
Enforceable Security
Policies

David Basin
ETH Zurich

Structure and Credits

� Tutorial in two parts, with two speakers

Enforcement: David Basin
Monitoring: Felix Klaedtke

� Tutorial focus: partial survey, with primary focus on our work

� Material online

Slides: www.inf.ethz.ch/personal/basin/teaching/teaching.html

Papers: www.inf.ethz.ch/personal/basin/pubs/pubs.html

� Collaborators

Enforcement: Vincent Jugé, Eugen Zălinescu
Monitoring: Matúš Harvan, Srdjan Marinovic, Samuel Müller,

Eugen Zălinescu

2

www.inf.ethz.ch/personal/basin/teaching/teaching.html
www.inf.ethz.ch/personal/basin/pubs/pubs.html

Road Map

1. Motivation

2. Enforcement by execution monitoring

3. Generalized setting

4. Conclusions

3

Policy Enforcement Mechanisms are Omnipresent

4

Enforcing Policies at all Hardware/Software Layers

� Memory management hardware

� Operating systems and file systems

� Middleware and application servers

� Network traffic: firewalls and VPNs

� Applications: databases, mail servers, etc.

5

Policies Come in all Shapes and Sizes

History-based Access Control

Chinese
Wall Information

Flow

Separation of Duty

Business
Regulations

Data Usage

Privacy

. . .

6

So Which Policies can be Enforced?

7

Examples
AC / General

policies

� Only Alice may update customer data.

� Employees may overspend their budget by 50% provided they
previously received managerial approval.

� Bob may make up to most 5 copies of movie XYZ.

..

� A login must not happen within 3 seconds after a fail

� Each request must be followed by a deliver within 3 seconds

8

Examples
AC / General

policies

� Only Alice may update customer data.

� Employees may overspend their budget by 50% provided they
previously received managerial approval.

� Bob may make up to most 5 copies of movie XYZ.
..

� A login must not happen within 3 seconds after a fail

� Each request must be followed by a deliver within 3 seconds

8

Relevance of Research Question

� Fundamental question about mechanism design.

∗∗∗ Focus: conventional mechanisms that operate by monitoring execution
and preventing actions that violate policy.

∗∗∗ Given omnipresence of such mechanisms and diversity of policies it
is natural to ask: which policies can be enforced?

� Enforce versus monitor

∗∗∗ Enforcement often combined with system monitoring.

∗∗∗ Why do both? Defense in depth? Accountability? Something deeper?

� Fun problem. Nice example of applied theory.

∗∗∗ Temporal reasoning, logic, formal languages, complexity theory

9

Road Map

1. Motivation

2. Enforcement by execution monitoring

3. Generalized setting

4. Conclusions

10

Enforcement by Execution Monitoring

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

So which policies are enforceable?

system

enforcement
mechanism

allowed
action?

11

Enforcement by Execution Monitoring

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

So which policies are enforceable?

system

enforcement
mechanism

allowed
action?

11

Characterizing EM enforceability — formal setup

� Let Ψ denote universe of all possible finite/infinite sequences.

∗∗∗ Represents executions at some abstraction level.

∗∗∗ E.g., sequences of actions, program states, state/action pairs, ...

∗∗∗ Example: request · tick · deliver · tick · tick · request · deliver · tick . . .

� A security policy P is specified as a predicate on sets of executions,
i.e., it characterizes a subset of 2Ψ.

� A system S defines a set ΣS ⊆ Ψ
of actual executions.

� S satisfies P iff ΣS ∈ P. S

P Ψ

Σ

12

Characterizing EM enforceability: trace properties

� EMs work by monitoring target execution. So any enforceable policy
P must be specified so that

Π ∈ P ⇐⇒ ∀σ ∈ Π. σ ∈ P̂ .

P̂ formalizes criteria used by EM to decide whether a trace σ is
acceptable, i.e., whether or not to abort (“execution cutting”).

� Hence Requirement 1: P must be a property formalizable in terms
of a predicate P̂ on executions.

A set is a property iff set membership is determined by each element
alone and not by other elements of the set.

� Contrast: properties of behaviors versus properties of sets of
behaviors (hyper-properties).

13

Not all security policies are trace properties
Noninterference (Goguen & Meseguer, 1982)

� Noninterference states that commands
executed by users holding high clearances
have no effect on system behavior
observed by users holding low clearances. inputs

Low
outputs
Low

outputs
HighHigh

inputs

� Not a trace property.

Whether a trace is allowed by a policy depends on whether another
trace (obtained by deleting command executions by high users) is
also allowed.

� It is a property of systems, but a hyper-property of behaviors.

14

Characterization (cont.)

� Mechanism cannot decide based on possible future execution.

tick · tick · BadThing · tick · tick · GreatThing · tick . . .

⇑ ???

� Consequence: (Recall Π ∈ P ⇔ ∀σ ∈ Π. σ ∈ P̂)

∗∗∗ Suppose σ′ is a prefix of σ, such that σ′ 6∈ P̂, and σ ∈ P̂.

∗∗∗ Then policy P is not enforceable since we do not know whether system
terminates before σ′ is extended to σ.

� Requirement 2, above, is called prefix closure.

∗∗∗ If a trace is not in P̂, then the same holds for all extensions.

∗∗∗ Conversely if a trace is in P̂, so are all its prefixes.

� Moreover, Requirement 3, finite refutability: If a trace is not in P̂,
we must detect this based on some finite prefix.

15

Characterization (cont.)

� Let τ ≤ σ if τ is a finite prefix of σ.

� Requirement 2: prefix closure.

∀σ ∈ Ψ. σ ∈ P̂ → (∀τ ≤ σ. τ ∈ P̂)

� Requirement 3: finite refutability.

∀σ ∈ Ψ. σ 6∈ P̂ → (∃τ ≤ σ. τ 6∈ P̂)

� Sets satisfying all three requirements are called safety properties.

16

Safety properties — remarks

� Safety properties are a class of trace properties.
Essentially they state that nothing bad ever happens.

� Finite refutability means if bad thing occurs, this happens after
finitely many steps and we can immediately observe the violation.

� Examples
∗∗∗ Reactor temperature never exceeds 1000o C .

∗∗∗ If the key is not in the ignition position, the car will not start.

∗∗∗ You may play a movie at most three times after paying for it.

∗∗∗ Any history-based policy depending on the present and past.

� Nonexample (liveness): If the key is in the ignition position, the car
will start eventually.

Why?

This cannot be refuted on any finite execution.

17

Safety properties — remarks

� Safety properties are a class of trace properties.
Essentially they state that nothing bad ever happens.

� Finite refutability means if bad thing occurs, this happens after
finitely many steps and we can immediately observe the violation.

� Examples
∗∗∗ Reactor temperature never exceeds 1000o C .

∗∗∗ If the key is not in the ignition position, the car will not start.

∗∗∗ You may play a movie at most three times after paying for it.

∗∗∗ Any history-based policy depending on the present and past.

� Nonexample (liveness): If the key is in the ignition position, the car
will start eventually.

Why? This cannot be refuted on any finite execution.

17

Formalization consequences

� Formalization shows all EM-enforceable properties are safety.

∗∗∗ So if set of executions for a security policy P is not a safety property,
then no EM enforcement mechanism exists for P.

∗∗∗ E.g., mechanism grants access if a certificate is delivered in future.

� EM-enforceable policies can be (conjunctively) composed by running
mechanisms in parallel.

� EM mechanisms can be implemented by automata.

∗∗∗ Büchi automata are automata on infinite words.

∗∗∗ A variant, security automata, accept safety properties.

18

Security automata

� A security automaton A ≡ 〈Q,Q0, I , δ〉 is defined by:

∗∗∗ A countable set Q of automaton states.

∗∗∗ A set Q0 ⊆ Q of initial states.

∗∗∗ A countable set I of input symbols.

∗∗∗ A transition function, δ : (Q × I)→ 2Q .

� Sequence s1, s2, ... of input symbols processed by run Q0,Q1, . . . of
automaton, where:

∗∗∗ Q0 is set of initial states (as above).

∗∗∗ Qi+1 =
⋃

q∈Qi
δ(q, si), defines set of states reachable from those in Qi by

reading input symbol si .

∗∗∗ If Qi+1 empty, then input si is rejected, otherwise accepted.

� Language accepted by A is set of finite and infinite sequences.
Set is prefix closed and any rejected string has a rejected finite prefix.

19

Example: a simple
information flow policy qfrqnfr

not FileRead not Send

FileRead

� Example (e.g., for mobile code): messages cannot be sent after files
have been read.

� Automaton

∗∗∗ States: “no file read” (initial state) and “file read”.

∗∗∗ δ specified by edges labeled by (computable) predicates on the set I .

∗∗∗ Transition in state Q on symbol s ∈ I to {qj | qi ∈ Q ∧ pij(s)},
where pij denotes predicate labeling edge from node qi to qj .

� Input here determined by problem domain.
E.g., transition predicate FileRead satisfied by input symbols (system
execution steps) that represent file read operations.

20

Security automata as an enforcement mechanism

� EM-enforceable policies can be specified by security automata.

qfrqnfr

not FileRead not Send

FileRead

state vars state:{nfr,fr} initial nfr

transitions not FileRead ∧ state = nfr → skip

FileRead ∧ state = nfr → state := fr

not Send ∧ state = fr → skip

Schneider suggests the use of guarded commands here.

� Policy enforced by running automaton in parallel with system. Each
step system is about to make generates an input symbol for automaton.

1. If automaton can make a transition, then system may perform
corresponding step and automaton state is updated.

2. If automaton cannot make transition, then system execution is aborted
(or an exception is thrown or ...).

21

Enforcement remarks

� Specification using guarded commands is rather primitive
∗∗∗ Lacks abstractions for specifying, structuring, and composing designs and

support for refinement and transformation.

∗∗∗ Alternative: use process calculi and data-type specification languages
See D.B./Olderog/Sevinc paper in references.

� Enforcement (PEP) can be formalized as synchronous parallel
composition in processes calculi

SecSys = (UnProtectedSys [|A|] SecAut) \ B

Question: how useful is this separation of concerns in practice?

� Enforcement in practice by running automata in trusted reference
monitor or weaving automaton checks into target system.

See Erlingsson, Schneider, SASI Enforcement of Security Policies: a
Retrospective, NSPW 1999.

22

Road Map

1. Motivation

2. Enforcement by execution monitoring

3. Generalized setting

4. Conclusions

23

Story so far...

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

Main Concerns

� enforceable policy
=⇒=⇒=⇒
666⇐=⇐=⇐=

safety property

� match with reality?

system

enforcement
mechanism

allowed
action?

24

Story so far...

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

Main Concerns

� enforceable policy
=⇒=⇒=⇒
666⇐=⇐=⇐=

safety property

� match with reality?

system

enforcement
mechanism

allowed
action?

24

Follow-Up Work
� SASI enforcement of security policies

Ú. Erlingsson and F. Schneider, NSPW’99

� IRM enforcement of Java stack inspection
Ú. Erlingsson and F. Schneider, S&P’00

� Access control by tracking shallow execution history
P. Fong, S&P’04

� Edit automata: enforcement mechanisms for run-time security properties
J. Ligatti, L. Bauer, and D. Walker, Int. J. Inf. Secur., 2005

� Computability classes for enforcement mechanisms
K. Hamlen, G. Morrisett, and F. Schneider, ACM Trans. Inf. Syst. Secur., 2006

� Run-time enforcement of nonsafety policies
J. Ligatti, L. Bauer, and D. Walker, ACM Trans. Inf. Syst. Secur., 2009

� A theory of runtime enforcement, with results
J. Ligatti and S. Reddy, ESORICS’10

� Do you really mean what you actually enforced?
N. Bielova and F. Massacci, Int. J. Inf. Secur., 2011

� Runtime enforcement monitors: composition, synthesis and enforcement abilities
Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, Form. Methods Syst. Des., 2011

� Service automata
R. Gay, H. Mantel, and B. Sprick, FAST’11

� Cost-aware runtime enforcement of security policies
P. Drábik, F. Martinelli, and C. Morisset, STM’12

� . . . 25

Match with reality ???

� A login must not happen within 3 seconds after a fail

� Each request must be followed by a deliver within 3 seconds

Both are safety properties.

Can we enforce both by preventing events causing policy
violations from happening?

26

Some Auxiliary Definitions

� Σ∗ and Σω, are the finite and infinite sequences over alphabet Σ.
Σ∞ := Σ∗ ∪ Σω.

� For σ ∈ Σ∞, denote set of its prefixes by pre(σ) and set of its finite
prefixes by pre∗(σ). I.e., pre∗(σ) := pre(σ) ∩ Σ∗.

� The truncation of L ⊆ Σ∗ is the largest prefix-closed subset of L.

trunc(L) := {σ ∈ Σ∗ | pre(σ) ⊆ L}

� Its limit closure contains both the sequences in L and the infinite
sequences whose finite prefixes are all in L.

limitclosure(L) := L ∪ {σ ∈ Σω | pre∗(σ) ⊆ L}

� For L ⊆ Σ∗ and K ⊆ Σ∞, their concatenation is defined by:

L · K := {στ ∈ Σ∞ | σ ∈ L and τ ∈ K}
27

Refined Abstract Setting
Accounting For Controllability

Actions

Set of actions Σ = O ∪ C:

� O = {observable actions}
� C = {controllable actions}

Traces

Trace universe U ⊆ Σ∞:

� U 6= ∅
� U prefix-closed

Example: request · tick · deliver · tick · tick · request · deliver · tick . . . ∈ U

Requirements (on an Enforcement Mechanism)

� Soundness: prevents policy-violating traces

� Transparency: allows policy-compliant traces

� Computability: makes decisions

28

Refined Abstract Setting
Accounting For Controllability

Actions

Set of actions Σ = O ∪ C:

� O = {observable actions}
� C = {controllable actions}

Traces

Trace universe U ⊆ Σ∞:

� U 6= ∅
� U prefix-closed

Example: request · tick · deliver · tick · tick · request · deliver · tick . . . ∈ U

Requirements (on an Enforcement Mechanism)

� Soundness: prevents policy-violating traces

� Transparency: allows policy-compliant traces

� Computability: makes decisions

28

Formalization

system

enforcement mechanism

action
an

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

29

Formalization

system

enforcement mechanism

action
an

DTM

. . .

a1 a2 . . . an−1 an #

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

29

Formalization

system

enforcement mechanism

action
an+1

DTM

. . .

a1 a2 . . . an−1 an an+1

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

29

Formalization

system

enforcement mechanism

action
an+1

DTM

. . .

a1 a2 . . . an−1 an an+1

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”
29

Examples

Setting

� Controllable actions: C = {login, request,deliver}
� Observable actions: O = {tick, fail}
� Set of actions: Σ = C ∪O

� Trace universe: U = Σ∗ ∪ (Σ∗ · {tick})ω

Policies

P1. A login must not happen within 3 seconds after a fail

P2. Each request must be followed by a deliver within 3 seconds

30

P1 is Enforceable
A login must not happen within 3 seconds after a fail

� Trace universe U ⊆ Σ∞ consists of all traces containing infinitely
many tick actions and their finite prefixes.

For simplification, assume actions do not happen simultaneously and,
when time progresses by 1 time unit, system sends tick action. However,
more than 1 action can happen in time unit.

� Define P1 as the complement with respect to U of limit closure of{
a1 . . . an ∈ Σ∗

∣∣ ∃i , j ∈ {1, . . . , n} with i < j such that ai = fail,
aj = login, and ai+1 . . . aj−1 contains ≤ 3 tick actions

}
� Straightforward to define a Turing machine M as required

∗∗∗ Whenever the enforcement mechanism observes a fail action, it prevents
all login actions until it has observed sufficiently many tick actions.

∗∗∗ This requires that login actions are controllable, whereas tick and fail
actions need only be observed by the enforcement mechanism.

31

P2 is not Enforceable
Each request must be followed by a deliver within 3 seconds

� Define P2 as the complement with respect to U of limit closure of{
a1 . . . an ∈ Σ∗

∣∣ ∃i , j ∈ {1, . . . , n} with i < j such that ai = request and
ai+1 . . . aj contains no deliver action and > 3 tick actions

}
� P2 not (U,O)-enforceable.

Intuition: Mechanism observing a request, cannot terminate the
system in time to prevent a policy violation when no deliver occurs
within the given time bound as time’s progression is uncontrollable.

� More precisely:
∗∗∗ Assume exists TM M as required, which must accept request tick3 ∈ P2.

N.B. M must accept this since terminating system before observing the
fourth tick action would violate transparency requirement.

∗∗∗ By condition (ii) of Def. M must also accept request tick4 6∈ P2

32

Example: Separation of Duties in RBAC

� (Dynamic) SOD: a user may be a member of any two exclusive
roles as long as he has not activated both in the same session.

� Formalization: user activates roles and admin changes
exclusiveness relation for roles.

� Policy enforceable only if both actions are controllable

∗∗∗ Mechanism must prevent an admin action that makes two roles exclusive
whenever these roles are both currently activated in some user’s session

� Simpler to enforce the following slightly weaker policy

∗∗∗ (Weak dynamic) SOD: a user may only activate a role in a session if he
is currently a member of that role and the role is not exclusive to any
other currently active role in the session.

∗∗∗ Enforcement requires only activates action to be controllable.

∗∗∗ Changes action just observed and used to update exclusiveness relation.

33

The Evolution of Safety

� L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

� B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ /∈ P → ∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P

∗∗∗ Violations are finitely observable and irremedial.
∗∗∗ Reformulates what we previously saw.

� Folklore: A property P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ /∈ P → ∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

� T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω

∀σ ∈ U. σ /∈ P → ∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩U

34

The Evolution of Safety

� L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

� B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ /∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<i · τ /∈ P

∗∗∗ Violations are finitely observable and irremedial.
∗∗∗ Reformulates what we previously saw.

� Folklore: A property P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ /∈ P → ∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

� T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω

∀σ ∈ U. σ /∈ P → ∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩U

34

The Evolution of Safety

� L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

� B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ /∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<i · τ /∈ P

∗∗∗ Violations are finitely observable and irremedial.
∗∗∗ Reformulates what we previously saw.

� Folklore: A property P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ /∈ P → ∃i ∈ N. ∀τ ∈ Σ∞. σ<i · τ /∈ P

� T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω

∀σ ∈ U. σ /∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<i · τ /∈ P ∩U

34

The Evolution of Safety

� L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

� B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ /∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<i · τ /∈ P

∗∗∗ Violations are finitely observable and irremedial.
∗∗∗ Reformulates what we previously saw.

� Folklore: A property P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ /∈ P → ∃i ∈ N. ∀τ ∈ Σ∞. σ<i · τ /∈ P

� T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω

∀σ ∈ U. σ /∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<i · τ /∈ P ∩U

34

Safety
(with Universe and Observables)

� Intuition

∗∗∗ P is safety in U and
∗∗∗ Bad things are not caused by elements from O.

� Formalization: A property P ⊆ Σ∞ is (U,O)-safety if

∀σ ∈ U. σ /∈ P → ∃i ∈ N. σ<i /∈ Σ∗ ·O∧∀τ ∈ Σ∞. σ<i · τ /∈ P ∩U

∗∗∗ Generalizes previous defs: O = ∅ and Σω and Σ∞ are instances of U.

∗∗∗ As U and O become smaller it is more likely a trace set P is (U,O)-safety.
(Indeed, for U = ∅, P is always (U,O)-safety).

� Liveness also generalizes to this setting
(“something good can happen in U after actions not in O”)

35

Safety
(with Universe and Observables)

� Intuition

∗∗∗ P is safety in U and
∗∗∗ Bad things are not caused by elements from O.

� Formalization: A property P ⊆ Σ∞ is (U,O)-safety if

∀σ ∈ U. σ /∈ P → ∃i ∈ N. σ<i /∈ Σ∗ ·O∧∀τ ∈ Σ∞. σ<i · τ /∈ P ∩U

∗∗∗ Generalizes previous defs: O = ∅ and Σω and Σ∞ are instances of U.

∗∗∗ As U and O become smaller it is more likely a trace set P is (U,O)-safety.
(Indeed, for U = ∅, P is always (U,O)-safety).

� Liveness also generalizes to this setting
(“something good can happen in U after actions not in O”)

35

Example

P1. A login must not happen within 3 seconds after a fail

P2. Each request must be followed by a deliver within 3 seconds

� P1 is ∞-safety.

∗∗∗ If trace τ violates P1 then violation has position where login is executed.

∗∗∗ So ∃i ≥ 1 with τ<i−1 ∈ P1, τ<i 6∈ P1, and τ<i ends with a login action.

∗∗∗ All extensions of τ<i still violates P1.

� P2 is also ∞-safety. Argument analogous with violations due to tick .

� But P1 is (U,O)-safety & P2 is not (U,O)-safety, for O = {tick, fail}
∗∗∗ P1 violated by executing login ∈ C. No policy compliant extensions.

∗∗∗ For P2 simply consider:

request · tick · tick · tick · tick . . .

36

Aside on other Notions of Safety

Model-checking community has looked at numerous fragments and
variants of safety properties.

� Language L ⊆ Σω is k-checkable for k ≥ 1 if there is a language
R ⊆ Σk (of allowed subwords) such that w belongs to L iff all length
k subwords of w belong to R. (Kupferman, Lustig, Vardi, 2006)

∗∗∗ A property is locally checkable if its language is k-checkable for some k.

∗∗∗ Results in practice, e.g., from bounded past/future constraints.

∗∗∗ Good for runtime verification: memory use bounded as monitor only
requires access to last k computation cycles.

� Safety in reactive (or open) system setting.
∗∗∗ Designed for systems interacting with an environment.

∗∗∗ Reactive safety (Ehlers and Finkbeiner, 2011): system stays in allowed
states from which environment cannot force it out.

∗∗∗ See related environment-friendly safety (Kupferman and Weiner, 2012).

37

Safety and Enforceability

Theorem

Let P be a property and U a trace universe with U ∩ Σ∗ decidable.

P is (U,O)-enforceable ⇐⇒⇐⇒⇐⇒
(1) P is (U,O)-safety,

(2) pre∗(P ∩U) is a decidable set, and

(3) ε ∈ P.

Proof uses characterization that

P is (U,O)-safety iff limitclosure(pre∗(P ∩U) ·O∗) ∩U ⊆ P.

Schneider’s “characterization:” only =⇒=⇒=⇒ for (1)
where U = Σ∞ and O = ∅

38

Realizability of Enforcement Mechanisms

Fundamental Algorithmic Problems

Given a specification of a policy.

� Is it enforceable?

� If yes, can we synthesize an enforcement mechanism for it?

� With what complexity can we do so?

Some Results

Deciding if P is (U, O)-enforceable when both U and P are given as

� FSAs is PSPACE-complete.

� PDAs is undecidable.

� LTL formulas is PSPACE-complete.

� MLTL formulas is EXPSPACE-complete.

39

Checking Enforceability and Safety
(PDA and FSA)1

Checking Enforceability

Let U and P be given as PDAs or FSAs AU and AP .

1. pre∗(L(AP) ∩ L(AU)) is known to be decidable

2. check whether ε ∈ L(AP)

3. check whether L(AP) is (L(AU), O)-safety

Checking Safety

Let U and P be given as PDAs or FSAs AU and AP .

� PDAs: undecidable in general

� FSAs: generalization of standard techniques

1Automata have 2 sets of accepting states, for finite and for infinite sequences.
40

Checking Enforceability and Safety
(LTL and MLTL)

Checking Enforceability

Let U and P be given as LTL or MLTL formulas ϕU and ϕP .

1. pre∗(L(ϕP) ∩ L(ϕU)) is known to be decidable

2. check whether ε ∈ L(ϕP)

3. check whether L(ϕP) is (L(ϕU), O)-safety

Checking Safety

Let U and P be given as LTL or MLTL formulas ϕU and ϕP .

1. translate ϕU and ϕP into FSAs AU and AP

2. use the results of the previous slide on AU and AP

3. perform all these calculations on-the-fly

41

Beyond a Yes-No Answer

� If yes . . .
synthesize an enforcement mechanism from AP and AU

(Do so by building FSA security automata for AP ∩ AU.)

� If no . . .
return a witness illustrating why P is not (U,O)-enforceable
(Construct trace in U \ P with suffix in P (violating transparency)
or that would not be prevented (violating soundness).)

� If no . . .
return the maximal trace universe V in which P is
(V,O)-enforceable

42

Road Map

1. Motivation

2. Enforcement by execution monitoring

3. Generalized setting

4. Conclusions

43

Summary

� Enforceability is a central problem in information security

∗∗∗ More generally, in building systems that meet their specification

� Research aims to characterize which policies are enforceable with
which mechanisms

∗∗∗ Here, large class of mechanisms that work by monitoring execution and
preventing actions that would result in policy violations

� Important to distinguish controllable and observable actions

∗∗∗ Leads to refined notion of enforceability

∗∗∗ And generalized notions of safety and liveness

� For appropriate formalisms, specification languages, and policies,
mechanism synthesis is possible

44

Future Work

� Enforceability for other specification languages

� How best to combine monitoring and enforcement

� Explore connections to control theory and other mechanism classes.

∗∗∗ Supervisory Control of a Class of Discrete Event Processes
Ramadage, Wonham, SIAM J. Control Optim. 1987

∗∗∗ Modeling runtime enforcement with mandatory results automata
Dolzhenko, Ligatti, Reddy, IJIS 2014.

∗∗∗ Cost-Aware Runtime Enforcement of Security Policies,
Dràbik, Martinelli, Morisset, Security and Trust Management, LNCS
7783, 2013.

45

References

� David Basin, Vincent Jugé, Felix Klaedtke and Eugen Zălinescu,
Enforceable Security Policies Revisited
ACM Transactions on Information and System Security, 2013.

� David Basin, Matúš Harvan, Felix Klaedtke and Eugen Zălinescu,
Monitoring Data Usage in Distributed Systems,
IEEE Transactions on Software Engineering, 2013.

� David Basin, Matúš Harvan, Felix Klaedtke and Eugen Zălinescu,
MONPOLY: Monitoring Usage-control Policies,
Proceedings of the 2nd International Conference on Runtime Verification
(RV), 2012.

� David Basin, Ernst-Ruediger Olderog, and Paul Sevinc,
Specifying and analyzing security automata using CSP-OZ,
Proceedings of the 2007 ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2007.

46

