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1 Introduction

Quantum computing is the use of quantum phenomena like entanglement and superpo-
sition to do efficient computations that, in some cases, cannot be efficiently done by a
classical computer. For example, assume we are given a boolean array of even length
that is either constant —all entries are zero— or balanced —exactly half of its entries are
zero—. A classical computer needs to access at least half of this array’s entries to decide
if the array is constant or balanced. However, a quantum computer can decide this in
the time it takes to access only one entry, an exponential improvement compared to the
classical case.

These notes give a simplified introduction to quantum computation. No knowledge of
quantum mechanics or complex algebra is required. Only knowledge from a second year
in a bachelor of computer science is required.

2 Preliminaries

We know give a background of linear algebra. The reader who has taken a basic linear
algebra course can skip this section.

2.1 Linear algebra

Definition 1. A vector is an ordered sequence of complex numbers1. A vector’s length
is the total of numbers occurring in it (repetitions of a number are also counted). We let
Cn be the set of all vectors of length n.

We write a vector of length n as follows (a0, a1, . . . , an), where a0, a1, . . ., an are the
numbers in the vector. We also sometimes write vectors as follows:

a0
a1
...
an

 .

1If you are not familiar with complex numbers, do not worry. Just read along replacing “real” with
“complex” throughout these notes.
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Definition 2. A matrix is a rectangular array of complex numbers. A matrix’s size is
the expression N × M , where N and M are the number of rows and columns in the
matrix, respectively. For a matrix A, we denote the number in the i-th row and j-th
column as Aij.

We write a matrix A of size N ×M as follows:
A11 A12 . . . A1M

A21 A22 . . . A2M
...

...
. . .

...
AN1 AN2 . . . ANM


Observe that a vector of length N can be seen as a matrix of size N × 1 or also as a

matrix of size 1×N .

Definition 3. If A and B are matrices of the same size. Then A+B is the matrix such
that (A+B)ij = Aij +Bij.

Example 1. (
1 2
3 4

)
+

(
100 200
300 400

)
=

(
101 202
303 404

)
.

In particular, the sum of two vectors of size n can be described as follows:

(a0, a1, . . . , an) + (b0, b1, . . . , bn) = (a0 + b0, a1 + b1, . . . , an + bn).

Definition 4. Let A be a matrix and y be a complex number, then the matrix yA is the
matrix such that (yA)ij = yAij.

Example 2.

7

(
1 2
3 4

)
=

(
7 14
21 28

)
.

Example 3.
7(1, 2, 3, 4) = (7, 14, 21, 28).

Definition 5. Let A be a matrix of size N ×M . The transpose of A is the matrix A>

of size M ×N such that
(
A>
)
ij

= Aji.

Example 4. (
1 2 3
4 5 6

)>
=

 1 4
2 5
3 6


Definition 6. Let A and B be matrices of size N ×M and M × R, respectively. Then
the product of A and B is the matrix AB of size N ×R such that

(AB)ij =
M∑
j=1

AikBkj.
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Example 5. Let A and B be the following matrices

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12 B13

B21 B22 B23

)
.

Then the product of A and B can be depicted as follows:(
B11 B12 B13

B21 B22 B23

)
(
A11 A12

A21 A22

) (
A11B11 + A12B21 A11B12 + A12B22 A11B13 + A12B23

A21B11 + A22B21 A21B12 + A22B22 A21B13 + A22B23

)
Definition 7. A linear transformation is a function T : CN → CN such that for any
λ1, λ2 ∈ C and any two vectors ψ1, ψ2 ∈ CN

T (λ1ψ1 + λ2ψ2) = λ1T (ψ1) + λ2T (ψ2) .

2.2 Exercises on linear algebra

Let A,B and C be matrices of sizes M ×N , N ×Q, and N ×Q, respectively. Let λ ∈ C.
Prove (or at least convince yourself) of the following facts.

1. AB 6= BA, in general.

2. (AB)> = B>A>.

3. A (λB) = (λA)B = λ (AB) .

4. A(B + C) = AB + AC.

5. (B + C)A = BA+ CA.

3 Quantum computation

3.1 Qubits

A qubit is the fundamental data unit in quantum computing, analogous to a bit in
classical computing.

Definition 8. A qubit is a pair (a0, a1) of complex numbers such that |a0|2 + |a1|2 = 1.

If you are not familiar with complex numbers, do not worry. Simply replace “complex”
with “real” and replace any complex notion with its analogous real counterpart. For
example, you can imagine a qubit as a pair (a0, a1) of real numbers such that |a0|2+|a1|2 =
1, where |a0| and |a1| are a0 and a1’s absolute values. However, bear in mind that this
analogy is just limited to these notes and if you want to understand more advanced topics
like Shor’s algorithm you must become familiar with complex numbers.

Intuitively, a qubit (a0, a1) can be interpreted as a bit that is simulatenously 1 and
0, just like Schrödinger’s cat. This phenomenon where two different entities (e.g. a 0
and a 1) seem to be stored in the same physical space is called superposition in quantum
physics. When we measure or observe this qubit, then we obtain a value of 0 with
probability |a0|2 and a value of 1 with probability |a1|2. Once a qubit has been measured,
it loses its uncertainty. If a 0 was obtained, then the qubit becomes (1, 0) and (0, 1)
otherwise.
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3.2 Qubit arrays

A classical bit array of length n is simply an ordered sequence of n bits. A qubit array
of length n is indeed a storage unit with n bits of capacity, but it stores all 2n bitstrings
of length n in superposition!

Definition 9. A qubit array of length n is a vector |ψ〉 = (a0, a1, . . . , aN−1) ∈ CN , with
N = 2n, and such that

∑
x<N |ax|

2 = 1. For x ≤ N , let [x]2 be the bit array of length n
describing x in base 2.

The value |ax|2 indicates the probability that we observe the classical bit array [x]2 ∈
{0, 1}n after measuring |ψ〉. For simplicity, we will not distinguish between x and [x]2.

Example 6. The qubit array (0, 1/
√

2, 0,−1/
√

2) can, after being measured, be either
the bit array 01 or the bit array 11, each with probability 1/2.

Example 7. The qubit array (1/
√

2, 0, 0, 0, 1/2, 0, 0,−1/2) can, after being measured,
be either 000, 100, or 111, each with probabilities 1/2, 1/4, or 1/4.

We distinguish a useful set of qubit arrays. For a classical bit array x ∈ {0, 1}n, we
define the qubit array |x〉 as the vector whose entry for x is 1 and zero for all other entries.
We define

Bn := {|x〉 | x ∈ {0, 1}n} . (1)

We usually denote qubit arrays with |ψ〉, with ψ a Greek letter. Qubit arrays in
Bn are denoted with |x〉, with x a Latin letter. One can show that any qubit |ψ〉 =
(a0, a1, . . . , aN−1) can be rewritten as

|ψ〉 =
∑

x∈{0,1}n
ax |x〉 . (2)

This algebraic representation of |ψ〉 facilitates the computation with quantum logic gates.
It also contains all the information that determines |ψ〉.

A famous qubit array that we will encounter often is

|?〉 :=
∑

x∈{0,1}n

1√
2n
|x〉 . (3)

Observe that this is one of the most “uncertain” qubit arrays. Any bit array is equally
likely to be observed.

Those familiar with linear algebra will recognize that qubit arrays are vectors in the
unit sphere of CN and that Bn is a basis of CN .

3.3 Superpositions

We model a qubit array |ψ〉 of length n with a vector of 2n complex numbers. However, |ψ〉
is a storage unit with n bits of capacity. The array |ψ〉 is not some sort of data structure
or device that stores all 2n bit arrays of length n in some clever way. It is physically
analogous to a classical bit array with n bits of capacity. All 2n bit arrays coexist at the
same time on the same n bits. This unusual phenomenon is called superposition.
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3.4 Measuring quantum bits and quantum bit arrays

In quantum mechanics, it is possible to construct mechanisms that “measure” quantum
bits, called measurement operators. In these notes, we restrict ourselves to a set of very
simple measurement operators. These operators receive as input a quantum bit and
output a classical bit. Intuitively, a measurement operator “looks into” the quantum bit
a0 |0〉 + a1 |1〉 to see what value it contains. A measurement operator outputs 0 and 1
with probabilities |a0|2 and |a1|2, respectively. After performing a measuring operation, all
uncertainty carried by a quantum bit is lost and the quantum bit has become essentially
a classical bit.

We also consider here simple measurement operators for quantum bit arrays. If a
measurement operator receives as input the quantum bit array

∑
x∈{0,1}n ax |x〉, then the

operator outputs the bit array x with probability |ax|2. Just as in the case of quantum bits,
after performing a measuring operations, the quantum bit array becomes the observed
classical bit array.

3.5 Quantum gates

Just as classical logical gates transform a bit array, a quantum gate is a quantum mech-
anism that transforms qubit arrays of length n into qubit arrays of the same length.

Quantum gates can be modeled as unitary transformations on the vector space CN ,
the space where qubit arrays reside. A unitary transformation is a function G : CN → CN

with some special properties that we describe later in Section 6. What we only need to
know for the moment is that such transformations are linear. This means that for any
two qubit arrays |ψ1〉 and |ψ2〉 and any two α1, α2 ∈ C,

G (α1 |ψ1〉+ α2 |ψ2〉) = α1G |ψ1〉+ α2G |ψ2〉 . (4)

This means that for a quantum gate G and any qubit array
∑

x ax |x〉

G

(∑
x

ax |x〉

)
=
∑
x

axG |x〉 . (5)

Hence, a quantum gate is determined by only how it transforms the qubit arrays in Bn.
We now present the quantum gates that constitute the circuits presented in these

notes.

Hadamard gate. This gate, usually denoted with the letter H, is defined for |x〉 ∈ Bn
as follows:

H |x〉 :=
∑

y∈{0,1}n

(−1)x
>y

√
2n

|y〉 , (6)

where x>y :=
∑

i≤n x[i]y[i] is the classical inner product. In particular, for 0 := (0, 0, . . . , 0),

H |0〉 =
∑

y∈{0,1}n

1√
2n
|y〉 = |?〉 . (7)
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Observe that we defined H only for Bn. How is H |ψ〉 defined in general for any qubit
array |ψ〉 =

∑
x ax |x〉? Recall that quantum gates are linear transformations. Therefore,

H |ψ〉 = H

(∑
x

ax |x〉

)
=
∑
x

axH |x〉 =
∑
x,y

ax (−1)x
>y

√
2n

|y〉 (8)

=
∑
y

(∑
x

ax (−1)x
>y

√
2n

)
|y〉 . (9)

Emulation gate. Quantum gates happen to be able to efficiently emulate any classical
Boolean gate. If f : {0, 1}n → {0, 1} is a classical Boolean circuit, then it is possible to
construct a quantum gate Uf that works on |x〉 ∈ Bn as follows:

Uf |x〉 := (−1)f(x) |x〉 . (10)

More generally, by recalling that quantum gates are linear transformations, we get that
for ψ =

∑
x ax |x〉,

Uf |ψ〉 =
∑
x

axUf |x〉 =
∑
x

(−1)f(x)ax |x〉 . (11)

We remark that if a classical Boolean circuit f runs in O(K)-time, then Uf also runs
in O(K)-time.

Reflection gate. This is a simple quantum gate F that works on Bn as follows:

F |x〉

{
|0〉 if x = 0 and

− |x〉 otherwise.
(12)

3.6 Quantum entanglement

We now present another counterintuitive property of quantum bit arrays, called quantum
entanglement. For this, we introduce the CNOT gate. We do not give the full specification
of this gate. For this discussion, it is enough to say that CNOT |00〉 := 1/

√
2 |00〉 +

1/
√

2 |11〉.
Observe that if we measure |ϕ〉 = CNOT |00〉, then we can only obtain either 00 or 11,

nothing else. In quantum terminology, we say that the two qubits in |ϕ〉 are entangled.
This means that if you observe |ϕ〉’s first qubit and you see a 0, then you know with
complete certainty, that |ϕ〉’s second qubit will be 0, after measuring it.

To emphasize the nature of quantum entanglement, suppose that Alice takes the qubit
array |00〉 and computes CNOT |00〉. She then keeps |ϕ〉’s first qubit and gives |ψ′〉’s
second qubit to Bob. Bob then travels to Alpha Centauri, which is at least 4 light years
away from Earth. Suppose now that Alice measures her qubit and observes a 0. Then
Bob’s qubit will also yield 0 after measurement, even if he performs the measurement one
second after Alice’s measurement.

4 The Deutsch-Jozsa algorithm

We now show how to solve in quantum linear time a problem that classical computers
seem only able to solve in exponential time.
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Figure 1: Quantum circuit for the Deutsch-Jozsa algorithm.

4.1 Overview and intuition

Definition 10. A computable function f : {0, 1}n → {0, 1} is balanced if f(x) = 0 for
exactly half of the elements of its domain. The function f is constant if f(x) = 0 for all
elements of its domain.

Definition 11 (Deutsch-Jozsa problem). Given a function f : {0, 1}n → {0, 1}, known
to be balanced or constant, decide if it is balanced.

Assume that a classical circuit takes O(K)-time to evaluate f(x), for any x. As of
today, classical computers can solve the problem above in O(2n−1K)-time, as they must
evaluate f on at least half of f ’s domain. Figure 1 presents a quantum circuit that solves
the problem above in time O(K)-time.

The circuit receives as input the quantum bit array |0〉, where 0 = (0, 0, . . . , 0). The
circuit consists of a Hadamard transformation, followed by an emulator Uf of f , then by
another Hadamard transformation, and finally by a measurement.
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5 Exercises on the Deutsch-Jozsa algorithm

Figure 2: Quantum circuit for the Deutsch-Jozsa algorithm.

Figure 2 shows the circuit for the Deutsch-Jozsa algorithm. Recall that, for a qubit
array |x〉 ∈ Bn,

H |x〉 =
∑

y∈{0,1}n

(−1)x
>y

√
2n

|y〉 and Uf |x〉 = (−1)f(x) |x〉 .

1. Let |ψ′〉 be the qubit array obtained after applying H, Uf , and H, in that order, to
|00 . . . 0〉, as dictated by the Deutsch-Jozsa algorithm. Prove that

|ψ′〉 =
∑

z∈{0,1}n

 ∑
y∈{0,1}n

(−1)z
>y+f(y)

√
2n

 |z〉 .
2. If f is constant, what is the probability that we get the bit array 00 . . . 0 when we

measure |ψ′〉? What if f is balanced?

3. Conclude that the Deutsch-Jozsa algorithm decides whether a function f is constant
or balanced.
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Figure 3: Quantum circuit for Grover’s algorithm.

6 Grover’s algorithm

6.1 Unitary transformations

A linear transformation is a function T : CN → CN such that for any a1, a2 ∈ C and any
two |ψ1〉 , |ψ2〉 ∈ CN ,

T (a1 |ψ1〉+ a2 |ψ2〉) = a1T |ψ1〉+ a2T |ψ2〉 . (13)

A popular result in linear algebra is that every linear transformation is identified with
a unique matrix JT K ∈ CN×N such that T |ψ〉 = JT K |ψ〉, the product of the matrix JT K
and the vector |ψ〉. JT K is the matrix whose x-th column is T |x〉, for x ∈ {0, 1}n.

Another popular result states that if T1 and T2 are linear transformations, then
T1 (T2 |x〉) = JT1KJT2K |x〉. From now on, we identify T with JT K.

A quantum gateG is a unitary transformation. A linear transformationG : CN → CN ,
with N = 2n, is a unitary if G†G = I. If you are not familiar with complex algebra, then
you can think of G† as G>, G’s transpose.

Recall that the transpose of a squared matrix G is the matrix G> obtained by “mir-
roring” G through its diagonal. More precisely, for i, j ≤ N , we have that

(
G>
)
ij

= Gji.

6.2 Overview and intuition

Definition 12. Given a function f : {0, 1}n → {0, 1}, find an element x ∈ {0, 1}n such
that f(x) = 1. We call such an element a solution of f . Let N := 2n and assume that
there are M � N solutions of f .

We assume M to be known. There are more involved quantum algorithms that can
solve the problem above when M is unknown.

Figure 3 shows a quantum circuit implementing Grover’s algorithm, a quantum algo-

rithm that computes a solution of f in O
(√

NK
)

-time, where O (K) is the time com-

plexity for computing f(x), for any x ∈ {0, 1}n. The algorithm consists of a Hadamard

transformation followed by a sequence of ω Grover rotations, with ω ≈ bπ
2

arcsin
√

M
N
c.

At the end a measurement is performed.
The Hadamard transformation yields |?〉. Let |σ〉 := 1√

M

∑
x:f(x)=1 |x〉 and |σ〉⊥ :=

1√
N−M

∑
x:f(x)=0 |x〉. One can show that |σ〉 and |σ〉⊥ are orthogonal (i.e., they form an

angle of 90 degrees) and have the same length as |?〉. Moreover, |?〉 lies in the plane
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defined by these two vectors. Therefore, we can visualize |σ〉, |σ〉⊥, and |?〉 as shown in
Figure 4a.

After obtaining |?〉, we apply a series of Grover rotations transforms |?〉 into a vector
|ψω〉 that is very close to |σ〉⊥. As a result, a measurement of |ψω〉 will yield, with high
probability, a solution of f .

Recall that we assume M � N . Hence, |?〉 stands very close to |σ〉⊥. Let θ/2 be
the angle between |?〉 and |σ〉⊥. It can be shown that θ/2 = arcsin

√
M/N . We will see

later in Section 6.3, that the Grover rotation G rotates |σ〉⊥ towards |σ〉 by θ, as shown
in Figure 4b.

Our goal is to apply several rotations to |?〉 until the result |ψω〉 is very close to |σ〉. In
this way, if we perform a measurement, then we get a solution of f with high probability.
If we do some arithmetic, we can conclude that after ω = bπ−θ

2θ
c = O(b π

2θ
c) rotations, we

can expect |ψω〉 to be very close to |σ〉.
The algorithm’s running time consists of the running time of a Hadamard transfor-

mation, which is constant, plus ω times performing the Grover rotation. Each Grover
rotation takes O(K)-time, because this is the time that takes to evaluate f via the em-
ulator Uf . So Grover’s algorithm takes O(ωK)-time. Now, since M � N , we have that
θ
2

= arcsin
√

M
N

is very small. For such values, we have that arcsinϕ ≈ ϕ. Therefore,

ω = b π
2θ
c ≈ bπ

4

√
N
M
c ≤ bπ

4

√
Nc = O

(√
N
)

.

6.3 The Grover rotation

We now explain in detail how the Grover rotation works. Figure 5 illustrates the circuit
that implements a Grover rotation. It consists of an emulator Uf of f , a Hadamard
transformation H, a reflection F through the line spanned by |0〉, and another Hadamard
transformation H.

To understand why the Grover rotation rotates |?〉 by θ towards |σ〉, we compute first
its matrix representation. The matrix representation of a composition of linear transfor-
mations happens to be the product of the matrix representation of each transformation.
Thus, the Grover rotation’s matrix representation is

G = HFHUf . (14)

Observe that F = 2 |0〉 |0〉> − I, where I is the identity matrix. Therefore,

G = H
(

2 |0〉 |0〉> − I
)
HUf (15)

=
(

2H |0〉 |0〉>H −H2
)
Uf . (16)

Recall that H |0〉 = |?〉. Using linear algebra, we can show that H is symmetric; that
is, H> = H. Thus, |0〉>H = |0〉>H> = (H |0〉)> = |?〉>. Hence,

G =
(

2 |?〉 |?〉> −H2
)
Uf . (17)

Using the fact that H is unitary and symmetric, we get that H−1 = H, so H2 =
H−1H = I. This means that

G =
(

2 |?〉 |?〉> − I
)
Uf . (18)
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(a) (b)

(c) (d)

Figure 4: An illustration of how Grover’s algorithm works. The algorithm first takes
the qubit array |0〉 and passes it through a Hadamard gate, yielding |?〉 (Figure 4a).
Afterwards, it applies Grover’s rotation ω = bπ

2
arcsin

√
M/Nc times (Figures 4b–4d).

The resulting qubit array Gω |?〉 is very close to |σ〉. Therefore, a measurement of Gω |?〉
is very likely to yield a solution of f .

Figure 5: Quantum circuit for Grover’s rotation.
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Observe now that Uf is a reflection through
∣∣σ>〉. Similarly,

(
2 |?〉 |?〉> − I

)
is another

reflection. Using linear algebra, we can show that the product of two reflections is a
rotation. In this case, the rotation is by an angle of θ towards |σ〉. We conclude then
that the Grover rotation indeed rotates vectors in the span of |σ〉 and

∣∣σ>〉 by θ towards
|σ〉.
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7 Exercises on Grover’s algorithm

For the following exercises, the following properties of matrix algebra are useful. Let A,B
and C be matrices of adequate sizes and let λ ∈ C.

• AB 6= BA, in general.

• (AB)> = B>A>.

• A (λB) = (λA)B = λ (AB) .

• A(B + C) = AB + AC.

• (B + C)A = BA+ CA.

1. Let |σ〉 :=
∑

x:f(x)=1

√
1
M
|x〉 and

∣∣σ⊥〉 :=
∑

x:f(x)=0

√
1

N−M |x〉.

(a) Prove that |σ〉 and
∣∣σ⊥〉 are normal and orthogonal.

(b) Prove that |?〉 lies in the span of these two vectors.

2. The Grover rotation is implemented as G ≡ Uf → H → F → H.

(a) Show that F ’s matrix representation is 2 |00 . . . 0〉 |00 . . . 0〉> − I.

(b) Show that H> = H.

(c) Show that the matrix representation of HFH is 2 |?〉 |?〉> − I.

(d) Show that Uf is a reflection through the qubit array
∣∣σ⊥〉. Recall that a linear

transformation is a reflection through a vector v if its matrix representation is
2vv> − I.

(e) Conclude that G performs a rotation. It can be shown that this rotation is
done by an angle of θ = 2 arcsin

√
M/N towards |σ〉.

3. Write down the circuit implementing Grover’s algorithm and argue why it computes
a solution of f with high probability.
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