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1 Introduction

These notes present an information-theoretic validation method called posterior agree-
ment, proposed by Buhmann [?], and studied in Alexey Gronskiy’s doctoral thesis [?].

Posterior agreement validates algorithms for solving stochastic optimization problems
of the form

min
c

E [R(c,X)] .

Here, R(c,X) is the result of evaluating a cost function on a candidate solution c on
an instance of the problem described by the random variable X. The expectation is
computed with X’s distribution.

In posterior agreement, we assume that an algorithm is a function that computes,
from a given observation X ′, a posterior distribution p(· | X ′) over a finite space C of
feasible solutions. Every algorithm can be converted into such an algorithm, even if it is
deterministic. In this case, the posterior distribution is just a distribution that assigns
probability mass one to the algorithm’s output.

Posterior agreement assesses the performance of an algorithm by computing the ex-
pected log posterior agreement :

EX′,X′′ log (|C|κ (X ′, X ′′)) , (1)

where
κ (X ′, X ′′) :=

∑
c∈C

p(· | X ′)p(· | X ′′).

The expected log posterior agreement requires the joint probability distribution of X ′

and X ′′, which is often unknown. One only has access to a handful of observations, at
least two: X ′ and X ′′. In this case, one can use the empirical log posterior agreement :

log (|C|κ (X ′, X ′′)) . (2)

Moreover, the empirical log posterior agreement is intended to be a metric to compare
different algorithms. Therefore, it is often sufficient to measure what is called the posterior
agreement kernel

κ (X ′, X ′′) .

We show how posterior agreement can compare, for example, Prim’s, Kruskal’s, and
the reverse-delete algorithm for computing spanning trees for graphs whose edge weights
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Figure 1: A graph with its observed edge weights for two different days.

are defined by random variables, as in the example above. Posterior agreement can
also compare among different cost functions and hyperparameter values, when training
machine learning models.

Therefore, posterior agreement advocates that, in the context of stochastic optimiza-
tion, algorithms should aim for maximizing the posterior agreement kernel, given two
instances of the problem, rather than minimizing the cost function for either instance or
an aggregate of these instances.

2 Motivation

Figure 1 gives two graphs modeling a city with four main locations: North, East, South,
and West. There is a road connecting any two different locations and, depending on the
day, traversing that road by car takes some amount of time. The number labeling each
edge indicates that time. Observe that the time varies with each day.

Consider the minimum spanning tree of each of these two graphs. For Monday’s graph,
the tree is the one with North at the root and all other locations as children of North.
For Tuesday’s graph, the tree is the one with South at the root and all other locations as
children of South. We call these two trees the North and South trees, respectively.

Can we estimate from this information what Wednesday’s graph’s minimum spanning
tree will look like?

The city graph can be understood as a random variable X. More precisely, it is a
collection of 6 random variables, each of them defining an edge’s weight on a particular
day. Hence, the weight R(c,X) of a tree c in X, which is the sum of the edge weights in c,
is also a random variable. We can then formulate the problem of the minimum spanning
tree for our case as the following stochastic optimization problem:

arg min
c∈C

E [R(c,X)] , (3)

where C denotes all spanning trees of the city graph.
In practice, the main challenge in this type of optimization problems is that we do

not know X’s probability distribution. One natural way to go around this issue and
approximately solve Problem 3 is to substitute E [R(c,X)] with an empirical estimate:

E [R(c,X)] ≈
∑
i≤N

R(c,Xi),
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where {X1, . . . , Xn} is a sample of observed values of X. When n is sufficiently large and
each Xi is independent from the others, then by the law of large numbers, this becomes
a good approximation of E [R(c,X)]. We call the empirical risk minimizer the solution
of the problem:

arg min
c∈C

∑
i≤n

[R(c,Xi)] , (4)

We present later scenarios where the empirical risk minimizer is not the best solution
we can obtain, especially when we have only very few observations . One example is the
problem of computing the minimum of an array X = (X1, . . . , Xn) of random variables.
Given just two observations X1 and X2, approximating mini EXi with miniX

1
i + X2

i is
not the best we can do.

3 Overview

Posterior agreement originates from formalizing an algorithm A as a communication
channel by which a sender and a receiver communicate outputs from A. The robustness
of an algorithm is measured by the capacity of that communication challenge, where the
capacity defines the maximum number of distinguishable messages that can be commu-
nicated through the channel.

Shannon’s channel coding theorem

Consider a channel by which a sender can transmit bits to a receiver. Assume that
the channel is noisy in the sense that a bit can be flipped during transmission with
probability ε < 0.5. The sender and the receiver agree on transmitting only bitstrings
of length n. We call these bitstrings codewords. Observe that if ε = 0, then the sender
can reliably communicate 2n different messages to the receiver, by agreeing in advance
with the receiver on a way to encode each message as one codeword of length n. This
correspondence is called a code.

In practice, ε > 0. Therefore, the sender and the receiver need to agree on a code
that is robust to the channel’s noise. We now show two examples of codes:

• They could agree on just 2 messages, encoded as 00 . . . 0 and 11 . . . 1, respectively.
If the codeword length is sufficiently large, then with high probability, less than
half of the bits will be flipped during transmission. As a result, the receiver can
almost surely identify the message from the received codeword, by just counting
the frequency of each bit in the codeword.

• They agree on sending 2n messages, each encoded with a unique codeword of length
n. With high probability, some of the bits will be flipped during transmission and
the receiver will fail to identify the message that the sender tried to communicate.

Observe that these two codes represent two extremes, as n → ∞. On one hand,
the first code communicates only 2 messages, but with high probability of success. On
the other hand, the second code communicates 2n messages, but with low probability of
success. One can also imagine other codes that strike a balance between the number of
messages to be communicated and the success probability.

Shannon’s coding theorem answers the following question. What is the code that
maximizes the number of messages that the sender can communicate to the receiver,
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while attaining a probability of success close to 1, as n→∞? When ε > 0, this number
is clearly below 2n, but since ε < 0.5, this number must be positive. Shannon shows
that this number is 2nc, where c is the channel’s capacity, a quantity that is defined by
the channel. Therefore, channels with higher capacity allow the communication of more
messages at the same codeword length.

Posterior agreement

Posterior agreement originates from modeling an algorithmA as a communication channel
CA, where a sender communicates outputs from A to a receiver. We argue that the
capacity of CA is defined by A’s robustness to noise in the input. That is, if A is robust
to noise, then it is possible to communicate many more messages through CA than when
A is sensitive to noise.

We give an overview of this argument next. A rigorous argument is given in Section 5.
We assume given an instance space X , comprising all possible observations, and a

solution space C, comprising all possible solutions. A phenomenon is then a probability
distribution over X . We assume that algorithms intending to solve Problem 3 receive in
the input an observation X ′ and output a distribution p(· | X ′) over C.

Example 1. In the minimum spanning tree problem, a codeword is a spanning tree, a
phenomenon is a distribution governing a graph’s edge weights, and an observation is a
graph whose edge weights are drawn from a fixed distribution.

Example 2. In the centroid-based clustering problem, a codeword is a cluster assignment
function and a set of centroids, an observation is a set of points to be clustered, and a
phenomenon is a distribution where the points are drawn from.

For our analysis, we assume that each instance space contains all observations of a
given “size” n ∈ N. This size n is a notion that measures the observations’ and phe-
nomena’s complexity. For example, in the minimum spanning tree problem, an instance
space contains only all weighted graphs with a fixed number n of vertices.

For an algorithm A, we define a communication channel CA that works as follows. To
use the channel, a sender picks an instance X ′, drawn from a phenomenon pX , computes
and inputs p(· | X ′) to the channel. The channel replaces p(· | X ′) with p(· | X ′′), where
X ′′ is a fresh new instance drawn from pX . The channel outputs p(· | X ′′) to the receiver.

We now emphasize the key insight of this modeling. If A is robust to the fluctuations
in X ′, then there should not be much difference between p(· | X ′) and p(· | X ′′). In
contrast, if A is very sensitive to the fluctuations in X ′, then p(· | X ′) and p(· | X ′′) may
be very different. Hence, A’s robustness to noise defines how many different “messages”
can we send through this channel. We conclude then that A’s robustness can be measured
by the capacity of this channel CA. This capacity, as we show in Section 5, is measured by
the expected log posterior agreement. For this reason, we argue that algorithms intended
to solve Problem 3 shall be measured by their expected log posterior agreement.

Observe the following analogies to Shannon’s coding theory. Channels have a capacity
that define the maximum number of distinguishable messages that can be communicated.
Channels with higher capacity are preferable, as they allow more different messages to
be communicated. Analogously, we argue that algorithms can be modeled as channels
and, therefore, have a capacity, which we later show to be the expected log posterior
agreement. Hence, we argue that algorithms with higher expected log posterior agreement
are preferable, as they allow more different messages to be communicated.
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Figure 2

Protocol overview

The protocol describes a code by which a sender can communicate messages to a re-
ceiver. Let A be an algorithm intending to solve Problem 3. In our case, a message is
a phenomenon and a codeword is the output p(· | X ′) of A when given an observation
X ′ from a phenomenon as input. Analogous to Shannon’s coding theorem, the sender
and the receiver aim to maximize the number of different messages that the sender can
communicate, while ensuring that the receiver’s probability of success goes to 1 as n→∞.

Figure 2 gives an overview of the protocol. The sender must describe a phenomenon q
to a receiver through a noisy channel. The sender makes an observation X ′ from q, uses
A to compute p(· | X ′), and sends through the channel to the receiver. The channel is
noisy and we represent its noise by replacing p(· | X ′) with p(· | X ′′), where X ′′ is another
observation from q. The receiver succeeds if he is able, using p(· | X ′′), to distinguish X ′

from observations from other different phenomena.
We remark that this protocol is just a thought experiment. The protocol is compu-

tationally impossible for many interesting optimization problems. This is because the
protocol requires that we know the underlying distribution behind the observations of
one phenomenon. This is not possible in most of the cases. Nonetheless, the protocol
provides a formal justification and motivation for posterior agreement.

Protocol example

We now give a more precise overview by showing how posterior agreement works with a
simple example. Let A1 and A2 be two algorithms that estimate the mean of a univariate
distribution, given only a sample from that distribution. For example, A1 fits a Gaussian
to the sample via maximum-likelihood estimation whereas A2 does the same, but only
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using only the sample maximum and minimum. Suppose that both algorithms output
Gaussian distributions that indicate where they believe that the mean is.

The protocol works as follows. Fix n ∈ N, which denote the size of all the observations
in the instance space. In our case, n denotes the sample size. The sender and the receiver
are given the algorithm under evaluation Ai and then they choose the size mn ∈ N of the
set of messages that they the sender will attempt to communicate. Recall that they want
to choose mn as large as possible. However, a large mn increases the probability Pn that
the receiver fails to recognize the message from the codeword transmitted by the sender.
We later see that the best choice for mn is defined by Ai.

The protocol proceeds then as follows:

1. (Figure 3) The sender and the receiver agree on a set of m := mn phenomena, which
we represent with the probability distributions q1, q2, . . . , qm.

2. (Figure 3) The sender and the receiver together make one observation X ′i of each
phenomenon qi, with i ≤ m. In this case, an observation is a sample of points from
qi. Afterwards, they use Ai to compute a distribution p(· | X ′) for each observation
X ′.

3. (Figure 4) An observation X ′ is chosen out of these m observations uniformly at
random. X ′ is given to the sender, but kept secret from the receiver.

4. (Figure 5) The sender sends p(· | X ′) to the receiver through a noisy communication
channel. This channel replaces p(· | X ′) with p(· | X ′′), where X ′′ is a fresh new
observation from the same phenomenon where X ′ comes from.

5. (Figure 6) The receiver gets p(· | X ′′) and must now guess which observation in
{X ′1, . . . , X ′m} the sender chose in Step 3. For this, the receiver uses the natural
approach of guessing the observation X̂ for which p(· | X̂) overlaps the most with
p(· | X ′′). In other words, the receiver guesses the observation X̂ that fulfills:

κ
(
X̂,X ′

)
≥ κ (Y,X ′) , for all Y.

6. If X̂ = X ′, the receiver has succeeded.

Receiver’s probability of failure

We show in Section 5.4 that the receiver’s failure probability is bounded above by

exp (−EX′,X′′ [log (|C|κ (X ′, X ′′))] + ε log |C|+ logm) ,

where ε > 0 is arbitrary, C is the solution space, and m is the number of observations
defined in Step 1.

Assume now that log |C| = Ω(n). This is a reasonable assumption, as for many
interesting problems, C grows exponentially on n. Observe that the algorithm can only
influence κ (X ′, X ′′). If ε is sufficiently small and the algorithm ensures that

EX′,X′′ log (|C|κ (X ′, X ′′))− logm = Ω(n),

then the receiver’s failure probability becomes 0 as n → ∞. The algorithm can ensure
this by maximizing the expected log posterior agreement. The larger this quantity is, the
higher m can be and the more messages the sender can communicate to the receiver.
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Figure 3
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Figure 4

8



Figure 5
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Figure 6

4 Shannon’s channel coding theorem

To properly formulate and analyze the communication protocol above, we build upon
Shannon’s channel coding theorem. This theorem measures how much information we
can optimally send through a communication channel. This section is mainly based on
Chapter 7 from Thomas and Cover [?].

4.1 Channels

We understand a channel as a medium by which one sender can send symbols from a
fixed set A to a receiver. We allow channels to be noisy, meaning that the symbol a can
be altered to another symbol b with probability p(b | a) during the transmission through
the channel. We do not allow the receiver to give feedback to the sender.

Definition 1. A (noisy) channel is a pair
(
A, {p(· | a)}a∈A

)
, where A is a set and p(· | a),

for a ∈ A, is a conditional distribution on A.

For convenience, we sometimes write just P to denote the family of distributions
{p(· | a)}a∈A. Observe that we assume that transmissions are independent from each
other. What the receiver gets does not influence what the user sends or the channel’s
conditional probabilities in the future.

Example 3. The binary channel is the channel with A = {0, 1} and p(b | a) = I{a = b},
for a, b ∈ A, where I is the indicator function. This is a channel where there is no noise
interference.
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Example 4. The noisy binary channel is the binary channel, but with

p(b | a)

{
1− ε if a = b and

ε if a 6= b.

Unless stated otherwise, we assume that 0 < ε ≤ 0.5.

Example 5. The typewriter channel is the channel with A = {a, b, . . . , z} and p(b | a) =
I{a = b}, for a, b ∈ A, where I is the indicator function.

Example 6. The noisy typewriter channel is the channel with A = {a, b, . . . , z}, but
with

p(b | a)

{
1− ε if a = b,

ε if a = b+ 1 mod 26.

4.2 Channel capacity

Which of the channels above sends the most information per transmission? Intuitively,
a letter has more information than a bit and the presence of noise affects the amount
of information we send in one transmission. Indeed, sending one letter through the
typewriter channel provides more information than sending one letter through a noisy
typewriter channel. Also, a letter has more information than a bit. Hence, we say that
the typewriter channel has the most capacity : one transmission through this channel
carries in average more information than one transmission through any of the other three
channels. Similarly, we say that the noisy binary channel has the least capacity.

We now formally define channel capacity.

Definition 2. For a channel
(
A, {p(· | a)}a∈A

)
, its capacity is

max
p(·)

I(S; Ŝ),

where S and Ŝ are random variables denoting a symbol input to the channel and the
output symbol, respectively, when S is distributed according to p(·). We refer to I(S; Ŝ)
as the channel’s input-output mutual information and the joint distribution of S and Ŝ
as the input-output distribution.

Example 7. For the binary channel, we can reliably send one bit per transmission. This
corresponds to the channel’s capacity,

max
p(·)

I(S; Ŝ) = max
p(·)
{H(S)−H(Ŝ | S)} = max

p(·)
H(S) = max

p(·)
H(S) = 1.

The second equality follows from the fact that Ŝ = S, so H(Ŝ | S) = 0. The last equality
follows from the fact that the distribution that maximizes the entropy of a Bernoulli
random variable is the uniform distribution, which yields an entropy of 1 bit.

Example 8. A similar line of reasoning shows that the typewriter channel’s capacity is
maxp(·)H(S) = log 26 ≈ 4.7. This corresponds to the intuition that we can reliably send
one letter per transmission, which contains around 4.7 bits of information.
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Example 9. Consider now the noisy typewriter with ε = 0.5. How many bits can we
reliably send per transmission? Observe that one way to reliably send information is by
agreeing to only send letters at even positions in the alphabetic order. In that way, if you
receive, for example, a or b, you know for sure that the sender input a to the channel.
However, by sending only the “even” letters, you need to double the efforts with respect
to the typewriter channel without noise. As a consequence, the noisy typewriter has less
capacity. One can actually show that maxp(·) I(S; Ŝ) = −1 + log 26, where a maximizing
p(·) is the uniform distribution over the “even” letters.

4.3 Codes

Intuition on codes and rates

Consider the noisy binary channel. By sending several bits in a specific pattern to the
channel, one can come up with sophisticated ways to transmit complex information
through the channel, like images or spreadsheets. We illustrate this by showing how
to use the binary channel to send letters in {a, b, . . . , z}. The sender and the receiver
must first agree on a code for those letters. One such code, which we call näıve code,
encodes the letter a as the codeword 00000, b as 00001, and so on. That is, the codeword
for the i-th alphabet letter is number i in base 2, written as a bit string of length 5. In a
similar fashion, we can conceive codes for communicating more complex data like images
and spreadsheets.

Unfortunately, the code mentioned in the previous paragraph is sensitive to the chan-
nel’s noise. If we send the codeword for a, the receiver may get the codeword for b with
probability ε (1− ε)4, yielding a communication error. Information theory has came up
with smarter codes that reduce the probability of such a communication error, but at the
cost of longer codewords. For example, we can use a code, which we call the 5-redundant
code. This code encodes a as 00000 and b as 11111. The receiver would then take the
received codeword ŵ and search for the codeword w that closest codeword with respect
to the Hamming distance. The receiver would then assume that the sender sent the letter
associated to w. For example, if the receiver gets 11010, then she assumes that the sender
sent 11111, which is the codeword for b. This code is more robust to noise than the näıve
alphabet code. In comparison with the näıve code, more bits need to be flipped by noise
in order to get a communication error. This is less likely than having one bit flipped in
the näıve code’s codewords.

Unfortunately, the robustness comes at the price of less messages. If we use codewords
of length n only. Using the näıve code, the sender can communicate 2n different messages.
However, using the n-redundant code, the sender can communicate only 2. Assuming that
the noise does not cause a communication error, we manage to transmit at a rate of one
bit per transmission in the näıve code and one bit per n transmissions in the n-redundant
code. In the limit, as n→∞, the näıve code attains a rate of 1 bit per transmission, but
a probability of a communication error equal to 1. On the other hand, the n-redundant
code attains a rate of 0 bits per transmission, but a probability of a communication error
equal to 0. This comparison is summarized in Figure 7

Intuition on Shannon’s channel coding theorem

We started by using the binary noisy channel to send bits and we are now devising codes
to send a finite set of letters through the binary noisy channel. In a similar manner, we
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Figure 7
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can devise codes to send words through the binary noisy channel, by creating a code that
maps words to bit strings of fixed length.

We can continue in this way to create codes to send images of a fixed size, videos of
a fixed length, and so on. All this is done by using longer codewords.

Shannon’s coding theorem concerns with the problem of finding sustainable strategies
for building codes. By sustainable, we mean that the strategy should yield codes that
fulfill two conditions.

• First, the codes attain and maintain a positive rate r of bits of information per
transmission as n→∞.

• Second, the probability of a communication error goes to zero as n→∞.

Shannon’s channel coding theorem states that there is a sustainable strategy for build-
ing codes, as long as the targeted rate r is below the channel’s capacity. For a fixed
codeword length n, the maximum number of messages that can be communicated with
this strategy is b2nrc.

Formalization

For the definitions below, let M,n ∈ N and let (A,P) be a channel.

Definition 3. An (M,n)-code is a pair (Enc,Dec) of functions with Enc : {1, 2, . . . ,M} →
An and Dec : An → {1, 2, . . . ,M}.

Definition 4. The rate of a (M,n)-code is

logM

n
.

Observe that if a (M,n)-code has rate r, then M = 2nr.

Definition 5. For an (M,n)-code (Enc,Dec), its probability of a communication error
is

1

M

∑
i≤M

P
(

Dec(Ŵ ) 6= i | W = Enc (i)
)
,

where P
(

Dec(Ŵ ) 6= i | W = Enc (i)
)

is the probability that the receiver decodes some-

thing different to i, given that we sent Enc (i) through the channel.

Intuitively, the probability of a communication error is the probability that the receives
decodes a wrong message when we send him the codeword of a message chosen uniformly
at random.

Example 10. The n-redundant code discussed above is an example of a (2n, n)-code,
whose rate is log 2n/n = 1.

Definition 6. A rate r is attainable if there is a sequence of (b2nrc, n)-codes, indexed by
n, such that the probability of a communication error goes to zero as n→∞.
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4.4 Shannon’s coding theorem

Typicality

We now recall some important notions from Thomas and Cover [?]

Theorem 1. (The asymptotic equipartition property) Let S, S1, S2, . . ., Sn be identically
and independently distributed random variables with distribution p(·) over a space S,
then

− 1

n
p(S1, . . . , Sn)→ H(S), in probability as n→∞.

This theorem follows from the weak law of large numbers. In our context, S, S1, S2, . . . , Sn
denote symbols from a channel’s alphabet and p(·) is arg maxp I(S; Ŝ). That is, p(·) is
the distribution that achieves the channel’s capacity.

Definition 7. For n ∈ N and ε > 0, the typical set A
(n)
ε with respect to p(·) is the set of

sequences (s1, . . . , sn) ∈ Sn such that

H(S)− ε ≤ − 1

n
log p(s1, s2, . . . , sn) ≤ H(S) + ε.

A sequence in A
(n)
ε is called a typical sequence.

In our context, codewords will consist of typical sequences. The next theorem justifies
the following intuitions:

1. All typical sequences have approximately the same probability ≈ 2−nH(S).

2. If you draw a sequence in Sn, using p(·), then the resulting sequence is typical with
high probability.

3.
∣∣∣A(n)

ε

∣∣∣ ≈ 2nH(S).

Theorem 2.

1. If (s1, s2, . . . , sn) ∈ A(n)
ε , then 2−n(H(S)+ε) ≤ p(s1, . . . , sn) ≤ 2−n(H(S)−ε).

2. P
(
A

(n)
ε

)
> 1− ε, for sufficiently large n.

3. (1− ε)2n(H(S)−ε) ≤
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(H(S)+ε).

The reader can take it as an exercise to proof these claims. The proofs are in Thomas
and Cover [?].

Definition 8. Let n ∈ N and let pSŜ(·, ·) be the joint distribution of two random variables

S and Ŝ, whose ranges are S and Ŝ, respectively. The set A
(n)
ε of jointly typical sequences

with respect to pSŜ is the set of pairs (sn, ŝn) of sequences that fulfill the following:

1.
∣∣− 1

n
log pSn(sn)−H(S)

∣∣ < ε.

2.
∣∣∣− 1

n
log pŜn(ŝn)−H(Ŝ)

∣∣∣ < ε.
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3.
∣∣∣− 1

n
log pSnŜn(sn, ŝn)−H(S, Ŝ)

∣∣∣ < ε.

A pair in A
(n)
ε is called a jointly typical pair of sequences.

We clarify that, for sn = (s1, . . . , sn) and ŝn = (ŝ1, . . . , ŝn),

pSn(sn) =
∏
i≤n

pS(si),

pŜn(ŝn) =
∏
i≤n

pŜ(ŝi) =
∏
i≤n

∑
s

pS(s)pŜ|S (ŝi | s) , and

pSnŜn(sn, ŝn) =
∏
i≤n

pSŜ(si, ŝi) =
∏
i≤n

pS(si)pŜ|S(ŝi | si).

In the context of communication via a channel, pSnŜn represents the joint distribution

of Sn and Ŝn, where

• Sn denotes a random codeword, where each symbol was chosen at random according
to the distribution pS = arg maxp I(S; Ŝ) that achieves channel capacity.

• Ŝn denotes a codeword that the channel would output, after we send Sn as input.

We call pSnŜn the codeword input-output distribution.
In the context of communication via a channel, the following theorem justifies the

following intuitions:

1. Suppose that we build a codeword sn at random by choosing each of its symbols at
random according to pS, the distribution that attains channel capacity. Then we
send sn through the channel and let ŝn be the output codeword. Then (sn, ŝn) is
jointly typical with high probability.

2. Suppose now that we build another codeword qn at random using the same proce-
dure. Then it is very unlikely that (qn,yn) is jointly typical.

Theorem 3.

1. P
((

Sn, Ŝn
)
∈ A(n)

ε

)
→ 1, as n→∞.

2. If Qn ∼ pSn(·) and Ŝn ∼ pŜn(·) (i.e., they are drawn independently at random from
the marginal distributions of pSnŜn), then

(1− ε)2−n(I(S;Ŝ)+3ε) ≤ P
((

Qn, Ŝn
)
∈ A(n)

ε

)
≤ 2−n(I(S;Ŝ)−3ε)

These two intuitions justify the effectiveness of a very simple code, called Shannon’s
random code.
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Shannon’s random code

Theorem 4. A rate is attainable iff it is below the channel’s capacity.

We only focus here on proving the following direction: if a rate is below the chan-
nel’s capacity, then it is attainable, as it illustrates how to propose a (b2nrc, n)-code for
communicating b2nrc messages.

To prove this, we present, for n > 1, a (b2nrc, n)-code whose probability of a com-
munication error is at most pn = 2−n(cap−3ε−r), where ε is chosen to be sufficiently small.
Hence, if r < cap, we get that the probability of a communication error goes to zero as
n→∞.

The code’s encoder function Enc is defined as follows. For a message m ≤ b2nrc,
we define Enc(m) as a string in sn where each symbol was drawn from a distribution
p∗ = arg maxp(·) I(S; Ŝ). That is, a distribution that maximizes the channel’s input-
output mutual information and attains the channel’s capacity.

The code’s decoder function Dec is defined as follows. Given the string sn output
by the channel, Dec goes through each message m and tests if (Enc(m), sn) is jointly
typical with respect to the codeword input-output distribution pSnŜn . Dec outputs the
first message for which this test succeeds. If no message succeeds on the test, then Dec
outputs an arbitrary message.

Theorem 5. The probability P (E) of a communication error for Shannon’s random code
goes to 0 as n→∞.

Proof. Let K be a random variable representing a possible code. Then

P (E) =
∑
K

P (K)Pe(K),

where Pe(K) is the probability of a communication error for code K. Observe now that

P (E) =
∑
K

P (K)Pe(K)

=
∑
K

P (K)
1

b2nrc
∑

w≤b2nrc

P
(

Dec(Ŝn) 6= w | Sn = Enc(w)
)

=
1

b2nrc
∑
K

∑
w≤b2nrc

P (K)P
(

Dec(Ŝn) 6= w | Sn = Enc(w)
)
.

Observe now that all codewords were chosen independently at random, so

P
(

Dec(Ŝn) 6= w | Sn = Enc(w)
)

= P
(

Dec(Ŝn) 6= 1 | Sn = Enc(1)
)
,

for w > 1. Hence,

P (E) =
1

b2nrc
∑
K

∑
w≤b2nrc

P (K)P
(

Dec(Ŝn) 6= w | Sn = Enc(w)
)

=
∑
K

P (K)P
(

Dec(Ŝn) 6= 1 | Sn = Enc(1)
)

= P (E | w = 1) .
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This means that the probability of a communication error is equal to the probability
of a communication error, assuming that the sender sent the codeword for message 1.

Note that, in Shannon’s random code, the event of a communication error implies at
least one of the following events: the received codeword Ŝn(1) is not jointly typical with
the codeword Sn(1) for message 1 or the received codeword Ŝn(1) is jointly typical with
the codeword Sn(w) for a message w > 1. More precisely,

P (E |M = 1) = P



(
Sn(1), Ŝn(1)

)
/∈ A(n)

ε or(
Sn(2), Ŝn(1)

)
∈ A(n)

ε or(
Sn(3), Ŝn(1)

)
∈ A(n)

ε or
...(

Sn(b2nrc), Ŝn(1)
)
∈ A(n)

ε .


.

By the union bound,

P (E |M = 1) ≤ P
((

Sn(1), Ŝn(1)
)
/∈ A(n)

ε

)
+
∑
w>1

P
((

Sn(w), Ŝn(1)
)
∈ A(n)

ε

)
.

We now apply Theorem 3, which implies the following:

• P
((

Sn(1), Ŝn(1)
)
/∈ A(n)

ε

)
→ 1, as n→∞. In other words, P

((
Sn(1), Ŝn(1)

)
/∈ A(n)

ε

)
→

0, as n→∞.

• P
((

Sn(w), Ŝn(1)
)
∈ A(n)

ε

)
≤ 2−n(I(S;Ŝ)−3ε). This is because, for w > 1, Sn(1) and

Sn(w) were independently drawn from pSn and, therefore, Ŝn(1) and Sn(w) were
independently drawn from pŜn and pSn , respectively.

Using these observations we get that

P (E |M = 1) ≤ P
((

Sn(1), Ŝn(1)
)
/∈ A(n)

ε

)
+
∑
w>1

P
((

Sn(w), Ŝn(1)
)
∈ A(n)

ε

)
≤ P

((
Sn(1), Ŝn(1)

)
/∈ A(n)

ε

)
+
∑
w>1

2−n(I(S;Ŝ)−3ε)

= P
((

Sn(1), Ŝn(1)
)
/∈ A(n)

ε

)
+ (b2nrc − 1) 2−n(I(S;Ŝ)−3ε)

≤ P
((

Sn(1), Ŝn(1)
)
/∈ A(n)

ε

)
+ 2nr2−n(I(S;Ŝ)−3ε)

= P
((

Sn(1), Ŝn(1)
)
/∈ A(n)

ε

)
+ 2−n(I(S;Ŝ)−r−3ε).

Observe that we chose pS as arg maxp I(S; Ŝ), so I(S; Ŝ) = cap, the channel’s ca-
pacity. So, if the rate r is below the channel’s capacity and ε is sufficiently small, then
P (E |M = 1)→ 0 as n→∞.

5 Communication protocol for algorithm validation

We now formalize the communication protocol where posterior agreement originates. We
first explain an ideal variant where we know X’s probability distribution pX . Further-
more, we assume that pX is from a parameterized family P of probability distributions.
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Afterwards, we explain the empirical variant where we do not know anything about pX
and, even worse, we only have two observations X ′ and X ′′ drawn from pX . Recall that,
in practice, we only have access to observations and have no information of the nature of
the distribution where these observations came from.

5.1 Assumptions

For our statements to hold, we make the following assumptions.

Exponential solution space: We assume that C is discrete and that log |C| = Θ(n),
where n measures the “size” of an observation from a phenomenon. For example, n
measures the number of edges in a graph or the number of datapoints in a clustering
instance. Intuitively, we assume that the solution space’s size grows exponentially in n.

Probabilistic outputs: We assume that any algorithm for stochastic optimization,
when given an input X ′ from an instance space X , outputs a distribution p(· | X ′) over
a discrete solution space C. Every algorithm can be thought to be as such, even when it
only outputs a fixed value cX′ ∈ C, when given X ′ as input. In this case, p(c | X ′) = 1 if
c = cX′ and 0 otherwise.

5.2 Ideal variant

Let A be an algorithm intended for solving Problem 3. Posterior agreement originates
from a communication protocol between a sender and a receiver. The sender must com-
municate, using A’s outputs, the nature of a phenomenon to the receiver. The receiver
must be able, using the information sent from the sender, to identify the phenomenon.
The communication from the sender to the receiver is done through a noisy channel,
whose noise is defined by A and the phenomenon.

Messages Fix n ∈ N. Present the instance space X to the sender and the receiver.
Then agree draw at random a set F ⊆ P of m phenomena and, for each p ∈ F , draw an
observation X ′ of size n. LetM = {X ′1, . . . , X ′m}. Agreeing on F is often not possible in
practice, so we explain in the empirical variant how to deal with this. ThisM constitutes
the set of possible messages that the sender may try to communicate to the receiver.

For the moment, we leave the value of m undefined. We leave for later to figure out
what is the maximum value of m that we can use. The choice of m must still ensure that
the probability of a communication error goes to 0, as n→∞.

Code Present algorithm A to the sender and the receiver. For each X ′ ∈M, use A to
compute p(· | X ′). Define the code (EncA,DecA) as follows:

• EncA encodes X ′ ∈M as the codeword p(· | X ′).

• DecA decodes a probability distribution p(· | Y ) over C as any X̂ ∈ M such that

k
(
Y, X̂

)
≥ k (Y,X), for all X ∈M. Here,

k (Y,X ′) :=
∑
c

p(c | Y )p(c | X ′).
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Channel The channel is the pair
(
{p(· | X ′)}X′∈M ,P

)
where P is defined by the follow-

ing probabilistic procedure. Assume that the sender inputs p(· | X ′) to the channel. The
channel then replaces X ′ with a fresh new observation X ′′ from the same phenomenon
where X ′ comes from. Then it uses the algorithm A to compute p(· | X ′′) and outputs
that to the receiver.

Communication A message X ′ is selected uniformly at random fromM and without
the receiver’s knowledge. The sender then sends the codeword p(· | X ′) through the
channel. The receiver gets p(· | X ′′) and uses the decoding function to guess which
message the sender sent. The receiver succeeds by correctly guessing X ′.

Observe how the algorithm and the phenomenon define the channel’s noise. Hence,
the algorithm can be evaluated by the capacity of the resulting channel. This capacity
is measured by its maximum attainable rate, which is obtained by figuring out how to
maximize the number m of messages that can be used in the protocol, while making the
probability of a communication error go to zero as n, the size of the observations, go to
infinity. We carry this analysis in the empirical variant.

5.3 Empirical variant

The capacity of the channel built above cannot be computed, as we often only have access
to a set of observations and not to the phenomena behind them. This means that we
cannot compute the setM of messages, as described in the ideal variant. For this reason,
we use an empirical variant, where we assume that we are given at least two observations
X ′ and X ′′ of a same phenomenon.

Messages (Figure 8) We create a set of messages by producing transformed copies of
X ′. We take a set T of transformations, where each transformation transforms instances
into instances. Afterwards, we draw m transformations τ1, τ2, . . . , τm from T uniformly at
random. In this way, we can create a setM = {τ1 ◦X ′, τ2 ◦X ′, . . . , τm ◦X ′} of messages
that are analogous to the set of messages that we created in the ideal variant. We impose
the following requirement on T so that M looks like the set M that we would obtain in
the ideal variant.

•
∑

τ p(c | τ ◦X ′) ∈
[
|T|
|C| (1− ρ), |T||C| (1 + ρ)

]
, for some small ρ > 0. The reason for this

assumption is that we we do not want the probability mass of all these codewords
to be concentrated in a narrow subset of C, as this reduces the number of different
messages that the sender can communicate to the receiver. This can be ensured
that, for each c ∈ C, the total probability mass c gets is

∑
τ p(c | τ ◦X ′) ≈

|T|
|C| .

• The transformations do not alter an instance’s randomness.

Observe that such a set of transformations does not necessarily always exist. For ex-
ample, if the algorithm under evaluation always produces the same constant distribution
p(· | X ′), independent of X ′, then no set of transformations will be able to achieve the
requirement above. In this case, however, there is no need to build a channel to evaluate
such an algorithm, as it is clear that the algorithm is not producing any value from the
data.
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Figure 8

Code (Figure 9) The encoding and decoding functions are the analogous of the ideal
variant. The codeword of a message τ ∈M is p(· | τ ◦X ′). When given a codeword p(· |
Y ), the decoding function outputs the message τ for which k (Y, τ ◦X ′) ≥ k (Y, σ ◦X ′),
for every σ ∈M.

Channel (Figure 10) When the sender inputs p(· | τ ◦X ′) to the channel, the channel
outputs p(· | τ ◦X ′′), as in the ideal variant.

Protocol The sender and the receiver agree on a set T of transformations and use the
algorithm under evaluation A to compute the code’s encoding and decoding functions. A
set M = {τ1, . . . , τm} of m messages is drawn uniformly at random from T. A message
τ ∈M is selected uniformly at random and without the receiver’s knowledge. The sender
then sends the codeword p(· | τ ◦X ′) through the channel. The receiver gets p(· | τ ◦X ′′)
and uses the decoding function to guess which message the sender sent (Figure 6). The
receiver succeeds by correctly guessing τ .

5.4 Probability of a communication error

Theorem 6. The probability of a communication error is bounded above by

P(n) = exp (−I + logm+ ε log |C|) , (5)

where
I := EX′,X′′ [log (|C| k(X ′, X ′′))] (6)

One can show that P(n) → 0 as n→∞ by choosing ε sufficiently small and ensuring
that I − logm = Ω(n).
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Figure 9
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Figure 10
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Figure 11
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Proof. Let τs be the message sent by the sender and let τ̂ be the message guessed by the
receiver. Just as in the proof of Theorem 5, one can show that P (τ̂ 6= τs) = P (τ̂ 6= id),
where id is some arbitrary transformation. Without loss of generality, we assume that id
is the identity transformation.

Using the definition of communication error, we get that

P (τ̂ 6= id) = P
(

max
τ 6=id

κ (τ ◦X ′, X ′′) ≥ κ (X ′, X ′′) | id
)
.

Applying the union bound, we get

P (τ̂ 6= id) ≤
∑
τ 6=id

P (κ (τ ◦X ′, X ′′) ≥ κ (X ′, X ′′) | id) .

We now rewrite probabilities as expectations

P (τ̂ 6= id) ≤
∑
τ 6=id

P (κ (τ ◦X ′, X ′′) ≥ κ (X ′, X ′′) | id)

=
∑
τ 6=id

EX′,X′′ [Eτ [I {κ (τ ◦X ′, X ′′) ≥ κ (X ′, X ′′)} | id , X ′, X ′′]]

=
∑
τ 6=id

EX′,X′′ [P (κ (τ ◦X ′, X ′′) ≥ κ (X ′, X ′′) | id , X ′, X ′′)] .

Here, I is the indicator function.
We now apply Markov’s inequality.

P (τ̂ 6= id) ≤
∑
τ 6=id

EX′,X′′ [P (I {κ (τ ◦X ′, X ′′) ≥ κ (X ′, X ′′)} | id , X ′, X ′′)]

≤
∑
τ 6=id

EX′,X′′

[
Eτ [κ (τ ◦X ′, X ′′) | id , X ′, X ′′]

κ (X ′, X ′′)

]
.

We now compute an upper bound for the numerator.

Eτ [κ (τ ◦X ′, X ′′) | X ′, X ′′] = Eτ

[∑
c

p(c | τ ◦X ′)p(c | X ′′) | X ′, X ′′
]

=
∑
c

p(c | X ′′)Eτ [p(c | τ ◦X ′)]

=
∑
c

p(c | X ′′)
∑
τ

1

|T|
p(c | τ ◦X ′)

≤ 1

|T|
|T|
|C|

(1 + ρ)
∑
c

p(c | X ′′) = (1 + ρ)
1

|C|
.

For the last inequality, we used the assumption that
∑

τ p(c | τ◦X ′) ∈
[
|T|
|C| (1− ρ), |T||C| (1 + ρ)

]
.
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We have then that

P (τ̂ 6= id) ≤
∑
τ 6=id

EX′,X′′

[
1 + ρ

|C|κ (X ′, X ′′)

]
= (1 + ρ) (m− 1)EX′,X′′ exp (− log (|C|κ (X ′, X ′′)))

≤ m(1 + ρ) EX′,X′′ exp (− log (|C|κ (X ′, X ′′)))

= (1 + ρ)EX′,X′′ exp (− log (|C|κ (X ′, X ′′)) + logm)

≈ EX′,X′′ exp
(
−Î + logm

)
.

Here, for simplicity, we assumed 1 + ρ ≈ 1.
To provide an upper bound to P (τ̂ 6= id), we must bound the behavior of the ran-

dom variable Î = log (|C|κ (X ′, X ′′)). To do this, we assume that Î satisfies an asymptotic
equipartition property in the sense that, as n→∞, Î → I, where I = EX′,X′′ log (|C|κ (X ′, X ′′)),
the expected log posterior agreement. Under this assumption, for every ε, δ > 0, there is
n0 ∈ N such that for any n > n0,

P
(∣∣∣Î − I∣∣∣ ≤ ε log |C|

)
> 1− δ.

With this assumption, we can derive the following:

P (τ̂ 6= id) ≤ EX′,X′′ exp
(
−Î + logm

)
= EX′,X′′ exp

(
−Î + (I − I) + logm

)
= EX′,X′′ exp

(
−I + (I − Î) + logm

)
≤ EX′,X′′ exp

(
−I +

∣∣∣I − Î∣∣∣+ logm
)

≤ EX′,X′′ exp (−I + ε log |C|+ logm)

= exp (−I + ε log |C|+ logm) .

This concludes the proof.

Recall that the goal is to be able to maximize the number of distinguishable messages
that can be sent through the channel. Hence, we must aim to make both m and I as
large as possible. The algorithm can only influence I and, therefore, good algorithms
shall maximize the expected log posterior agreement.

Computing I requires the underlying distribution of X ′ and X ′′, which we assume
to be unknown. In this case, we can approximate I with the empirical log posterior
agreement

1

L

∑
`≤L

[log (|C| k(X ′`, X
′′
` ))] , (7)

where {X ′1, X ′′1 , . . . , X ′L, X ′′L} is a set of observations.
Finally, we remark some analogies with Shannon’s channel coding theorem. The

quantity 1
n
EX′,X′′ log (|C|κ (X ′, X ′′)) plays the role the input-output mutual information.

The value logm/n plays the role of the code rate.
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