Essentials of Deep Learning

Carlos Cotrini
2019

Agenda

- Many machine learning models cannot make "insights" on data.
- Neural networks.
- How neural networks are built.
- Convolutional neural networks for images.
- Recurrent neural networks for text.

Many ML algorithms cannot make

 insights

- Logistic model:

49\%

Many ML algorithms cannot make insights

Rank 1	Suit 1	\ldots	Rank 5	Suit 5	\# A	\#2	\ldots	\#	\#	Type
2		\ldots	8		0	3		1	2	FH
10		\ldots	A		1	0		0	5	RF

Many ML algorithms cannot make

 insights

- Neural network:

99\%

Rank 1	Suit 1	\ldots	Rank 5	Suit 5	Type
2	-	\ldots	8		FH
10		\ldots	A		RF

Agenda

- Many machine learning models cannot make "insights" on data.
- Neural networks.
- How neural networks are built.
- Convolutional neural networks for images.
- Recurrent neural networks for text.

Neural networks are assemblies of logistic models

Sports

Neural networks are assemblies of

 logistic models

Sp orts

Neural networks are assemblies of

 logistic models

$$
R=\sigma(0 \times 26-1.5 \times 4+3)
$$

Sp orts

Neural networks are assemblies of logistic models

Sp orts

Neural networks are assemblies of logistic models

$$
R=0.12
$$

Sp orts

Neural networks are assemblies of

 logistic models

Sports

Neural networks are assemblies of

 logistic models

Sports

Neural networks are assemblies of

 logistic models

Sp orts

Neural networks are assemblies of

 logistic models

Sp orts

$$
\begin{gathered}
R=\sigma(0 \times B M I+1.5 \times \text { Sports }-3) \\
B=\sigma(-2.5 \times B M I+0 \times \text { Sports }-27)
\end{gathered}
$$

$$
y=\sigma(\mathbb{1} \times R+\mathbb{1} \times B)
$$

Neural networks are assemblies of

 logistic models

Sp orts

$$
\begin{aligned}
R & =\sigma(? \times B M I+? \times \text { Sports }+?) \\
B & =\sigma(? \times B M I+? \times \text { Sports }+?) \\
y & =\sigma(? \times R+? \times B)
\end{aligned}
$$

Predicting poker hands

2		${ }^{2}$	8		8

Are there more than 2 aces in the hand?

Agenda

- Many machine learning models cannot make "insights" on data.
- Neural networks.
- How neural networks are built.
- Convolutional neural networks for images.
- Recurrent neural networks for text.

Gradient descent:

How neural networks are built

Sports

1) Make a guess for the lines

2) Compute gradients for all lines

3) Slightly move lines as indicated by the gradients

4) Go to step 2

2) Compute gradients for all lines

3) Slightly move lines as indicated by the gradients

Spurts

Algorithm for training a neural network

1. Make a guess for the lines.
2. Compute gradients.
3. Slightly move lines.
4. Go to (2).

Algorithm for training a neural network

1. Make a guess for the lines.
2. For $\mathrm{i}=1$... NumEpochs
a) Compute gradients.
b) Slightly move lines.

Each iteration in step (2) is called an epoch.

You must indicate (ahem! guess) the number of epochs before calling this algorithm.

Flower classification

Iris setosa

Iris tectorum

Iris latifolia

Data representation

Sepal length	Sepal width	Petal length	Petal width		Is setosa?
5.1	3.5	1.4	0.2		1
2.1	1.2	3.3	3.2		0
3.1	1.6	2.2	4.1		1
2.2	4.1	1.3	1.4		1

Data representation

- $X[i, j]$: Value of column j for flower i.
- $y[i]$: 1 if flower i is an iris setosa and 0 otherwise.

Flower
examples Labels

Script organization

1. Input parsing: Read X and y.
2. Network architecture: Define neural network layers.

3. Compilation and training: Compile and train neural network.

Agenda

- Many machine learning models cannot make "insights" on data.
- Neural networks.
- How neural networks are built.
- Convolutional neural networks for images.
- Recurrent neural networks for text.

Image recognition

Image recognition

Image recognition

©

0	1	0	0	1	0	0	1	1	0	1	0	1	0	0	1	1		\ldots

Millions!

Convolutional neural networks

®

Convolutional neural networks

filter

Convolutional neural networks

filter

Convolutional neural networks

filter

Convolutional neural networks

filter

Convolutional neural notworks

Convolutional neural networks

Convolutional neural networks

MAX

Convolutional neural networks

Convolutional

etworks

Convolutional neural networks

Convolutional neural networks

Author guessing

Text

- O Romeo, Romeo, wherefore art thou Romeo? Deny thy father and refuse thy name; Or if thou wilt not, be but sworn my love.
- It is better to be feared, than to be loved, if you cannot have both.
- When I was young I
thought that money was the most important thing in life; now that I am old I know that it is.

Author

- Shakespeare
- Machiavelli
- Oscar Wilde

Why not...

- Standard neural networks? Text has variable size and with very long texts, we would need very complex neural networks.
- Convolutional neural networks? A filter may miss important information! See Oscar Wilde's quote.

Recurrent neural networks

Review	Positive review?
"Nice film"	1
"OK film"	1
"Bad movie"	0
"Terrible!"	0

Bag-of-words vectorization

Review	Positive review?
"Nice film"	1
"OK film"	1
"Bad movie"	0
"Terrible!"	0

bad	film	movie	nice	ok	terrible	Positive?
0	1	0	1	0	0	1
0	1	0	0	1	0	1
1	0	1	0	0	0	0
0	0	0	0	0	1	0

Analogously, words are vectors

	bad	film	movie	nice	ok	terrible
bad	1	0	0	0	0	0
film	0	1	0	0	0	0
movie	0	0	1	0	0	0
nice	0	0	0	1	0	0

Recurrent neural networks

* Recall that words can be represented as vectors

Recurrent neural networks

* Recall that words can be represented as vectors

Author guessing

Text

- O Romeo, Romeo, wherefore art thou Romeo? Deny thy father and refuse thy name; Or if thou wilt not, be but sworn my love.
- Mr. and Mrs. Dursley, of number four Privet Drive, were proud to say that they were perfectly normal, thank you very much.
- It is better to be feared, than to be loved, if you cannot have both.
- When I was young I thought that money was the most important thing in life; now that I am old I know that it is.

Author

- Shakespeare
- J.K. Rowling (Harry Potter)
- Machiavelli
- Oscar Wilde

What we learned

- Many machine learning models cannot make "insights" on data.
- What are neural networks?
-What are convolutional neural networks?
- What are recurrent neural networks?

