
A dog, a vegan flea, movie ratings, and the
EM-algorithm

Carlos Cotrini
Department of Computer Science

ETH Zürich

March 25, 2019

1 Introduction

These notes motivate and present the EM (expectation-maximization) algorithm, an al-
gorithm used for approximately computing parameter values for probability distributions
in maximum-likelihood estimation. The reader is expected to have knowledge of under-
graduate probability theory and to be familiar with maximum-likelihood estimation.

The presentation is divided in three parts. Section 2 presents an optimization problem
regarding a vegan flea. We present an algorithm that finds an approximate solution
and provides intuitions to understand why the EM-algorithm works. Section 3 presents
the problem of building a simple movie recommendation system. We show that movie
ratings can be understood as samples from a probabilistic model that is defined by a set of
multivariate Bernoulli distributions. Estimating the parameters of these distributions via
maximum-likelihood turns out to be very hard using analytical methods. In Section 4, we
show that this maximum-likelihood estimation problem is an instance of the vegan-flea
optimization problem and derive the EM-algorithm from the approximation algorithm
presented in Section 2.

2 The vegan-flea optimization problem

2.1 The dog

We introduce a two-dimensional dog, depicted in Figure 1a. Although, in practice, dogs
are three-dimensional entities, a two-dimensional dog makes easier the presentation of
some ideas later. Observe that this two-dimensional dog has only two legs, since two
legs suffice to keep balance, and one eye, since there is no need for perspectives in a
two-dimensional space.

Figure 1b shows some of the dog’s cardiovascular system. Observe that a blood vessel
of a two-dimensional being does not have the shape of a cilinder. They still naturally
expand when a surge of blood flows from a heart’s pump. For the rest of these notes
we focus only on a small area of this figure; namely, the tiny green square shown in the
figure.

Figure 1c shows the area marked by the green square in detail. We have placed some
Cartesian axes there for reference. There is a flea at coordinates (0.25, 6). The dog’s

1

(a) A two-dimensional dog.

(b) A part of the dog’s (two-dimensional)
cardiovascular system.

(c) The flea, the skin, and the upper border
of a blood vessel.

Figure 1

2

skin is the brown curve, and the upper border of a blood vessel is the red curve. Observe
that, in a two-dimensional space, skins are lines instead of surfaces.

2.2 The skin and the blood vessel’s upper border

We now mathematically model the skin and the blood vessel’s upper border. Let skin :
[0, 1]× [0,∞)→ R, and vessel : [0, 1]× [0,∞)→ R be two functions. For t ∈ [0,∞), let
skin(·, t) : [0, 1] → R be the function that maps x to skin(x, t). We define the function
vessel(·, t) analogously. Intuitively, for t ∈ [0,∞), the functions skin(·, t) and vessel(·, t)
describe the skin and the blood vessel’s upper border at time t, as depicted in Figure 2.
Hence, skin(x, t) ≥ vessel(x, t), for any (x, t) ∈ [0, 1] × [0,∞). Observe that skin(·, t)
and vessel(·, t) vary with t. This is to model the fact that blood flows through the vessel
and, consequently, makes the skin surface and the blood vessel’s upper border vary with
time. The animated .gif file attached with these notes illustrate the setting. We strongly
encourage the reader to look the .gif file before proceeding.

Assumption 1. We assume that for any x ∈ [0, 1] and any two time points t1, t2 ∈ [0,∞),
skin(x, t1)− vessel(x, t1) = skin(x, t2)− vessel(x, t2).

This assumption states that the skin surface changes by the same amount that the
blood vessel’s upper border changes. This allows us to define a function d such that
d(x) = skin(x, t)− vessel(x, t), for any x ∈ [0, 1] and t ∈ [0,∞).

Blood flows periodically through the vessel and therefore makes the vessel shape
change. Moreover, we assume the following:

Assumption 2. For any x ∈ [0, 1] and any t ∈ [0,∞), there is t′ ≥ t such that
vessel(x, t′) = maxx′ vessel(x′, t′).

If you observe the .gif animation, you can see that we defined a constant M . You can
also see that, for any x and any t, vessel(x, t) ≤ M and that there is t′ ≥ t such that
vessel(x, t′) = M . We could then make Assumption 2 stronger by stating that, for any
x ∈ [0, 1] and any t ∈ [0,∞), vessel(·, t) is bounded by M and that there is t′ ≥ t such
that vessel(x, t) = M . However, Assumption 2 is enough for our purposes. Moreover, it
is weaker and, hence, more general.

2.3 The vegan flea

Imagine now that there is a flea resting on the skin surface at (x0, skin(x0, 0)), for some
x0 ∈ [0, 1]. The flea has decided to become vegan and wishes to be as far away from the
blood vessel as possible, to avoid the temptation of the blood. More precisely, the flea’s
goal is the following.

Objective 1. Compute a value x∗ that maximizes d.

A look at the .gif file shows that x∗ = 1.0. This is easy for us as we, three-dimensional
creatures, have an omniscient view of the flea’s universe. The flea, however, cannot see
that as she knows nothing about vessel . In spite of this, we illustrate how the flea can
partially achieve its objective.

We make two assumptions about the flea’s computation abilities.

3

(a) Skin and blood vessel at t = 1

(b) Skin and blood vessel at t = 2

Figure 2: An illustration of the functions skin(·, t) and vessel(·, t), for t ∈ {1, 2}.

4

Assumption 3. For any t ∈ [0,∞), the flea can efficiently compute

x∗ = arg max
x′

skin(x, t).

This assumption bases on the idea that the flea can see the dog’s skin and can
therefore maximize skin(·, t). The next assumption states that the flea, located at
(x0, (skin(x0, 0))), can identify the moment t′ when vessel(x0, t

′) = M , the maximum
of vessel(·, t).

Assumption 4. For any x ∈ [0, 1] and any t ∈ [0,∞), the flea can efficiently compute
some t̂ ≥ t such that vessel(x, t̂) = maxx′ vessel(x′, t̂).

We give some justification for this assumption. Blood flows through the vessel in a
periodic way and skin(·, t) changes in the same way as vessel(·, t) does. Hence, the flea
can learn the blood pulse and then wait for a time t̂ where vessel(x0, t̂) = M .

2.4 An approximate maximization algorithm

We describe a strategy by which the flea can compute a value x∗ such that d(x∗) ≥ d(x0),
where (x0, skin(x0, 0)) is the flea’s current position.

[E-step] The flea waits for a time t̂ at which vessel(x0, t̂) = maxx vessel(x, t̂) (Figure 3a).
This is possible by Assumption 4.

[M-step] At time t̂, the flea computes a value x∗ such that

x∗ = arg max
x

skin(x, t̂).

(Figure 3b). This is possible by Assumption 3.

[Move] The flea moves to (x∗, skin(x∗, t̂)) (Figure 3c).

Figure 4 illustrates why d(x∗) ≥ d(x0). Observe that skin(x∗, t̂) ≥ skin(x0, t̂), since x∗ is
a maximum of skin(·, t̂). Observe also that vessel(x∗, t̂) ≤ vessel(x0, t̂), since vessel(x0, t̂)
is a maximum of vessel(·, t̂). Hence, d(x∗) = skin(x∗, t̂) − vessel(x∗, t̂) ≥ skin(x0, t̂) −
vessel(x0, t̂) = d(x0).

Notice that the flea can set x0 = x∗ and repeat this procedure to find another value
x∗∗ such that d(x∗∗) ≥ d(x∗). The flea can repeat this process as long as the computed
values increase d.

We summarize these insights into Algorithm 1, which computes a sequence of values
x0, x1, . . . such that d(x0) ≤ d(x1) ≤ . . . Observe that this algorithm converges.

One can also relax the assumptions above so that the algorithm works even when
vessel and skin’s domains are a product X × T of any two sets X and T .

With an argumentation similar to the one above, one can prove that d(x∗) never
decreases between two iterations of Algorithm 1’s loop.

5

(a) Step 1.

(b) Step 2.

(c) Step 3.

Figure 3

6

Figure 4

Star Wars Star Trek Titanic Pretty Woman 007 Mission Impossible

Alice X X × × × ×
Bob X X × × × ×

Carlos × × X X × ×
David × × X X × ×
Ellen × × X × × X

Fabian × × X X × ×
Gabriel X X × × X X
Hector X × × × X X

Ian X X × × X X
Zelya X × X × × X
John ? ? ? X ? ?

Table 1: Ratings from 10 individuals for 6 movies. According to the table, everyone who
likes Pretty Woman also liked Titanic. Therefore, it is likely that John would also like
Titanic.

7

Algorithm 1

Require: X and T two sets and real functions d, vessel , and skin satisfying the following.

A1 d(x) = skin(x, t)− vessel(x, t), for any x ∈ X and t ∈ T .

A2 For any x ∈ X , one can efficiently compute t̂ ∈ T such that vessel(x, t̂) =
maxx′ vessel(x′, t̂).

A3 For any t ∈ T , one can efficiently compute arg maxx skin(x, t).

1: function DistanceMax(vessel : X × T → R, skin : X × T → R)
2: Choose any x0 ∈ X .
3: for i = 0, 1, . . . do
4: [E-step] Compute t̂ ∈ T s.t. vessel(x0, t̂) = maxx vessel(x, t̂).
5: [M-step] Compute x∗ = arg maxx skin(x, t̂).
6: Print x∗ and d(x∗).
7: x0 ← x∗.
8: end for
9: end function

3 Building a movie-recommendation system with a

mixture of multivariate Bernoulli distributions

Table 1 shows the ratings that 10 (fictitious) individuals gave to 6 popular movies. To
keep it simple, we assume only binary ratings (good or bad). After a close look to the
ratings, the reader can see that Alice and Bob have the exact same taste for movies: sci-fi
movies. The next four people have a strong interest for romantic movies. The next three
people like sci-fi and action movies. Zelya’s tastes seem to be different from everyone
else.

Consider now John, he likes Pretty Woman, but does not like Star trek. He has
not seen any of the other movies. What movie could we recommend to him? Since he
likes Pretty Woman and everyone who liked Pretty Woman also liked Titanic, we can
recommend him to watch Titanic.

From all 26 combinations of ratings, the table contains only a few of them. Moreover,
a large majority of the people in the table seem to belong to one of very few taste cate-
gories: sci-fi, romantic, or sci-fi+action. Real life is not so different: a large majority of
people can partitioned into very few categories and people within a same category have
very similar preferences. To recommend a movie to someone, we estimate the category
where this person belongs and then search for a movie that people in this category liked.

3.1 Movie ratings as samples from probability distributions

We can view Table 1 as the result of a sampling process. Initially, the table was empty
and then one person at random appeared (Alice, in our case) and filled the first row of
the table. Then Bob appeared and so on. To sample the film ratings of one person, we
first sample the category where this person belongs and then, for each movie, we sample
the rating this person gave to that movie, conditioned on the person belonging to the
sampled category. This sampling process is then defined by the following probability
distributions:

8

• A distribution over categories.

• For each category and each movie, a distribution defining the probability that a
person in the category likes the movie.

From these two distributions, we build a new probability distribution with which we
can answer the following question: if a person watched and liked movies m1, m2, . . ., and
mk, how likely is that she will like a movie m′ that she has not seen? This probability
distribution constitutes then our recommendation system. To decide which movie to
recommend, we take the ratings the person has given to previously watched movies.
Then, for each movie in the database she has not seen, we compute the probability that
she likes that movie. Finally, we recommend the movie that she will most likely like.

We first formalize the two distributions mentioned above. Suppose we have K cate-
gories and D movies. We identify categories with the numbers 1, 2, . . ., K and movies
with the numbers 1, 2, . . ., D. We can model the distribution of K categories using a
discrete distribution with a set {ν1, ν2, . . ., νK} of K parameters that add up to 1. For
the k-th category and the movie j, we define a value µkj indicating what the probability
is that a person in the k-th category likes movie j. We leave the values νk and µkj, for
k ≤ K and j ≤ D, undefined for the moment.

Having defined these distributions, we can now assign a probability to the ratings
a person gave to all movies in the database. We model these ratings with a vector
x ∈ {0, 1}D, where xj, for j ≤ D, indicates whether the movie was rated good (xj = 1)
or bad (xj = 0). We leave as an exercise to show that the probability p(x) of a vector
x ∈ {0, 1}D is as follows:

p(x) =
∑
k≤K

(
νk
∏
j≤D

µ
xj
kj (1− µkj)1−xj

)
. (1)

We can now define probabilities for movie-rating databases. We model a movie-rating
database with a matrix X ∈ {0, 1}N×D. Each row Xi, for i ≤ N , represents a person
and each entry Xi,j, for j ≤ D, represents the rating person i gave to movie j. Assuming
that the ratings of two different people are independent, we can show that the probability
p(X) is given by the following.

p(X) =
∏
i≤N

p(Xi) =
∏
i≤N

∑
k≤K

(
νk
∏
j≤D

µ
Xi,j

kj (1− µkj)1−Xi,j

)
. (2)

3.2 Maximum-likelihood estimation

We now choose values for νk and µkj, for k ≤ K and j ≤ D. Here, we use maximum-
likelihood estimation, which argues that the best values for our parameters are those
that maximize p(X), for X the movie database we have. For computational reasons,
one searches instead for the parameters that maximize log p(X). Using basic logarithm
properties, we can show that

log p(X) =
∑
i≤N

log

(∑
k≤K

(
νk
∏
j≤D

µ
xj
kj (1− µkj)1−xj

))
. (3)

The value log p(X) is called X’s log likelihood.

9

Finding the parameter values that maximize this log likelihood is difficult, even with
approximation methods. Nonetheless, it is possible to find a set of parameter values that
locally maximize the log likelihood, using Algorithm 1. To do this, we introduce a new
set Z = {Z(i) | i ≤ N} of random variables. For i ≤ N , Z(i) indicates to which category
person i belongs. Assume for a moment that, in addition of X, we also know, for i ≤ N ,
the category Z(i) where person i belongs. One can show that (X,Z)’s log likelihood is
given by the following.

log p(X,Z) =
∑
i≤N

 log νZ(i)+
xi,Z(i) log µZ(i),j+(
1− xi,Z(i)

)
log
(
1− µZ(i),j

)
 . (4)

The log likelihood of (X,Z) is much easier to maximize with respect to the parameters
than X’s log likelihood; it can be maximized using standard calculus. However, observe
that the movie database does not tell us to which category each person belongs, so we
do not know Z and there is no clear way how to obtain it.

It is common that log likelihood maximization problems become easier when we in-
troduce additional random variables to the probabilistic model. It is also common that
the values that such random variables take are not available. For these situations, the
EM-algorithm was proposed.

4 Derivation of the EM-algorithm

We generalize the problem we addressed in the previous section. Let X and Z be random
variables and let X be an observed value for X. Assume that the joint pdf p(·, · | θ) for
(X,Z) is parameterized by θ, which can take values in Θ. Our goal is to compute

arg max
θ∈Θ

log p(X | θ). (5)

Assume now that it is preferrable to work with log p (X,Z) than with log p(X), for any
Z in Z’s range. If we knew the value Z that Z took when we obtained X = X, then we
could state that

log p(X | θ) = log p(X,Z | θ)− log p(Z | X, θ). (6)

This identity follows from the definition of conditional pdfs. We can make Z irrelevant
by computing expectations on both sides with respect to some pdf p̃ for Z. We leave for
later the problem of defining p̃.∫

p̃(Z) log p(X | θ)dZ =

∫
p̃(Z) log p(X,Z | θ)dZ −

∫
p̃(Z) log p(Z | X, θ)dZ

= Ep̃(Z) [log p(X,Z | θ)]− Ep̃(Z) [log p(Z | X, θ)] .

Observe that log p(X | θ) does not depend on Z or p̃. Therefore, the left-hand side
equals log p(X | θ). As a result,

log p(X | θ) = Ep̃(Z) [log p(X,Z | θ)]− Ep̃(Z) [log p(Z | X, θ)] . (7)

We now show that the maximization problem in Equation 5 is an instance of the vegan-
flea problem. Let X = Θ and T be the set of all pdfs for Z. For θ ∈ Θ and p̃ ∈ T ,

10

let

d(θ) = log p(X | θ)
skin(θ, p̃) = Ep̃(Z) [log p(X,Z | θ)]

vessel(θ, p̃) = Ep̃(Z) [log p(Z | X, θ)] .

We now derive sufficient conditions for the assumptions [A1], [A2], and [A3] to hold.

A1 This assumption follows from Equation 7, so no condition is necessary.

A2 In our case, this assumption means the following: for any θ ∈ Θ, one can efficiently
compute p̃ ∈ T such that for any θ′ ∈ Θ,

Ep̃(Z) [log p(Z | X, θ)] ≥ Ep̃(Z) [log p(Z | X, θ′)] . (8)

We can fulfill this inequality by setting p̃ (Z) = p(Z | X, θ). This follows from
Gibbs’s inequality, which states that for any two pdfs p and q for a random variable
Z,

Ep(Z) [log p(Z)] ≥ Ep(Z) [log q(Z)] . (9)

Hence, for [A2] to hold, we require the pdf p(Z | X, θ) to be efficiently computable.

A3 This assumption requires that, for any p̃ ∈ T , we can efficiently compute

arg max
θ∈Θ

Ep̃(Z) [log p(X,Z | θ)] .

In summary, to apply Algorithm 1 to compute arg maxθ log p (X | θ), we require the
following.

AE1 One can efficiently compute the pdf p(Z | X, θ).

AE2 One can efficiently compute arg maxθ∈Θ Ep̃(Z) [log p(X,Z | θ)] , for any pdf p̃ for Z.

Instantiating Algorithm 1 to our particular problem, we obtain the EM algorithm.

11

Algorithm 2

Require:

• Θ a set of parameters.

• A joint pdf p(X,Z | θ) over two random variables X and Z, governed by a
parameter θ that ranges over Θ.

• A value X in X’s range.

AE1 One can efficiently compute the pdf p(Z | X, θ).
AE2 One can efficiently compute arg maxθ∈Θ Ep̃(Z) [log p(X,Z | θ)] , for any pdf p̃ for

Z.

1: function EM(X, p(X,Z | θ), Θ)
2: Choose any θ0 ∈ Θ.
3: for i = 0, 1, . . . do
4: [E-step] Compute p(Z | X, θi).
5: [M-step] Compute θi+1 = arg maxθ Ep(Z|X,θi) [log p(X,Z | θ)] .
6: Print θi+1 and log p(X | θi+1).
7: end for
8: end function

12

	Introduction
	The vegan-flea optimization problem
	The dog
	The skin and the blood vessel's upper border
	The vegan flea
	An approximate maximization algorithm

	Building a movie-recommendation system with a mixture of multivariate Bernoulli distributions
	Movie ratings as samples from probability distributions
	Maximum-likelihood estimation

	Derivation of the EM-algorithm

