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Agenda

• What is machine learning?

• How models work
• Classification trees

• Parameter selection via cross-validation
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What is machine 
learning?
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What is machine learning?
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How models work
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Classification trees

Sports >= 5?

BMI >= 25?

No Yes

No
Yes

Sports >= 2?

No Yes
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When training trees, you must specify 
their depth (and other parameters)

Review Positive?

This is a good movie 1

What a good film! 1

Bad film 0

It was a bad movie 0

How deep?2
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When training trees, you must specify 
their depth (and other parameters)

Review Positive?

This is a good movie 1

What a good film! 1

Bad film 0

It was a bad movie 0

How deep?200
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Overfitting: When complex 
models “memorize” the data

This?

No Yes

is?
Yes

a?

No Yes

good?

No Yes

film?
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it?
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Grid search: Parameter 
selection by cross-
validation
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Parameter selection by cross-
validation

depth=200depth=20depth=2
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Parameter selection by cross-
validation

depth=200depth=20depth=2
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Parameter selection by cross-
validation

50% 80% 30%

60% 90% 20%

40% 90% 40%

depth=200depth=20depth=2
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Parameter selection by cross-
validation
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60% 90% 20%

40% 90% 40%

depth=200depth=20depth=2
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50% 80% 30%

60% 90% 20%

40% 90% 40%

Parameter selection by cross-
validation
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60% 90% 20%

40% 90% 40%

Parameter selection by cross-
validation

depth=200depth=20depth=2
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50% 80% 30%

60% 90% 20%

40% 90% 40%

Parameter selection by cross-
validation

depth=200depth=20depth=2
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Flower classification
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Iris setosa

Iris latifolia

Iris tectorum



Data representation
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Sepal 
length

Sepal
width

Petal 
length

Petal 
width

5.1 3.5 1.4 0.2

2.1 1.2 3.3 3.2

3.1 1.6 2.2 4.1

2.2 4.1 1.3 1.4

Is 
setosa?

1

0

1

1



Data representation

• X[i, j]: Value of column j for flower i. (4 columns)

• y[i]: 1 if flower i is an iris setosa and 0 otherwise.
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Script organization
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Grid_search

depth=4depth=3depth=2
Parameter_grid

Tree_builder

Best_tree

X y

Flower 
examples Labels



Agenda

• Other types of models:
• Logistic models

• Support-vector machines

• Many others…

• How models are computed.

• How to deal with non-numeric data.
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Logistic model
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𝜎(−10 × 𝑺𝑾+ 𝑩𝑴𝑰 + 10)



Logistic model

−10 × 𝑺𝑾+𝑩𝑴𝑰 + 10

24

All points where the linear 
model outputs 0.

Linear model



Logistic model

−10 × 𝑺𝑾+𝑩𝑴𝑰 + 10

25

SW BMI Linear 
model

Logistic 
model
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Logistic model

𝜎(−10 × 𝑺𝑾+ 𝑩𝑴𝑰 + 10)
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𝜎 𝑥 =
𝑒𝑥𝑝 𝛼𝑥

1 + 𝑒𝑥𝑝 𝛼𝑥

Logistic model

All points where the logistic 
model outputs 0.5

SW BMI Linear 
model

Logistic 
model

3 20 0 0.5

5 20 -20 0.01

1 30 30 0.99



Support-vector machines

Kernel*
transformation

𝜎(−2 × 𝑆𝑊3 × 𝐵𝑀𝐼2 + 4 × 𝐵𝑀𝐼3)

Inverse Kernel
transformation

* Radial basis function kernel
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When you train support-vector 
machines, you must specify the 
regularization strengths and other 
parameters.
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How 
strong?
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When you train support-vector 
machines, you must specify the 
regularization strengths and other 
parameters.
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How 
strong?

100



When you train support-vector 
machines, you must specify the 
regularization strengths and other 
parameters.
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How 
strong?

1e-5



How to deal with non-
numeric data and texts?
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What to do if the data is not 
numeric?

Class Sex Age Survived?

Crew F Adult Y

Crew F Adult Y

First M Adult N

First M Child Y

Second F Adult N

Second M Child Y

Second M Adult N
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Class Sex Age Survived?

Crew F Adult Y

Crew F Adult Y

First M Adult N

First M Child Y

Second F Adult N

Second M Child Y

Second M Adult N

One-hot encoding
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Class Sex Age Survived?

Crew F Adult Y

Crew F Adult Y

First M Adult N

First M Child Y

Second F Adult N

Second M Child Y

Second M Adult N

One-hot encoding
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One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex Age Survived?

1 0 0 F Adult Y

1 0 0 F Child Y

0 1 0 M Adult N

0 1 0 M Child Y

0 0 1 F Adult N

0 0 1 M Child Y

0 0 1 M Adult N
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One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex Age Survived?

1 0 0 F Adult Y

1 0 0 F Child Y

0 1 0 M Adult N

0 1 0 M Child Y

0 0 1 F Adult N

0 0 1 M Child Y

0 0 1 M Adult N
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One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex Age Survived?

1 0 0 F Adult Y

1 0 0 F Child Y

0 1 0 M Adult N

0 1 0 M Child Y

0 0 1 F Adult N

0 0 1 M Child Y

0 0 1 M Adult N
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One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex =
F

Sex =
M

Age
Survived

?

1 0 0 1 0 Adult Y

1 0 0 1 0 Child Y

0 1 0 0 1 Adult N

0 1 0 0 1 Child Y

0 0 1 1 0 Adult N

0 0 1 0 1 Child Y

0 0 1 1 0 Adult N
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One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex =
F

Sex =
M

Age
Survived

?

1 0 0 1 0 Adult Y

1 0 0 1 0 Child Y

0 1 0 0 1 Adult N

0 1 0 0 1 Child Y

0 0 1 1 0 Adult N

0 0 1 0 1 Child Y

0 0 1 1 0 Adult N
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One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex =
F

Sex =
M

Age
Survived

?

1 0 0 1 0 Adult Y

1 0 0 1 0 Child Y

0 1 0 0 1 Adult N

0 1 0 0 1 Child Y

0 0 1 1 0 Adult N

0 0 1 0 1 Child Y

0 0 1 1 0 Adult N
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One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex =
F

Sex =
M

Age =
Child

Age =
Adult

Survive
d?

1 0 0 1 0 0 1 Y

1 0 0 1 0 1 0 Y

0 1 0 0 1 0 1 N

0 1 0 0 1 1 0 Y

0 0 1 1 0 0 1 N

0 0 1 0 1 1 0 Y

0 0 1 1 0 0 1 N

41



One-hot encoding
Class =
Crew

Class =
First

Class =
Second

Sex =
F

Sex =
M

Age =
Child

Age =
Adult

Survive
d?

1 0 0 1 0 0 1 Y

1 0 0 1 0 1 0 Y

0 1 0 0 1 0 1 N

0 1 0 0 1 1 0 Y

0 0 1 1 0 0 1 N

0 0 1 0 1 1 0 Y

0 0 1 1 0 0 1 N
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Processing text data

Review Positive review?

“Nice film” 1

“OK film” 1

“Bad movie” 0

“Terrible!” 0
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Bag-of-words vectorization

bad film movie nice ok terrible Positive?

0 1 0 1 0 0 1

0 1 0 0 1 0 1

1 0 1 0 0 0 0

0 0 0 0 0 1 0

Review Positive review?

“Nice film” 1

“OK film” 1

“Bad movie” 0

“Terrible!” 0
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Conclusion

• What is machine learning?

• How models work and how to compute them
• Classification trees
• Logistic models
• Support-vector machines

• How models are built
• You don’t need to know how to build them in order to 

use them!

• How to deal with non-numeric data

• Parameter selection via cross-validation

45


