Essentials of Machine Learning

Carlos Cotrini
2019

Agenda

- What is machine learning?
- How models work
- Classification trees
- Parameter selection via cross-validation

What is machine learning?

What is machine learning?

Feature
Labeled
example
\qquad

Name	BMI	Sport act.
Daniel	20	4

How models work

Classification trees

When training trees, you must specify their depth (and other parameters)

Review	Positive?
This is a good movie	1
What a good film!	1
Bad film	0
It was a bad movie	0

When training trees, you must specify their depth (and other parameters)

Review	Positive?
This is a good movie	1
What a good film!	1
Bad film	0
It was a bad movie	0

Overfitting: When complex models "memorize" the data

Grid search: Parameter selection by crossvalidation

Parameter selection by crossvalidation

Parameter selection by crossvalidation

Parameter selection by crossvalidation

Parameter selection by crossvalidation

Testing set

Parameter selection by crossvalidation

50%	80%	30%
60%	90%	20%
40%	90%	40%

Parameter selection by crossvalidation

depth=2	depth=20	depth=200
50%	80%	30%
60%	90%	20%
40%	90%	40%

Flower classification

Iris setosa

Iris tectorum

Iris latifolia

Data representation

Sepal length	Sepal width	Petal length	Petal width		Is setosa?
5.1	3.5	1.4	0.2		1
2.1	1.2	3.3	3.2		0
3.1	1.6	2.2	4.1		1
2.2	4.1	1.3	1.4		1

Data representation

- X[i, j]: Value of column j for flower i. (4 columns)
- $y[i]$: 1 if flower i is an iris setosa and 0 otherwise.

Flower
examples Labels

Script organization

Agenda

- Other types of models:
- Logistic models
- Support-vector machines
- Many others...
- How models are computed.
- How to deal with non-numeric data.

Logistic model

Logistic model

Logistic model

SW BMI

Logistic model

SW	BMI	Linear model
3	20	0
5	20	-20
1	30	30

$\sigma(-10 \times S W+B M I+10)$

All points where the logistic model outputs 0.5

Logistic model

Support-vector machines

Kernel*
transformation

Inverse Kernel transformation

$$
\sigma\left(-2 \times S W^{3} \times B M I^{2}+4 \times B M I^{3}\right)
$$

* Radial basis function kernel

When you train support-vector machines, you must specify the regularization strengths and other parameters.

When you train support-vector machines, you must specify the regularization strengths and other parameters.

When you train support-vector machines, you must specify the regularization strengths and other parameters.

1e-5

How to deal with nonnumeric data and texts?

What to do if the data is not numeric?

Class	Sex	Age	Survived?
Crew	F	Adult	Y
Crew	F	Adult	Y
First	M	Adult	N
First	M	Child	Y
Second	F	Adult	N
Second	M	Child	Y
Second	M	Adult	N

One_hot encoding			
Class	Sex	Age	Survived?
Crew	F	Adult	Y
Crew	F	Adult	Y
First	M	Adult	N
First	M	Child	Y
Second	F	Adult	N
Second	M	Child	Y
Second	M	Adult	N

One-hotencoding			
Class	Sex	Age	Survived?
Crew	F	Adult	Y
Crew	F	Adult	Y
First	M	Adult	N
First	M	Child	Y
Second	F	Adult	N
Second	M	Child	Y
Second	M	Adult	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex	Age	Survived?
1	0	0	F	Adult	Y
1	0	0	F	Child	Y
0	1	0	M	Adult	N
0	1	0	M	Child	Y
0	0	1	F	Adult	N
0	0	1	M	Child	Y
0	0	1	M	Adult	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex	Age	Survived?
1	0	0	F	Adult	Y
1	0	0	F	Child	Y
0	1	0	M	Adult	N
0	1	0	M	Child	Y
0	0	1	F	Adult	N
0	0	1	M	Child	Y
0	0	1	M	Adult	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex	Age	Survived?
1	0	0	F	Adult	Y
1	0	0	F	Child	Y
0	1	0	M	Adult	N
0	1	0	M	Child	Y
0	0	1	F	Adult	N
0	0	1	M	Child	Y
0	0	1	M	Adult	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex $=$ \mathbf{F}	Sex $=$ \mathbf{M}	Age	Survived $?$
1	0	0	1	0	Adult	Y
1	0	0	1	0	Child	Y
0	1	0	0	1	Adult	N
0	1	0	0	1	Child	Y
0	0	1	1	0	Adult	N
0	0	1	0	1	Child	Y
0	0	1	1	0	Adult	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex $=$ \mathbf{F}	Sex $=$ \mathbf{M}	Age	Survived $?$
1	0	0	1	0	Adult	Y
1	0	0	1	0	Child	Y
0	1	0	0	1	Adult	N
0	1	0	0	1	Child	Y
0	0	1	1	0	Adult	N
0	0	1	0	1	Child	Y
0	0	1	1	0	Adult	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex $=$ F	Sex \mathbf{M}	Age	Survived $?$
1	0	0	1	0	Adult	Y
1	0	0	1	0	Child	Y
0	1	0	0	1	Adult	N
0	1	0	0	1	Child	Y
0	0	1	1	0	Adult	N
0	0	1	0	1	Child	Y
0	0	1	1	0	Adult	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex \mathbf{F}	Sex \mathbf{M}	Age $=$ Child	Age $=$ Adult	Survive d?
1	0	0	1	0	0	1	Y
1	0	0	1	0	1	0	Y
0	1	0	0	1	0	1	N
0	1	0	0	1	1	0	Y
0	0	1	1	0	0	1	N
0	0	1	0	1	1	0	Y
0	0	1	1	0	0	1	N

One-hot encoding

Class $=$ Crew	Class $=$ First	Class $=$ Second	Sex $=$ \mathbf{F}	Sex \mathbf{M}	Age $=$ Child	Age $=$ Adult	Survive d?
1	0	0	1	0	0	1	Y
1	0	0	1	0	1	0	Y
0	1	0	0	1	0	1	N
0	1	0	0	1	1	0	Y
0	0	1	1	0	0	1	N
0	0	1	0	1	1	0	Y

Processing text data

Review	Positive review?
"Nice film"	1
"OK film"	1
"Bad movie"	0
"Terrible!"	0

Bag-of-words vectorization

Review	Positive review?
"Nice film"	1
"OK film"	1
"Bad movie"	0
"Terrible!"	0

bad	film	movie	nice	ok	terrible	Positive?
0	1	0	1	0	0	1
0	1	0	0	1	0	1
1	0	1	0	0	0	0
0	0	0	0	0	1	0

Conclusion

- What is machine learning?
- How models work and how to compute them
- Classification trees
- Logistic models
- Support-vector machines
- How models are built
- You don't need to know how to build them in order to use them!
- How to deal with non-numeric data
- Parameter selection via cross-validation

