookies have multiple attributes, including a name, domain,
path, value, expiration timestamp, as well as flags such as the
“HttpOnly,” “Secure,” “SameSite,” and “HostOnly” proper-
ties. There is no straightforward relationship between these
attributes and the cookies’ purpose. Therefore, we extract
statistically-rich, domain-specific features so that a machine-
learning model can extract a potentially complex, meaningful
relation from the data.

We define more than 50 feature-extraction steps that rep-
resent a cookie as a real-valued sparse vector. We provide
a high-level account of these steps below. More details are
provided in Appendix B and the full description is given in
the extended report [3] and documentation.’

Top-500 most common names and domains. A very ef-
fective method for identifying a cookie’s purpose is detecting
whether the cookie name or its origin domain are among the
most common identifiers found online. Using a representative
random sample of websites from our Tranco list, we collect a
ranking of the 500 most common cookie names and domains.
The intuition is that web modules use first-party cookies with
predefined names and purposes, such as PHPSESSID in the
case of PHP, and that cookies originating from the same do-
main usually have a common purpose.

Value type, encoding, and length. Several of our features
indicate the presence of specific data types in the cookie
content. This ranges from scalar types such as Booleans or
integers to composite types such as CSV or JSON. We also

3The feature documentation and classifier are available at:

https://github.com/dibollinger/CookieBlock-Consent-Classifier.


https://github.com/dibollinger/CookieBlock-Consent-Classifier

record the number of entries for composite types, as well
as the length of the content in bytes as ordinal features. We
furthermore distinguish between decimal and hexadecimal
integers, as well as base64 and URL encoded strings. The
intuition is that by identifying the types of data stored in a
cookie, the classifier can better distinguish which cookies are
used for tracking. For example, long hexadecimal strings are
more likely to be used for uniquely identifying a user than
short decimals.

Dates, timestamps, UUIDs, URLs, or locale strings.
These values may provide hints about the purpose of a cookie.
Intuitively, dates, UUIDs, and timestamps may be used as
unique identifiers for tracking, while locales and URLs are
more commonly used with functional cookies, for example to
alter the display language or input method.

Update Features. Cookies are dynamic, and can be fre-
quently updated by HTTP requests or through events in
JavaScript code. As such, we not only consider features for
a single state of the cookie, but also for changes that occur
over time. Examples are the total number of times a cookie is
updated over a fixed time interval, or the edit distance between
cookie updates.

Cookie entropy. The entropy of the cookie’s content, for
example computed using Shannon’s method, can provide in-
formation about its randomness. The intuition is that tracking
identifiers often include a randomly generated component
and hence have high entropy, thus potentially allowing the
classifier to detect tracking cookies.

Note that not all cookie features can be used in all settings.
For instance, in our dataset, advertising cookies are updated
more rarely than other types of cookies. While this property
could be used as a feature for training, it is highly dependent
on the user’s browsing pattern. Any features that are based
on such patterns are unreliable in the setting of a browser
extension, and may cause false predictions that cannot be
observed during the model validation. For CookieBlock, we
therefore only use those features that are agnostic to browsing
patterns. Nevertheless, such properties may still be used for
offline settings with a fixed browsing behavior, such as studies
involving automated web-crawlers.

4 Classification

In this section, we present the design and evaluation of our
cookie purpose classifier. We first describe the baseline,
which is the manually constructed repository Cookiepedia
(Section 4.1). Next, we explain our choice of model
(Section 4.2) and the selected hyperparameters (Section 4.3).
We explain the impact of different types of misclassifications
(Section 4.4), and present our model’s performance, com-
paring it with the selected baseline (Section 4.5). Finally, by
estimating the degree of noise in the data, we estimate the best
possible classifier performance for this dataset (Section 4.6).

4.1 Baseline

We compare our model’s performance to that of a manual
classification by experts in the field. Namely, we query cookie
purposes from the public cookie repository Cookiepedia [40].
Cookiepedia reportedly stores data for over 30M cookies, of
which a large portion has been labelled with purpose cate-
gories. These categories match the ones we have chosen in
Section 2.1.1. For our dataset, Cookiepedia provides purposes
for 79.2% of the cookies.

To use Cookiepedia as a classifier, we query it for each
cookie name in our dataset and obtain the corresponding pur-
poses from the repository. These purposes are then compared
to the class labels we collected from the CMPs. To validate
Cookiepedia as a classifier, we split the cookie dataset into
5 equally-sized chunks and compute the average accuracy,
precision, and recall. In Table 3 we present the results.

Our measurements show that Cookiepedia achieves a mean
balanced accuracy (i.e., macro-recall) of 83.4%. It achieves
a high precision for both necessary and advertising cookies,
but has particularly low precision for functional cookies. This
can be explained through the class imbalance we find in the
validation data. Due to the low number of samples for the
functional ground truth, any error that assigns this category to
other cookies will have a much greater effect on the precision
of this class than it would have for the other categories.

4.2 Model selection

Our chosen model for the task of classifying cookies are
ensembles of decision trees. We train them using the XGBoost
library [8], which uses a sparsity-aware gradient tree boosting
method developed by Chen and Guestrin. We use boosting
because ensembles of decision trees can be as competitive as
neural networks and have achieved top performance in several
machine-learning competitions and benchmarks [20,45, 54].

In the setting of multi-class classification, XGBoost creates
a classifier model with a forest of decision trees for each
purpose class. Given a sparse input vector representing a
cookie, the model produces a probability for each purpose
that indicates how likely the cookie belongs to it. Using a
Bayesian Decision function, we transform these probabilities
into a discrete prediction. For our evaluation, we apply a
simple argmax decision, i.e., the purpose with the highest
probability is chosen as the prediction.

4.3 Training parameters

The dataset we use consists of 304k labeled cookies, of
which 277k are used for training. The 27k cookies we filter
out are cookies created by CMPs to track users’ interaction
with the cookie banner. With this filtering, we aim to remove
training bias as these cookies are always present on the sites
we crawled, but are not common outside the chosen websites.



Table 3: Performance metrics for the Cookiepedia lookup.
Evaluated using 277k cookies, as an average over 5 folds.

Cookiepedia Necessary Functional Analytics Advertising

Precision 94.5% 38.1% 84.2% 94.9%
+0.2% +0.6% +0.2% +0.1%

Recall 88.5% 78.7% 93.0% 79.0%
+0.1% +1.1% +0.1% +0.2%

Cookie coverage: 79.2%
Accuracy: 86.1% +0.1%
Macro-recall (balanced accuracy): 84.7% +0.3%

Table 4: Performance metrics of the XGBoost classifier in
categorizing cookies, trained on 277k samples and evaluated
with 5-fold cross-validation.

XGBoost Necessary Functional Analytics Advertising

Precision 87.3% 52.9% 89.8% 93.6%
+0.2% +0.5% +0.3% +0.2%

Recall 81.7% 76.3% 89.7% 89.8%
+0.5% +0.5% +0.2% +0.3%

Cookie coverage: 100%
Accuracy: 87.2% +0.23%
Macro-recall (balanced accuracy): 84.4% +0.27%

To find good hyperparameters, we applied a randomized
grid-search with 5-fold cross-validation. The performance of
each model is validated using the multi-class cross-entropy
loss, as well as the balanced accuracy, due to the training
dataset being imbalanced. The most impactful parameters
were the learning rate and the maximum tree depth, for which
we selected a rate of 0.25, and a depth of 32, respectively.
Further increasing the depth leads to a decrease in the valida-
tion performance. We trained each model for a maximum of
300 boost rounds, with early stopping after 20 rounds with
no increase in validation score. For the final model, there are
12 to 29 trees per forest, with the average size being 22 trees.
The complete set of parameters is shown in the Appendix in
Table 6.

4.4 Impact of misclassifications

As mentioned in Section 2.1.1, our selected purpose cate-
gories can be interpreted as an ordering, with necessary be-
ing the least and advertising the most privacy-invasive. Using
this ordering, a misclassification of a functional cookie into
the necessary category has reduced privacy impact, as the
functional cookie is close in the ordering, and unlikely to be
used for user tracking. A wrong assignment of an advertising
cookie to necessary represents a greater privacy threat as
these categories are far apart in the ordering, with tracking
cookies potentially being unconditionally permitted.
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Figure 3: Confusion matrices of the Cookiepedia baseline
and XGBoost. Each entry C;; shows the ratio of cookies with
ground truth i that were assigned purpose ;.

Similarly, we also consider the potential of websites break-
ing due to misclassifications. When a necessary cookie is
predicted as advertising, and thereby removed, it may break an
essential service on the site, and drastically reduce the quality
of the user experience. Assigning the class functional to a
necessary cookie has a reduced impact as users are less likely
to reject this purpose due to it being less privacy-invasive.

The probability with which advertising cookies will evade
detection can be identified using the recall metric of the adver-
tising class. The potential to break essential functionality on
websites can be found in the recall of the necessary category.
The closer either performance metric is to 1, the lower the pri-
vacy threat, respectively the less likely a website is to break.

4.5 Evaluation

Fig. 3 compares the performances of XGBoost and Cook-
iepedia. Table 4 presents the performance metrics for our
XGBoost model. We discuss them next.

XGBoost attains higher privacy protection. In accor-
dance with Section 4.4, we first consider the potential privacy
protection through the recall of the advertising category. Here,
the recall measures the fraction of advertising cookies cor-
rectly identified as advertising by our classifier. XGBoost’s
recall is almost 9% higher than that of Cookiepedia. In Fig. 3,
we see that Cookiepedia’s misclassifications in this regard
occur mainly because it assigns advertising cookies to the
analytics or functional class.

XGBoost preserves necessary and functional cookies.
We consider the potential for websites breaking. The recall
for necessary cookies for the XGBoost classifier is 81.7%,
almost 7% lower than what Cookiepedia achieves. For
functional cookies, we have a recall of 76.3%, roughly 2%
lower than Cookiepedia. Fortunately, as we see in Fig. 3,
most of the misclassifications of necessary are assigned to
the functional purpose, and vice-versa. Therefore, if users
accept both necessary and functional, the extension will
retain approximately 91% of the necessary and 88% of the



functional cookies. We verify this empirically in Section 5.3.

XGBoost is as competitive as human experts. Our auto-
mated XGBoost model performs very similarly to the manu-
ally curated Cookiepedia in the remaining metrics. Both have
a reduced precision and accuracy in functional cookies, which
occurs due to the class imbalance. Additionally, both achieve
a high recall for the analytics class, with XGBoost achieving
an improved precision by more than 5%.

To summarize, Cookiepedia achieves a balanced accuracy
of 84.7% on our dataset when queried for each cookie name.
Our automated, XGBoost-trained classifier achieves a bal-
anced accuracy of 84.4%, thus attaining a performance that is
comparable to the performance achieved by human experts.
While Cookiepedia is more accurate in the necessary cate-
gory, XGBoost performs better with advertising cookies. Our
deficit in necessary cookies can be counterbalanced by us-
ing an alternative Bayesian cost function, which penalizes
misclassifications of necessary cookies more strongly than
others. We can also provide users of CookieBlock with ways
to correct the classification, which we describe in Section 5.

Finally, the number of cookies that Cookiepedia can clas-
sify is limited. For our dataset, Cookiepedia is able to provide
a category for 79.2% of the cookies, while our classifier can
predict a class for every cookie.

4.6 Performance upper bound

In this section, we try to estimate the theoretically best clas-
sifier performance on our dataset. The cookie labels we col-
lected are noisy, as different websites can use the same third-
party cookie, but they do not necessarily agree on its purpose.
This means that it is impossible to achieve 100% accuracy on
this dataset, as some cookies will be indistinguishable despite
differing purposes. To estimate the percentage of cookies in
the dataset for which this is the case, we collect the majority
class for each third-party cookie name and domain, and com-
pute the percentage of cookies with a deviating class. This
gives us a lower bound of 7.2% of labels that are noise among
the third-party cookies.

If we assume that the noise of the first- and third-party
cookies is similar, we can conclude that we have an upper
bound of roughly 92-93% in overall accuracy. With an overall
average accuracy of 87.2%, we argue that our classifier is
close to the best possible performance on this dataset.

5 Browser extension

In this section, we describe the design and implementation of
CookieBlock.” It is an extension for Firefox and Chromium-
based browsers that automatically classifies cookies into pur-
pose categories, and allows users to deny consent for selected
purposes. By using the classifier described in Section 4, we

4 Available at https://github.com/dibollinger/CookieBlock.

provide users with a tool to enforce the GDPR and protect
their own privacy when handling cookies.

We first discuss the goals and features of CookieBlock (Sec-
tion 5.1). Then we present its design and implementation (Sec-
tion 5.2). We conclude the section with an empirical evalua-
tion on a set of 100 websites that estimates how CookieBlock
affects users’ browsing experience (Section 5.3).

5.1 Goals and Features

The objective of CookieBlock is to give users control over
their privacy, a practice that is neglected by the majority of
websites. Table | indicates that out of the top 1M websites,
only an accumulated total of 3.5% use CMPs providing cookie
consent choices, and many of those that do deceive users
either by dark patterns, as shown by Nouwens et al. [39], or
by providing wrong information, as we show in Section 6.
Hence CookieBlock provides users with a means to control
their cookie consent on any website they visit, without the risk
of being deceived. CookieBlock offers the following features:

» User-defined cookie policy. CookieBlock’s central fea-
ture is that users specify which of the four categories in
Section 2.1.1 they give or deny consent to. All cookies
belonging to a purpose for which consent was denied are
then removed from the browser’s storage.

* Domain exceptions. For domains that the users trust,
they can define an exception. The extension will not
remove any cookies originating from exempted domains,
regardless of their purpose.

e Custom cookie categories. Users can define their own
cookie categories, which can be used to correct individ-
ual mistakes made by the classifier.

Note that while CookieBlock imitates the behavior of a CMP,
it is not intended to interact with or remove the cookie banners
shown on websites. This function is already fulfilled by
existing browser extensions, such as Consent-O-Matic [27],
which can be used in conjunction with CookieBlock.
CookieBlock also does not act as a replacement for the cookie
banner in the legal sense, and its use is not a justification for
websites to skip the gathering of user consent.

5.2 Design and implementation

CookieBlock is built using the WebExtensions API, and
supports Firefox as well as Chromium-based browsers. An
overview of its design is given in Fig. 4.

5.2.1 Background process

On initialization, CookieBlock begins listening for cookie
events. When a cookie is created or updated, the cookie’s cur-
rent state is appended to a local cookie history (1), and the full
list of previous updates for that cookie is retrieved (2). This
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Figure 4: Outline of CookieBlock’s design.

history allows CookieBlock to track the evolution of a cookie
over time, a property which is used in the feature extraction.

Afterwards, CookieBlock checks its storage to determine
whether the cookie has been encountered recently or whether
it has been assigned a pre-defined category (3). In this case, it
retrieves the existing purpose label (4), and skip directly to
the policy enforcement step (5a). If the cookie does not have
an existing label stored, then we proceed to the feature extrac-
tion (5b). This transforms the cookie object into a sparse vec-
tor representation (6). It then runs the precomputed XGBoost
model on this vector input, which predicts a purpose label for
the cookie. The predicted label is then cached in the extension
storage for a short duration (7). Finally, the predicted label
is passed on to the policy enforcement procedure (8), which
decides whether to keep or remove the cookie.

To decide whether to keep or remove a cookie,
CookieBlock takes into account the user’s cookie policy and
domain exceptions (9). If the origin domain of the cookie
matches a domain in the set of domain exceptions, the policy
enforcement will always retain the cookie.

5.2.2 User interface
The user interface is structured into four distinct components:

First-time setup. The first-time setup page of the extension
allows the user to define a user-policy, and requests con-
sent to the collection of a local cookie history. This is
the minimal setup required to initialize the extension.

Settings page. The settings page allows users to change
their consent preferences at any time and add individual
website exceptions.

Toolbar popup. The toolbar popup offers a quick method
to pause the cookie removal and to add an exception for
the domain in the address bar.

Cookie configuration. The cookie configuration page
allows users to define custom categories for previously
encountered cookies and to correct misclassifications.

For both the settings page and the first-time setup,
CookieBlock allows the user to consent to the functional, an-
alytics, and advertising purposes. The necessary category
cannot be rejected as doing so would break websites.

We designed the interface to be simple to use and unob-
trusive. Unlike cookie banners found on different websites,
CookieBlock requires only a single setup, after which the
users’ cookie preferences will be enforced on all websites.
This prevents the issue where privacy is neglected due to user
fatigue or annoyance from cookie banners [2,28].

5.2.3 Cookie update history

As described previously, CookieBlock collects a cookie up-
date history. This allows it to track how cookies change over
time, enabling predictions based on these differences. It also
allows CookieBlock to remember past purpose assignments
by recognizing which cookies have been encountered before.
Since this cookie history may contain potentially sensitive
user information, including information about the browsing
history and authentication tokens, the history is kept local to
the browser extension at all times. In addition, CookieBlock
asks the user to opt-in to the collection of this history at setup
time. If rejected, CookieBlock can still classify cookies, but
it will not be able to remember previous labels or extract
features from past updates, which may reduce its accuracy.

5.2.4 Cached purposes

CookieBlock caches labels for a short period after a predic-
tion is made. This minimizes browser slowdown in case a
website continuously regenerates cookies after they have been
removed. After the grace period expires, the cookie will be
reclassified using newly collected cookie updates.

5.3 Empirical evaluation

As noted in Section 4.5, our classifier has a recall of 81.7% on
necessary cookies, meaning that potentially every fifth cookie
required for the operation of website could be misclassified.
Since CookieBlock uses the computed model as a predictor,
many necessary cookies may inadvertently be removed, caus-
ing websites to malfunction. However, due to the noise in the
dataset, it is unclear how severe this issue is in practice.

To quantify the impact CookieBlock has on the browsing
experience, we manually visit and examine a sample of 100
websites for possible malfunctions. We acknowledge that
this evaluation is limited in that it does not constitute a full
usability study. However, because the extension acts as a back-
ground process, it should ideally require very little interaction
with the user. We therefore focus on evaluating whether a
website breaks due to misclassification, which is the critical
aspect of usability in this case.

We randomly sample websites from the Tranco list from
Section 2.2 using an exponential distribution. This allows
us to examine both popular as well as niche websites.
Furthermore, this website selection is not restricted to those
that use specific CMPs.



We use a clean installation of CookieBlock, configured to
allow necessary and functional cookies, which is the recom-
mended setup. For each website, we attempt to make use of
its primary services as best as possible, recording any defects
we encounter in the process. We also attempt to change web-
site settings, such as the language or style, and we attempt to
register an account and perform the login procedure where
available. Finally, we also interact with and close cookie ban-
ners, recording whether any appear again on page reload. A
reappearing cookie banner can be very annoying for the user,
but it does not prevent the site’s use, and therefore these are
likely misclassified functional cookies. If we encounter any
unexpected behavior, we determine whether this was caused
by CookieBlock by disabling the cookie removal.

Our results show that out of the examined 100 websites:
85 showed no obvious malfunctions, 7 had a cookie banner
that reappeared because of CookieBlock, 7 showed an
authentication failure where the user was immediately logged
out, and in one case, we could not change the website
language. As such, the rate of serious defects is less severe
than expected. Furthermore, all issues were resolved by
defining an exception for the current site, or by correcting
the cookie’s assigned purposes in the extension interface.

We also measured the time it takes for CookieBlock to
make a policy decision for a cookie. We ran CookieBlock on
the Firefox browser on Linux, and it processed a total of 5561
cookies observed from real-world websites. Each decision
took on average ~ 20ms, with a maximum time of 4.3 seconds.
This outlier was caused by asynchronous execution in the
browser. The Firefox browser also reports a “low” energy
impact for the extension.

6 Observed violations

Article 7 and Recital 32 of the GDPR require that consent
must be freely given, specific, informed, and unambiguous;
hence any cookie banner that displays misleading or false
information may violate the law. In this section, we present
an analysis on the data displayed by selected suitable CMPs,
performed on a dataset of cookies from 29398 websites,
the collection of which we described in Section 2. For these
websites, we assess the correctness of the cookie-to-category
assignments shown on the cookie banner, the claimed
expiration time of cookies, as well as the completeness of
the cookie banner. These approaches encompass six novel
analysis methods not explored in prior work.

Additionally, we extend the studies of Nouwens et al. [39]
and Matte et al. [34] by making use of the cookie purposes
collected from CMPs. Namely, we analyze whether websites
assume implicit cookie consent or respect the users’ consent
choices. We accomplish this by observing which types of
cookies are set in the browser.

In summary, out of 29 398 websites, 94.7% contain at least
one issue, while 77.3% have at least two. A detailed break-

down of the results is given in Figs. 5 and 6. The following
subsections will elaborate on the analysis in greater detail.

6.1 Incorrect cookie purposes

The CMPs we selected in Section 2.1 declare purposes for the
corresponding cookies. We inspected the accuracy of these
declarations using several complementary methods.

Incorrect purpose for well-known cookies. Google Analyt-
ics cookies, such as _ga, _gat, and _gid, occur commonly
throughout the web and have a well-known purpose. There
nevertheless exist numerous websites that do not declare
these cookies as analytics. In the case of Google Analytics,
8.2% of the 29 398 examined websites assign an incorrect
purpose to these cookies. Moreover, 2.7% of all websites
declare at least one GA cookie as necessary, which the EU
Court of Justice previously ruled to be a violation of the
GDPR, as decided on the Planet49 case [29].

Incorrect purpose based on the majority opinion. In the
collected dataset, we observe that for identical third-party
cookie identifiers, different domains may disagree on the
purpose. We used this fact to estimate a performance upper
bound for the classifier in Section 4.6. Here, we use it to
detect outlier purpose assignments, which likely indicates an
incorrect declaration. We find that 30.9% of websites contain
at least one third-party cookie with a purpose that disagrees
with a corresponding two-thirds majority.

This serves as a lower bound on the number of potential
violations. In the event where the majority class is false, the
number of potential violations would be even greater. Be-
cause this is only a lower bound, each case detected using
this method requires manual analysis to determine whether it
constitutes a true misclassification.

Cookies with multiple labels. An ambiguity occurs when
the same website labels a cookie multiple times for different
or even contradictory purposes. We observe this in 2.3% of
the examined websites. This ambiguity may deceive users,
as it is not well-defined whether rejecting only one of the
purposes suffices to prevent the cookie’s creation. In practice,
we observed websites creating cookies with one purpose
accepted and one rejected. Moreover, in 0.7% of the sites, the
cookie is declared both as necessary and another purpose,
which means that these cookie cannot be rejected at all.

6.2 Unclassified and undeclared cookies

The CMPs we target in our study offer a cookie scan service
that detects cookies on a website and suggests purposes based
on a database lookup. Those cookies that cannot be annotated
in this fashion must have their purposes assigned manually
by the site administrator [9,49].

We find two problems with this process. First, when the
web administrator neglects to assign a purpose, the cookie
becomes unclassified. Second, when the CMP scan fails to
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Figure 5: Number of websites that show the respective type of
violation. The first six are novel and have not been explored
in prior work.

detect cookies, or the cookies are added after the scan, those
cookies are undeclared and are missing from the cookie ban-
ner. The website’s visitor can reject neither the undeclared
nor unclassified categories, which means that the consent is
both uninformed and not freely given.

Unclassified cookies. We find unclassified cookies in 25.4%
of the examined websites. These websites contain on average
11 unclassified cookies. Surprisingly, we find 45 websites that
contained more than 200 unclassified cookies.

Undeclared cookies. We detect undeclared cookies by
identifying which observed cookies do not have a matching
declaration. When matching on name and domain, we find
undeclared cookies in a staggering 82.5% of the examined
websites. Of the 496k cookies, 40.2% were undeclared.
Similarly to unclassified cookies, we find 71 websites with
more than 100 undeclared cookies.

6.3 Incorrect expiration time

Article 13(2)(a) of the GDPR requires websites to declare
the expiration time of personal information. The EU Court
of Justice in the Planet49 case decision [29] clarifies that
this also applies to cookies. We therefore compare the true
expiration time of the observed cookies with that of the
corresponding declaration. If the true expiration time is 50%
longer than the declaration states, with a minimal difference
of one day as threshold, then we consider it a potential
violation. Additionally, we also identify all persistent cookies
that are declared as session cookies, and vice-versa. In
total, 9.1% of all sites show at least one expiration time
discrepancy, 3.8% declare a persistent cookie as a session
cookie, and 3.1% declare a session cookie as persistent.
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Figure 6: Histogram that shows the distribution of violation
types per site. This does not include repetitions of a single
type. The green bar represents the compliant websites.

6.4 Extension of previous approaches

The following two approaches extend methods defined in the
works of Matte et al. [34] and Nouwens et al. [39]:

Cookies set prior to user’s consent. Article 5(3) of the
ePrivacy directive states that only necessary type cookies
may be created prior to the user’s interaction with the CMP.
By crawling the website without interacting with the cookie
banner, we inspect if websites set any cookies with a purpose
that is not declared as necessary. We find that 69.7% of the
examined websites set such cookies, and hence use implied
consent. This aligns with the results by Nouwens et al. [39],
who found that 67.6% of 680 sites used implicit consent. In
contrast, Matte et al. [34] only found implicit consent on 9.9%
of 1426 analyzed websites.

Cookies set despite negative consent. Using the Consent-
O-Matic browser extension [27], we reject all purposes other
than necessary. We then verify that the recorded consent sta-
tus of the CMP is indeed negative, and identify which of these
websites still set non-necessary cookies. We do this only for
Cookiebot, as for this CMP we can verify whether the cookie
banner was interacted with. For the 9446 Cookiebot domains,
66.4% set at least one cookie with a rejected purpose. This
corresponds to 21.3% of the 29 398 websites we examined.
However, we expect that other CMPs behave similarly, and
that the total ratio is higher. For comparison, Matte et al. [34]
found that 5.3% of 508 analyzed websites store user’s positive
consent to categories that the user rejected.

6.5 Summary

Fig. 5 summarizes the number of potential violations for each
of the types we described above. In Fig. 6, we present how
many different violation types are present on websites in our



dataset. The histogram shows that the median number of
violations is 2 and the average is 2.5.

The first six bars in Fig. 5 represent analysis methods that,
to the best of our knowledge, have not been explored in prior
works. The latter two extend analyses previously performed
by Nouwens [39] and Matte [34], who examined these is-
sues by analyzing the consent string registered by CMPs. Our
approach is more fine-grained and direct, as we directly de-
tect the cookies created in the user’s browser, based on the
purposes declared in the cookie banner. Our sample size of
websites is also much larger than in both their works.

For the case of unclassified and undeclared cookies, we
believe that the issues usually stem from neglect rather than
malice. The cause is likely the lack of enforcement and web
administrators who are not sufficiently familiar with the le-
gal requirements. This can be addressed with the methods
described in this paper. Regulatory authorities can improve en-
forcement of the GDPR by automatically determining which
websites violate the law. Moreover, CookieBlock and the cor-
responding web crawler can help web administrators inspect
the compliance of their website by detecting undeclared cook-
ies, and predicting purposes for currently unclassified cookies.

7 Limitations

Given the involved complexity of collecting the training
dataset and the application of machine learning, we are aware
of the following limitations of our approach.

The training dataset might be biased. There are several
reasons why our training dataset might be biased. First, we
collect cookies only from websites that use the services of
a CMP and which assign purposes to individual cookies.
Cookies used by such websites can differ from those
that are found on generic websites. Second, our crawling
underrepresented the functional cookies, which led to a
decreased precision for this class. With a more advanced
crawler or manual cookies collection, we might improve the
classifier performance and remove potential bias. Third, the
features we collect in an automated crawl can differ from the
features resulting from users browsing websites. To address
this, we remove features that depend on browsing patterns,
such as cookie updates. However, if the websites can detect
our crawler as a bot, they can serve different data to the
crawler than to a real user. Lastly, the model should be kept
up-to-date, otherwise the validity of the training data can
become outdated. We address this by simplifying the process
for collecting the training data as well as the training itself.

The cookie removal may not always protect users.
CookieBlock removes cookies after their creation, rather than
blocking the requests that spawn them. This may not be
sufficient to prevent cookies from fulfilling their purpose.
We rarely observe cookies that are created and removed by
the website more quickly than the ~ 20ms required to pro-
cess the cookie by CookieBlock. One example is the cookie

GoogleAdServingTest, which serves to record which adver-
tisements have been displayed to the user. Fortunately, such
cookies are rare.

This limitation exists because it is not possible to prevent
cookie creation within the WebExtension API. We can only
remove a cookie after it was already stored in the browser.
Ideally, our work inspires web browser developers to allow
extensions to prevent cookies from being set, or even add
“purpose” as a new cookie parameter. This parameter would
also address the limitation of machine learning imprecision,
but our classifier would still be useful to bootstrap the cookie
classification for web administrators.

We do not consider adversarial websites. We did not
address the possibility that websites could alter the content
of their cookies specifically to counteract the cookie policy
enforcement by CookieBlock. For example, an adversarial
website could change the cookie’s name to a randomly gener-
ated value, use a proxy domain to alter the cookie’s host field,
or obfuscate cookie’s content. Still, it is easier to use other
tracking technologies that do not involve cookies, which we
do not consider in this work. However, some websites, such as
those that use the CookieBot CMP also declare other tracking
resources like localStorage or tracking pixels. Therefore, it is
possible to extend CookieBlock with a classification of these
alternative tracking methods. We have not done this because
these declarations are rare and would require a completely
different feature-engineering and classification approach.

8 Related work

Cookie classification. In [25], Hu et al. propose a cookie
purpose classifier that uses a Multinomial Naive Bayes model,
which takes as input n-gram tokens extracted only from the
cookie names. They train their model on 11.5k cookies with
ground-truth labels taken from Cookiepedia, and state an F1-
score of 94.6%. They also report a confusion matrix for one
fold, which achieves an F1-score of only 86.7%.

Their work shares similarities with ours, but both works
were developed simultaneously, with neither party being
aware of the other. Our approach differs in two main respects.
First, rather than using just the cookie name as a feature for
training, we extract features from all cookie properties, includ-
ing those that are observed between cookie updates. While
the cookie name is simple to alter, the value and domain are
restricted by the implementation requirements, e.g., a track-
ing cookie requires a minimum amount of entropy. This fact
makes spoofing Hu et al.’s model by an adversarial web de-
veloper much easier than our model. Moreover, their model
cannot distinguish cookies with the same name (e.g., user_id)
but with different purposes and originating from different do-
mains. Calzavara et al. [7, Sec. 5.2.1] showed that many cook-
ies use naming conventions for unexpected purposes, which
is not reflected by Cookiepedia’s use of a single classification.

Secondly, our model is trained on ground truth collected



from CMPs, while Hu et al. use ground truth labels collected
from Cookiepedia. We elaborate on the advantages of our
choice in Appendix A. Their classification task is also not
affected by noise, which allows for a higher theoretical perfor-
mance bound. This is because Cookiepedia will always report
the same category for the same cookie name. By replacing the
CMP labels with Cookiepedia labels on our dataset, our model
accuracy increases from 87.24+0.23% to 89.2+1.3%. We pro-
vide additional details on these results in Appendix A.2.

Calzavara et al. [7] used ML models to detect authentica-
tion cookies. They used a training sample of 2.5k cookies
with 332 authentication cookies. They propose feature extrac-
tion from both the cookie name and other attributes, such as
the entropy and the length of the cookie value, the expiry or
whether the cookie is http-only. All their features or equiva-
lent ones are included in our feature extraction. Their binary
classification achieves an F1-score of 83% in classification
tailored towards the high recall of 89%.

Website privacy enforcement tools. There exists various
proposed privacy enforcement tools by academia and
industry. The Platform for Privacy Preferences (P3P) [10] is a
framework for visualizing privacy policies on the client-side
and enforcement of user preferences on the server-side.
Although it was proposed as a W3C standard, it was never
widely adopted, and Google and Facebook even bypassed
P3P [5]. Another project, now discontinued because of
lack of interest by websites, is the “Do Not Track” HTTP
request header [21,46]. Unlike these attempts to protect user
privacy, the success of CookieBlock does not depend on the
cooperation of the visited websites.

Major browsers are addressing user tracking by various
means. Firefox introduced “Enhanced Tracking Protection’
with controls such as blocking social-media tracking cook-
ies [36] and “Total Cookie Protection” for partitioning third-
party cookies per origin websites [37]. The Chromium Project
proposed “Privacy Sandbox” [12] that plans to deprecate third-
party cookies by 2022. These projects face similar issues as
our project, in that they also need to white-list necessary third-
party cookies, such as those for single sign-on. Compared to
these efforts by browsers, CookieBlock also allows blocking
for first-party cookies, such as Google Analytics.

The browser extensions Consent-O-Matic [27] and Cliqz-
Autoconsent [33] have similar goals as CookieBlock. They
enforce users’ cookie policies on websites by automating
interaction with the CMPs. However, they are limited to
websites that use supported CMPs, and they also depend
on the website’s honesty to follow the consent. In Section 6
we showed that dependence on the CMP’s implementation
still leads to multiple potential privacy violations. By being
universally applicable, CookieBlock can provide stronger
privacy guarantees.

Another privacy enhancing browser extension is Privacy
Badger [15]. This extension logs third-party requests that
perform fingerprinting or set cookies containing enough

>

entropy to be used for tracking. When such tracking
information is found in multiple websites’ requests, Privacy
Badger adds this third party to a blocklist. The construction
of the blocklist used to happen individually in browsers, but
this is prone to fingerprinting [14]. Hence Privacy Badger
developers bundle the same blocklist constructed from an
automated crawl to all users. CookieBlock focuses only on
cookies, and it blocks them individually, compared to Privacy
Badger which blocks the whole domain once it is detected
to perform tracking. Unlike CookieBlock, Privacy Badger
cannot prevent tracking using first-party cookies.

Studies of cookie consent compliance. Researchers are
continuously scrutinizing cookie consent compliance. Kam-
panos et al. [30] analyzed 17k websites in the UK and Greece
and found that roughly 45% have a cookie banner. They also
find that most of the websites nudge users into accepting all
cookies. Matte et al. [34] inspected 1426 websites that use
CMPs that are part of [ABEurope’s Transparency and Consent
Framework. They find that 10% of these websites set consent
before user action, and 5% do not respect the choice to opt-out.
In addition, Matte et al. develop a browser extension called
“Cookie Glasses” that detects dishonest CMP implementa-
tions. Trevisan et al. [50] found that 49% of the inspected 36k
websites set profiling cookies before users consent to them.

The study by Santos et al. [44] provides extensive legal
background on cookie consent in EU jurisdictions. They de-
fine 17 requirements on valid cookie consent, some of which
we inspected in our study.

There are several analyses of dark patterns of cookie con-
sent notices, often supplemented with a user study. Nouwens
et al. [39] found that almost 90% of an examined 680 websites
using supported CMPs do not meet the GDPR requirements
for valid consent. A user study by Utz et al. [52] inspected
how the design of consent popups from 5k websites nudge
users into uninformed consent. Since the field of the dark
patterns is very active, we list further studies [4,22,23,43,47],
and refer the reader to Dark Patterns workshop at ACM CHIL

9 Discussion and conclusions

Many websites do not give users a choice over which cook-
ies are collected, despite the GDPR and ePrivacy Directive
requirements. Multiple prior studies report on this, and we
contribute to this analysis by showing that even from the
websites providing choices, the vast majority, namely 94.7%,
contain at least one potential violation. This situation can-
not be resolved through new regulations alone, such as the
planned ePrivacy Regulation, as it is mostly enforcement that
is significantly lacking behind.

We address this situation with CookieBlock, which en-
forces the user’s cookie policy on the client-side. It removes
cookies based on purposes assigned by a classifier model that
was trained using the XGBoost library, which achieves a per-
formance close to that achieved by human experts. Unlike



previous, now deprecated, standards like P3P and “Do Not
Track,” CookieBlock does not depend on the cooperation of
the websites. Beyond this, the extension and the violation
detection methods can provide regulatory agencies with an
automated procedure for violation detection and help them to
enforce compliance to privacy regulations.

In an ideal world, CookieBlock would not be needed. Fu-
ture privacy regulations could request the browser vendors and
the World Wide Web Consortium to extend cookie headers
with a “purpose” flag as a new attribute, which would allow
integration of the act of providing consent to cookies into the
browser, and the cookie banner could be made obsolete. If the
use of said flag were required, then users could get the privacy
protection they deserve by law. Our classifier would be helpful
to bootstrap this change, as it could predict a purpose for any
cookie that does not have one specified. This would help the
web transition from the status quo to a future with transparent
cookie declarations. Until major browser vendors take action,
CookieBlock can help enforce users’ cookie policies on any
website, even for users outside the European Union.
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dataset by querying Cookiepedia, but we decided for scraping
CMPs instead for multiple reasons, which we list below.

The CMP descriptions are a primary source with the
purpose either assigned or confirmed by the website
administrator. Cookiepedia is a third-party, and despite
the purposes being assigned by experts, they do not
have complete information about the intentions the web
administrators had.

Scraping CMPs also allows us to analyze their com-
pliance, which motivates client-side cookie policy
enforcement.
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Table 5: Performance of XGBoost when applied on our re-
duced cookie dataset labeled using Cookiepedia.

Table 6: Set of hyperparameters used for training the model
with XGBoost, listed here for reproducibility.

XGBoost Necessary Functional Analytics Advertising
F1 score 86.2% 59.3% 95.2% 89.0%
+1.1% +4.7% +1.2% +1.1%

Micro F1 (accuracy): 89.2% £+ 1.3%

* Cookiepedia identifies cookies by their name and not
by the more specific identifier of the name and domain.
This means that cookies of the same name used by
different domains for different purposes would cause
noise for training.

* For a long period during the course of our study,
Cookiepedia was not accessible, and as such, it would
have been a single point of failure for our data collection.
Individual sites with CMPs can also be inaccessible,
but their distributed nature ensures that we can always
collect sufficient dataset for training.

A.2 Classification using Cookiepedia labels

To better compare our approach with the work of Hu et al.
from [25], we applied a sequence of transformations to bring
our model assumptions closer to theirs. Namely, we applied
the following changes:

1. We replace the ground truth labels of our cookie dataset
with labels queried from Cookiepedia. We discard all
cookies for which Cookiepedia does not have a category,
thus reducing the size of our dataset by 21%.

2. We reduce the number of our training samples further by
randomly sampling a single cookie for each unique name.
This is necessary because Cookiepedia always assigns
the same label to the same name, while our dataset from
CMPs could contain cookies of the same name with
different purposes. Having many duplicate names would
falsify the validation score.

3. We train an XGBoost model on the new dataset, and
report the per-class F1 score, and overall micro F1 score.

The resulting values are presented in Table 5. Notice that
our micro F1 score, which in this setting is equivalent to the
accuracy, is increased from 87.2% to 89.2%. Furthermore,
this F1 score is better than the F1 score of 86.7% from [25],
which can be recomputed from the reported confusion matrix,
but lower than their stated micro F1 score of 94.6%.

Parameter name Value
Booster type ‘gbtree’
Tree method ‘hist’

Learning objective
Evaluation metrics

‘multi:softprob’,
‘merror’ and ‘mlogloss’,

Learning rate 0.25
Maximum tree depth 32
Minimum split loss 1

Minimum child weight 3

Maximum delta step 0 (no limit)
Subsample ratio 1.0

Alpha (L1 regularizer) 2

Lambda (L2 regularizer) 1

Tree growth policy ‘depth-wise’
Maximum bins 256

Table 7: Per-difference features overview: All features that are
extracted as comparisons between two contiguous updates,
sorted by timestamp.

Feature Name Description

Expiry difference (1) Expiration time difference in seconds between two updates.
“Difflib” similarity (1) Similarity ratio between cookies, as measured by “difflib”.
Levenshtein distance (1) Levenshtein distance between two cookie updates.

B Feature extraction and hyperparameters

In the following, we provide more details about the feature
extraction and the model’s hyperparameters. For the most
detailed overview, please refer to the extended report [3] and
project documentation.’

Feature types. We extract three major types of features
from the cookies. First, from each cookie, we extract features
from its attributes, presented in Table 8. Second, with each
cookie update, we store the updated features listed in Table 9.
The number of updates used for the feature extraction is
configurable. By default we use two, so that the classification
does not require longer observations of the cookie, which
is a trade-off for model performance. Finally, starting with
the first update, we compute the difference to the previous
version of the cookie, which are the per-difference features
we show in Table 7.

Classifier hyperparameters. In Table 6 we show the
parameters we selected for training the XGBoost model. They
were selected through the use of a randomized grid-search
and 5-fold cross-validation.

5The feature documentation and classifier are available at:
https://github.com/dibollinger/CookieBlock-Consent-Classifier.


https://github.com/dibollinger/CookieBlock-Consent-Classifier

Table 8: Per-cookie features overview: All features that are
extracted once per unique cookie. Entries marked with a *
may cause issues when used within the context of a browser
extension. In the parentheses after the name, we show the
number of vector entries the feature takes.

Feature name Description

Top names (500) One-hot vector of the most common cookie names.
Top domains (500) One-hot vector of the most common domains.

Pattern names (50) One-hot vector of the most common name patterns.
Name tokens (500) Binary indicator of English tokens in the name.

IAB vendor (1) Binary indicator, true if domain is an IAB vendor.
Domain period (1) Indicates whether the domain starts with a period char.
Third-party* (1) Whether the cookie originates from a third-party.
Non-root path (1) Whether the cookie path is not the root path.

Update count™ (1) Total number of updates encountered for this cookie.
Host-only flag (1) Whether the “host-only” flag is set.

HTTP-only changed (1)  Whether the “HTTP-only” flag changed in any update.
“Secure” changed (1) Whether the “secure” flag changed in any update.

“Same-Site” changed (1)  Whether the “same-site” flag changed in any update.
“Session” changed (1) Whether the “session” flag changed in any update.

“Expiry” changed (1) ‘Whether the expiry changed by 1+ days between updates.
Content changed (1) Whether the cookie content changed between updates.
Levenshtein total (2) Mean and StdDev of Levenshtein dist. between updates.
Difflib total (2) Mean and StdDev of Difflib similarity between updates.
Length total (2) Mean and StdDev of the cookie value length in bytes.
Compressed total (2) Mean and StdDev of the compressed cookie value length.
Entropy total (2) Mean and StdDev of the Shannon Entropy of values.

Table 9: Per-update feature overview: All features that are
extracted once per cookie update. The number of updates used
for extraction can be specified separately.

Feature Name Description

“HTTP-only” flag (1) Binary indicator of whether the “http-only” flag is set.

“Secure” flag (1) Binary indicator of whether the “secure” flag is set.
“Session” flag (1) Whether the cookie is a session cookie or not.
“Same-Site” flag (3) Whether “None”, “Lax” or “Strict” is set.
Expiration time (1) Ordinal feature, contains the expiry in seconds.
Expiration intervals (8)  Interval checks on expiry, e.g., > 1 day, < 1 week.
Content length (1) Total size of the cookie’s value in bytes.
Compressed length (1) Size of the cookie value after z/ib compression.
Compression rate (1) Reduction of the size after z/ib compression.
Shannon entropy (1) Shannon entropy of the cookie update’s value.

URL encoding (1) Indicates whether the cookie value is URL encoded.
Base64 encoding (1) Indicates that the value is potentially Base64 encoded.
Delimiter separation (9)  Delimiter (CSV) separation type and #separators.
Contains JSON (1) Whether the value contains a JSON object.

Content terms (50) Binary indicator of English tokens in the value.
CSV contents (5) Try to split as CSV and detect value types within.
JS contents (11) Try to split as JSON and detect value types within.
Numerical content (1) Whether the value consists entirely of digits.

Hexadecimal content (1) Whether the value represents a hexadecimal number.
Alphabetical content (1)  Whether the value is entirely alphabetical.

Identifier content (1) Whether the value is a valid code identifier.

All uppercase (1) Whether the cookie value has all uppercase letters.
All lowercase (1) Whether the cookie value has all lowercase letters.
Empty content (1) Whether the value of the cookie is empty.

Boolean content (1) Whether the cookie value is a boolean of some form.
Locale content (1) Whether the value includes a country identifier.
Timestamp content (1) Whether a UNIX timestamp is in the cookie value.
Date content (1) Whether the value contains a date term or identifier.
URL content (1) Whether the value contains a URL of some form.

UUID content (6) Which UUID variant, if present in the value.




C Artifact Appendix
C.1 Abstract

Our work in this paper consists of four separate components
which perform different functions but depend on each others
outputs. These components are as follows:

1. The cookie consent web crawlers. The web crawler
component uses a series of Python scripts and the Open-
WPM framework gather browser cookies and associated
purpose categories from websites. The output of this
component is a dataset of browser cookies including
category labels.

2. The feature extraction and XGBoost classifier. This
component uses the collected dataset of cookies and
transforms it into a sparse matrix representation, using
all properties of a browser cookie in the process. This
sparse matrix, combined with the category labels, is then
used to train a decision tree model using the XGBoost
algorithm. This allows us to predict purpose categories
for previously unseen cookies.

3. The GDPR violation detection scripts. Using knowl-
edge of the articles of the GDPR, and the cookie dataset
collected by the consent web crawler, these scripts iden-
tify potential GDPR violations on websites in the wild.
The output of this component is a dataset of statistics
detailing the prevalence of potential GDPR violations,
based on 8 different methods of analysis.

4. The "CookieBlock' browser extension. This addon
provides a privacy protection mechanism for users which
automatically deletes cookies that they did not consent
to. The extension uses the classifier as the central engine
to decide which cookie belongs to what category. It
supports Chromium-based browsers as well as Firefox.

The components have been constructed using Python 3 and
JavaScript. The webcrawler in particular is based on the
OpenWPM framework version 0.12.0, and requires a Linux
installation. For this reason, we provide an Ubuntu VM that
comes with all dependencies preinstalled. We also provide
a precomputed dataset of statistics and metrics from our
previous execution of these components. This includes the
candidate domains used for the web crawl, the complete set
of performance metrics for the XGBoost classifier and the
Cookiepedia baseline, as well as all statistics and data on the
GDPR Violation Detection.

No specialized hardware is required to reproduce the results
of the paper, but it requires at least §GB of RAM, and 40 GB
of disk space. Due to the nature of the dataset collection,
results may differ significantly if reproduced at a later date.
Instructions on how to compare and validate the results are
provided in the form of a detailed “README” document,
containing a step-by-step guide detailing each part of the
process. This is intended to help the reader better understand
the results presented in the paper.

C.2 Artifact check-list (meta-information)

* Data set: Yes, included. The data set and VM are found at:
https://doi.org/10.5281/zenodo.5568491

* Run-time environment: The OpenWPM crawler only runs
on Linux. The other scripts and the browser extension work on
Windows and Linux. An Ubuntu VM image is included.

e Hardware: At least 8GB of RAM needed, and approximately
40 GB of disk space. Additional CPU cores can speed up the
computation, but it works with one core.

* Run-time state: The results are dependent on the website con-
tent, as well as the CMP implementations, which may change
over time, and are out of our control.

* Execution: With the complete input dataset, the web crawls
alone may take between 1 and 2 weeks to complete. With a
reduced dataset, the full process takes a few hours.

e Metrics: Accuracy, precision, recall, macro-precision, macro-
recall and F1 score.

¢ Output: Printed to the console, stored in SQLite databases,
JSON and log files. Expected results are included for each step
of the process.

« Experiments: Collection of the browser cookie dataset, the
training and evaluation of the classifier, the GDPR Violation
detection and the generation of the extension’s classifier model
can all be replicated using commands manually input by the
user. We provide a detailed step-by-step guide on the process.

¢ How much disk space required (approximately)?: At least
40 GB is required for the VM. While the included datasets are
much smaller than this, the data that is collected and generated
may quickly take up disk space.

* How much time is needed to prepare workflow (approxi-
mately)?: When installing the VM image, only a few minutes.
When setting the scripts up natively, at most an hour.

¢ How much time is needed to complete experiments (ap-
proximately)?: A few hours.

* Publicly available?: Yes, all components are publicly avail-
able on Github. Links are provided in the step-by-step guide.

¢ Code licenses (if publicly available)?: The OpenWPM
crawler is GPL3 licensed. Other components are MIT licensed.

« Data licenses: CC by 4.0 International

e Archived: Yes, available at: https://doi.org/10.5281/
zenodo.5568491

C.3 Description
C.3.1 How to access

The artifact is publicly available and can be downloaded as a
self-contained package from:
https://doi.org/10.5281/zenodo.5568491

It includes a VM image that has all components preinstalled,
as well as a README that guides the user to replicate and
reproduce the results. The document also contains links to
the original repositories, should the user intend to install the
scripts natively.


https://doi.org/10.5281/zenodo.5568491
https://doi.org/10.5281/zenodo.5568491
https://doi.org/10.5281/zenodo.5568491
https://doi.org/10.5281/zenodo.5568491

C.3.2 Hardware dependencies

The artifact requires no specialized hardware to run. A single
core machine with 8GB of RAM and mor than 40 GB of disk
space should be enough. The VM requires considerable size
when set up, which is due to the libraries that are used, and
because of the data collection that needs to be performed to
replicate the results.

C.3.3 Software dependencies

If the VM image is used, only a virtualization product such
as VirtualBox or VMWare is required. All other components
should be ready to use. For native installations, some Python
and Node libraries are required. The exact details are provided
within the step-by-step guide included as part of the artifact.

C.4 Installation

The recommended method of setting up the artifact is to load
the virtual machine image using VirtualBox. All further steps
are documented in great detail within the README file of
the artifact. In the interest of space, we will not repeat the
steps here, and instead refer to the README.

C.5 Evaluation and expected results

First, we crawled 6M domains from a Tranco list collected on
May 5th. Out of these, 30k were found to have the selected
CMPs on them. From these websites, we collected a ground
truth of 304k cookies with labels, which we used to train
an XGBoost model with 84.4% weighted accuracy. In an
analysis of the 30k websites, we found that a vast majority,
namely 94.7% of them, contain at least one potential privacy
violation. All the steps to reproduce these results together
with the intermediate files of our results are documented in
great detail within the README file of the artifact.

Note that the changes to websites content cause variance
in the results. We try to document this variance below:

1. Variance for the cookie consent web crawlers. Within
the large Tranco list, the number of websites with CMPs
remains roughly the same over time. Among the more
popular sites, the percentage of websites using the se-
lected CMPs is higher, allowing the use of smaller in-
put files. In the paper, we observed suitable CMPs on
0.63% of the Tranco 6M list (see Sections 2.1 and 2.2
of the paper). In the Master Thesis report, it was 1.6%
for Tranco 1M Worldwide or 1.25% for Tranco Europe,
and BuiltWith website reports the selected CMPs in over
3% of the top 1M websites. We observed on average 22
cookies with label per website, which depends strongly
on the number of sub-pages visited for each site (dis-
cussed in the par. 3 of Section 2.3. of the paper). We did
not measure the variance for the settings in the crawler,

but the results should be consistent as long as you run
the provided crawler from within EU.

. Variance in the XGBoost classifier. The feature extrac-

tion is deterministic, extracting the same features with
each execution. Training the model appears to be stable,
as we observe a standard deviation of 0.23% in the accu-
racy. The model’s balanced accuracy will drop from the
reported 84.4% if you use a smaller training dataset. Ad-
ditional standard deviations for each metric are provided
in the dataset.

. Variance in the GDPR violation detection scripts.

The observed violations depends on website selection,
but the results between the master thesis report and the
paper varied by 4% for the number of websites with at
least one type of violation. For individual violations this
variance can be higher.
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