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Structure and Credits

� Tutorial in two parts, with two speakers

Enforcement: David Basin
Monitoring: Felix Klaedtke

� Tutorial focus: partial survey, with primary focus on our work

� Material online

Slides: www.inf.ethz.ch/personal/basin/teaching/teaching.html

Papers: www.inf.ethz.ch/personal/basin/pubs/pubs.html

� Collaborators

Enforcement: Vincent Jugé, Eugen Zălinescu
Monitoring: Matúš Harvan, Srdjan Marinovic, Samuel Müller,

Eugen Zălinescu
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Road Map

1. Motivation

2. Enforcement by execution monitoring

3. Generalized setting

4. Conclusions

3



Policy Enforcement Mechanisms are Omnipresent
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Enforcing Policies at all Hardware/Software Layers

� Memory management hardware

� Operating systems and file systems

� Middleware and application servers

� Network traffic: firewalls and VPNs

� Applications: databases, mail servers, etc.
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Policies Come in all Shapes and Sizes

History-based Access Control

Chinese
Wall Information

Flow

Separation of Duty

Business
Regulations

Data Usage

Privacy

. . .
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So Which Policies can be Enforced?
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Examples
AC / General

policies

� Only Alice may update customer data.

� Employees may overspend their budget by 50% provided they
previously received managerial approval.

� Bob may make up to most 5 copies of movie XYZ.

......................................................................................................

� A login must not happen within 3 seconds after a fail

� Each request must be followed by a deliver within 3 seconds
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Relevance of Research Question

� Fundamental question about mechanism design.

∗∗∗ Focus: conventional mechanisms that operate by monitoring execution
and preventing actions that violate policy.

∗∗∗ Given omnipresence of such mechanisms and diversity of policies it
is natural to ask: which policies can be enforced?

� Enforce versus monitor

∗∗∗ Enforcement often combined with system monitoring.

∗∗∗ Why do both? Defense in depth? Accountability? Something deeper?

� Fun problem. Nice example of applied theory.

∗∗∗ Temporal reasoning, logic, formal languages, complexity theory
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Enforcement by Execution Monitoring

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

So which policies are enforceable?

system

enforcement
mechanism

allowed
action?
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Characterizing EM enforceability — formal setup

� Let Ψ denote universe of all possible finite/infinite sequences.

∗∗∗ Represents executions at some abstraction level.

∗∗∗ E.g., sequences of actions, program states, state/action pairs, ...

∗∗∗ Example: request · tick · deliver · tick · tick · request · deliver · tick . . .

� A security policy P is specified as a predicate on sets of executions,
i.e., it characterizes a subset of 2Ψ.

� A system S defines a set ΣS ⊆ Ψ
of actual executions.

� S satisfies P iff ΣS ∈ P. S

P Ψ

Σ
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Characterizing EM enforceability: trace properties

� EMs work by monitoring target execution. So any enforceable policy
P must be specified so that

Π ∈ P ⇐⇒ ∀σ ∈ Π. σ ∈ P̂ .

P̂ formalizes criteria used by EM to decide whether a trace σ is
acceptable, i.e., whether or not to abort (“execution cutting”).

� Hence Requirement 1: P must be a property formalizable in terms
of a predicate P̂ on executions.

A set is a property iff set membership is determined by each element
alone and not by other elements of the set.

� Contrast: properties of behaviors versus properties of sets of
behaviors (hyper-properties).
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Not all security policies are trace properties
Noninterference (Goguen & Meseguer, 1982)

� Noninterference states that commands
executed by users holding high clearances
have no effect on system behavior
observed by users holding low clearances. inputs

Low
outputs
Low

outputs
HighHigh

inputs

� Not a trace property.

Whether a trace is allowed by a policy depends on whether another
trace (obtained by deleting command executions by high users) is
also allowed.

� It is a property of systems, but a hyper-property of behaviors.

14



Characterization (cont.)

� Mechanism cannot decide based on possible future execution.

tick · tick · BadThing · tick · tick · GreatThing · tick . . .

⇑ ???

� Consequence: (Recall Π ∈ P ⇔ ∀σ ∈ Π. σ ∈ P̂)

∗∗∗ Suppose σ′ is a prefix of σ, such that σ′ 6∈ P̂, and σ ∈ P̂.

∗∗∗ Then policy P is not enforceable since we do not know whether system
terminates before σ′ is extended to σ.

� Requirement 2, above, is called prefix closure.

∗∗∗ If a trace is not in P̂, then the same holds for all extensions.

∗∗∗ Conversely if a trace is in P̂, so are all its prefixes.

� Moreover, Requirement 3, finite refutability: If a trace is not in P̂,
we must detect this based on some finite prefix.
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Characterization (cont.)

� Let τ ≤ σ if τ is a finite prefix of σ.

� Requirement 2: prefix closure.

∀σ ∈ Ψ. σ ∈ P̂ → (∀τ ≤ σ. τ ∈ P̂)

� Requirement 3: finite refutability.

∀σ ∈ Ψ. σ 6∈ P̂ → (∃τ ≤ σ. τ 6∈ P̂)

� Sets satisfying all three requirements are called safety properties.
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Safety properties — remarks

� Safety properties are a class of trace properties.
Essentially they state that nothing bad ever happens.

� Finite refutability means if bad thing occurs, this happens after
finitely many steps and we can immediately observe the violation.

� Examples
∗∗∗ Reactor temperature never exceeds 1000o C .

∗∗∗ If the key is not in the ignition position, the car will not start.

∗∗∗ You may play a movie at most three times after paying for it.

∗∗∗ Any history-based policy depending on the present and past.

� Nonexample (liveness): If the key is in the ignition position, the car
will start eventually.

Why?

This cannot be refuted on any finite execution.
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Formalization consequences

� Formalization shows all EM-enforceable properties are safety.

∗∗∗ So if set of executions for a security policy P is not a safety property,
then no EM enforcement mechanism exists for P.

∗∗∗ E.g., mechanism grants access if a certificate is delivered in future.

� EM-enforceable policies can be (conjunctively) composed by running
mechanisms in parallel.

� EM mechanisms can be implemented by automata.

∗∗∗ Büchi automata are automata on infinite words.

∗∗∗ A variant, security automata, accept safety properties.
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Security automata

� A security automaton A ≡ 〈Q,Q0, I , δ〉 is defined by:

∗∗∗ A countable set Q of automaton states.

∗∗∗ A set Q0 ⊆ Q of initial states.

∗∗∗ A countable set I of input symbols.

∗∗∗ A transition function, δ : (Q × I )→ 2Q .

� Sequence s1, s2, ... of input symbols processed by run Q0,Q1, . . . of
automaton, where:

∗∗∗ Q0 is set of initial states (as above).

∗∗∗ Qi+1 =
⋃

q∈Qi
δ(q, si ), defines set of states reachable from those in Qi by

reading input symbol si .

∗∗∗ If Qi+1 empty, then input si is rejected, otherwise accepted.

� Language accepted by A is set of finite and infinite sequences.
Set is prefix closed and any rejected string has a rejected finite prefix.
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Example: a simple
information flow policy qfrqnfr

not FileRead not Send

FileRead

� Example (e.g., for mobile code): messages cannot be sent after files
have been read.

� Automaton

∗∗∗ States: “no file read” (initial state) and “file read”.

∗∗∗ δ specified by edges labeled by (computable) predicates on the set I .

∗∗∗ Transition in state Q on symbol s ∈ I to {qj | qi ∈ Q ∧ pij(s)},
where pij denotes predicate labeling edge from node qi to qj .

� Input here determined by problem domain.
E.g., transition predicate FileRead satisfied by input symbols (system
execution steps) that represent file read operations.
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Security automata as an enforcement mechanism

� EM-enforceable policies can be specified by security automata.

qfrqnfr

not FileRead not Send

FileRead

state vars state:{nfr,fr} initial nfr

transitions not FileRead ∧ state = nfr → skip

FileRead ∧ state = nfr → state := fr

not Send ∧ state = fr → skip

Schneider suggests the use of guarded commands here.

� Policy enforced by running automaton in parallel with system. Each
step system is about to make generates an input symbol for automaton.

1. If automaton can make a transition, then system may perform
corresponding step and automaton state is updated.

2. If automaton cannot make transition, then system execution is aborted
(or an exception is thrown or ...).
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Enforcement remarks

� Specification using guarded commands is rather primitive
∗∗∗ Lacks abstractions for specifying, structuring, and composing designs and

support for refinement and transformation.

∗∗∗ Alternative: use process calculi and data-type specification languages
See D.B./Olderog/Sevinc paper in references.

� Enforcement (PEP) can be formalized as synchronous parallel
composition in processes calculi

SecSys = (UnProtectedSys [|A|] SecAut) \ B

Question: how useful is this separation of concerns in practice?

� Enforcement in practice by running automata in trusted reference
monitor or weaving automaton checks into target system.

See Erlingsson, Schneider, SASI Enforcement of Security Policies: a
Retrospective, NSPW 1999.
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Story so far...

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

Main Concerns

� enforceable policy
=⇒=⇒=⇒
666⇐=⇐=⇐=

safety property

� match with reality?

system

enforcement
mechanism

allowed
action?
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Follow-Up Work
� SASI enforcement of security policies

Ú. Erlingsson and F. Schneider, NSPW’99

� IRM enforcement of Java stack inspection
Ú. Erlingsson and F. Schneider, S&P’00

� Access control by tracking shallow execution history
P. Fong, S&P’04

� Edit automata: enforcement mechanisms for run-time security properties
J. Ligatti, L. Bauer, and D. Walker, Int. J. Inf. Secur., 2005

� Computability classes for enforcement mechanisms
K. Hamlen, G. Morrisett, and F. Schneider, ACM Trans. Inf. Syst. Secur., 2006

� Run-time enforcement of nonsafety policies
J. Ligatti, L. Bauer, and D. Walker, ACM Trans. Inf. Syst. Secur., 2009

� A theory of runtime enforcement, with results
J. Ligatti and S. Reddy, ESORICS’10

� Do you really mean what you actually enforced?
N. Bielova and F. Massacci, Int. J. Inf. Secur., 2011

� Runtime enforcement monitors: composition, synthesis and enforcement abilities
Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, Form. Methods Syst. Des., 2011

� Service automata
R. Gay, H. Mantel, and B. Sprick, FAST’11

� Cost-aware runtime enforcement of security policies
P. Drábik, F. Martinelli, and C. Morisset, STM’12
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Match with reality ???

� A login must not happen within 3 seconds after a fail

� Each request must be followed by a deliver within 3 seconds

Both are safety properties.

Can we enforce both by preventing events causing policy
violations from happening?
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Some Auxiliary Definitions

� Σ∗ and Σω, are the finite and infinite sequences over alphabet Σ.
Σ∞ := Σ∗ ∪ Σω.

� For σ ∈ Σ∞, denote set of its prefixes by pre(σ) and set of its finite
prefixes by pre∗(σ). I.e., pre∗(σ) := pre(σ) ∩ Σ∗.

� The truncation of L ⊆ Σ∗ is the largest prefix-closed subset of L.

trunc(L) := {σ ∈ Σ∗ | pre(σ) ⊆ L}

� Its limit closure contains both the sequences in L and the infinite
sequences whose finite prefixes are all in L.

limitclosure(L) := L ∪ {σ ∈ Σω | pre∗(σ) ⊆ L}

� For L ⊆ Σ∗ and K ⊆ Σ∞, their concatenation is defined by:

L · K := {στ ∈ Σ∞ | σ ∈ L and τ ∈ K}
27



Refined Abstract Setting
Accounting For Controllability

Actions

Set of actions Σ = O ∪ C:

� O = {observable actions}
� C = {controllable actions}

Traces

Trace universe U ⊆ Σ∞:

� U 6= ∅
� U prefix-closed

Example: request · tick · deliver · tick · tick · request · deliver · tick . . . ∈ U

Requirements (on an Enforcement Mechanism)

� Soundness: prevents policy-violating traces

� Transparency: allows policy-compliant traces

� Computability: makes decisions
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Formalization

system

enforcement mechanism

action
an

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”
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Examples

Setting

� Controllable actions: C = {login, request,deliver}
� Observable actions: O = {tick, fail}
� Set of actions: Σ = C ∪O

� Trace universe: U = Σ∗ ∪ (Σ∗ · {tick})ω

Policies

P1. A login must not happen within 3 seconds after a fail

P2. Each request must be followed by a deliver within 3 seconds
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P1 is Enforceable
A login must not happen within 3 seconds after a fail

� Trace universe U ⊆ Σ∞ consists of all traces containing infinitely
many tick actions and their finite prefixes.

For simplification, assume actions do not happen simultaneously and,
when time progresses by 1 time unit, system sends tick action. However,
more than 1 action can happen in time unit.

� Define P1 as the complement with respect to U of limit closure of{
a1 . . . an ∈ Σ∗

∣∣ ∃i , j ∈ {1, . . . , n} with i < j such that ai = fail,
aj = login, and ai+1 . . . aj−1 contains ≤ 3 tick actions

}
� Straightforward to define a Turing machine M as required

∗∗∗ Whenever the enforcement mechanism observes a fail action, it prevents
all login actions until it has observed sufficiently many tick actions.

∗∗∗ This requires that login actions are controllable, whereas tick and fail
actions need only be observed by the enforcement mechanism.
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P2 is not Enforceable
Each request must be followed by a deliver within 3 seconds

� Define P2 as the complement with respect to U of limit closure of{
a1 . . . an ∈ Σ∗

∣∣ ∃i , j ∈ {1, . . . , n} with i < j such that ai = request and
ai+1 . . . aj contains no deliver action and > 3 tick actions

}
� P2 not (U,O)-enforceable.

Intuition: Mechanism observing a request, cannot terminate the
system in time to prevent a policy violation when no deliver occurs
within the given time bound as time’s progression is uncontrollable.

� More precisely:
∗∗∗ Assume exists TM M as required, which must accept request tick3 ∈ P2.

N.B. M must accept this since terminating system before observing the
fourth tick action would violate transparency requirement.

∗∗∗ By condition (ii) of Def. M must also accept request tick4 6∈ P2
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Example: Separation of Duties in RBAC

� (Dynamic) SOD: a user may be a member of any two exclusive
roles as long as he has not activated both in the same session.

� Formalization: user activates roles and admin changes
exclusiveness relation for roles.

� Policy enforceable only if both actions are controllable

∗∗∗ Mechanism must prevent an admin action that makes two roles exclusive
whenever these roles are both currently activated in some user’s session

� Simpler to enforce the following slightly weaker policy

∗∗∗ (Weak dynamic) SOD: a user may only activate a role in a session if he
is currently a member of that role and the role is not exclusive to any
other currently active role in the session.

∗∗∗ Enforcement requires only activates action to be controllable.

∗∗∗ Changes action just observed and used to update exclusiveness relation.
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The Evolution of Safety

� L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

� B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ /∈ P → ∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P

∗∗∗ Violations are finitely observable and irremedial.
∗∗∗ Reformulates what we previously saw.

� Folklore: A property P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ /∈ P → ∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

� T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω

∀σ ∈ U. σ /∈ P → ∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩U
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Safety
(with Universe and Observables)

� Intuition

∗∗∗ P is safety in U and
∗∗∗ Bad things are not caused by elements from O.

� Formalization: A property P ⊆ Σ∞ is (U,O)-safety if

∀σ ∈ U. σ /∈ P → ∃i ∈ N. σ<i /∈ Σ∗ ·O∧∀τ ∈ Σ∞. σ<i · τ /∈ P ∩U

∗∗∗ Generalizes previous defs: O = ∅ and Σω and Σ∞ are instances of U.

∗∗∗ As U and O become smaller it is more likely a trace set P is (U,O)-safety.
(Indeed, for U = ∅, P is always (U,O)-safety).

� Liveness also generalizes to this setting
(“something good can happen in U after actions not in O”)
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Example

P1. A login must not happen within 3 seconds after a fail

P2. Each request must be followed by a deliver within 3 seconds

� P1 is ∞-safety.

∗∗∗ If trace τ violates P1 then violation has position where login is executed.

∗∗∗ So ∃i ≥ 1 with τ<i−1 ∈ P1, τ<i 6∈ P1, and τ<i ends with a login action.

∗∗∗ All extensions of τ<i still violates P1.

� P2 is also ∞-safety. Argument analogous with violations due to tick .

� But P1 is (U,O)-safety & P2 is not (U,O)-safety, for O = {tick, fail}
∗∗∗ P1 violated by executing login ∈ C. No policy compliant extensions.

∗∗∗ For P2 simply consider:

request · tick · tick · tick · tick . . .
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Aside on other Notions of Safety

Model-checking community has looked at numerous fragments and
variants of safety properties.

� Language L ⊆ Σω is k-checkable for k ≥ 1 if there is a language
R ⊆ Σk (of allowed subwords) such that w belongs to L iff all length
k subwords of w belong to R. (Kupferman, Lustig, Vardi, 2006)

∗∗∗ A property is locally checkable if its language is k-checkable for some k.

∗∗∗ Results in practice, e.g., from bounded past/future constraints.

∗∗∗ Good for runtime verification: memory use bounded as monitor only
requires access to last k computation cycles.

� Safety in reactive (or open) system setting.
∗∗∗ Designed for systems interacting with an environment.

∗∗∗ Reactive safety (Ehlers and Finkbeiner, 2011): system stays in allowed
states from which environment cannot force it out.

∗∗∗ See related environment-friendly safety (Kupferman and Weiner, 2012).
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Safety and Enforceability

Theorem

Let P be a property and U a trace universe with U ∩ Σ∗ decidable.

P is (U,O)-enforceable ⇐⇒⇐⇒⇐⇒
(1) P is (U,O)-safety,

(2) pre∗(P ∩U) is a decidable set, and

(3) ε ∈ P.

Proof uses characterization that

P is (U,O)-safety iff limitclosure(pre∗(P ∩U) ·O∗) ∩U ⊆ P.

Schneider’s “characterization:” only =⇒=⇒=⇒ for (1)
where U = Σ∞ and O = ∅
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Realizability of Enforcement Mechanisms

Fundamental Algorithmic Problems

Given a specification of a policy.

� Is it enforceable?

� If yes, can we synthesize an enforcement mechanism for it?

� With what complexity can we do so?

Some Results

Deciding if P is (U, O)-enforceable when both U and P are given as

� FSAs is PSPACE-complete.

� PDAs is undecidable.

� LTL formulas is PSPACE-complete.

� MLTL formulas is EXPSPACE-complete.
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Checking Enforceability and Safety
(PDA and FSA)1

Checking Enforceability

Let U and P be given as PDAs or FSAs AU and AP .

1. pre∗(L(AP) ∩ L(AU)) is known to be decidable

2. check whether ε ∈ L(AP)

3. check whether L(AP) is (L(AU), O)-safety

Checking Safety

Let U and P be given as PDAs or FSAs AU and AP .

� PDAs: undecidable in general

� FSAs: generalization of standard techniques

1Automata have 2 sets of accepting states, for finite and for infinite sequences.
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Checking Enforceability and Safety
(LTL and MLTL)

Checking Enforceability

Let U and P be given as LTL or MLTL formulas ϕU and ϕP .

1. pre∗(L(ϕP) ∩ L(ϕU)) is known to be decidable

2. check whether ε ∈ L(ϕP)

3. check whether L(ϕP) is (L(ϕU), O)-safety

Checking Safety

Let U and P be given as LTL or MLTL formulas ϕU and ϕP .

1. translate ϕU and ϕP into FSAs AU and AP

2. use the results of the previous slide on AU and AP

3. perform all these calculations on-the-fly
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Beyond a Yes-No Answer

� If yes . . .
synthesize an enforcement mechanism from AP and AU

(Do so by building FSA security automata for AP ∩ AU.)

� If no . . .
return a witness illustrating why P is not (U,O)-enforceable
(Construct trace in U \ P with suffix in P (violating transparency)
or that would not be prevented (violating soundness).)

� If no . . .
return the maximal trace universe V in which P is
(V,O)-enforceable
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Road Map

1. Motivation

2. Enforcement by execution monitoring

3. Generalized setting

4. Conclusions
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Summary

� Enforceability is a central problem in information security

∗∗∗ More generally, in building systems that meet their specification

� Research aims to characterize which policies are enforceable with
which mechanisms

∗∗∗ Here, large class of mechanisms that work by monitoring execution and
preventing actions that would result in policy violations

� Important to distinguish controllable and observable actions

∗∗∗ Leads to refined notion of enforceability

∗∗∗ And generalized notions of safety and liveness

� For appropriate formalisms, specification languages, and policies,
mechanism synthesis is possible
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Future Work

� Enforceability for other specification languages

� How best to combine monitoring and enforcement

� Explore connections to control theory and other mechanism classes.

∗∗∗ Supervisory Control of a Class of Discrete Event Processes
Ramadage, Wonham, SIAM J. Control Optim. 1987

∗∗∗ Modeling runtime enforcement with mandatory results automata
Dolzhenko, Ligatti, Reddy, IJIS 2014.

∗∗∗ Cost-Aware Runtime Enforcement of Security Policies,
Dràbik, Martinelli, Morisset, Security and Trust Management, LNCS
7783, 2013.
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