

Cidge nössische Technische Hoo Swiss. Federall Institute of Techn	Aschule Zünkla polegy Zunkla	Rathematical Modeling of Physical Systems		
• Reaction k_2 contains a temperature dependence $K(T)$ that was experimentally found:				
1	Abs. Temperature T [K]	Equilibrium Const. K [mole m ⁻³]		
	300.0	7.7446×10^{-29}		
	400.0	1.9543×10^{-20}		
	500.0	2.2182×10^{-16}		
	600.0	5.2844×10^{-12}		
	700.0	1.3867×10^{-5}		
	800.0	9.0782×10^{-6}		
	1000.0	3.2509×10^{-5}		
	1100.0	2.7861×10^{-4}		
	1200.0	1.6788×10^{-3}		
	1300.0	7.6913×10^{-3}		
	1400.0	2.8510×10^{-2}		
	1500.0	8.8716×10^{-2}		
	1600.0	2.4044×10^{-1}		
	1700.0	5.8344×10^{-1}		
	1800.0	1.7947		
	1900.0	2.6061		
l	2000.0	4.9431		
• Program $K(T)$ using a table-lookup function.				
December 6, 2012 © Prof. Dr. François E. Cellier Start Presentation				

Einigen össische Technische Hochschule Zühlch Swiss Federal Institute af Technology Zuhlch	Mathematical Modeling of Physical Systems		
 The initia 0.0075. T temperatu Simulate reduce th algorithm 	I molar masses of Br ₂ and H ₂ are both equal to The total reaction volume is $V = 0.001 \text{ m}^3$. The tre is $T = 800 \text{ K}$. the system during 5000 seconds. You need to be tolerance value for the DASSL integration at to 10^{-10} .		
Plot on o during thePlot on a	 Plot on one graph the molar masses of Br₂, H₂, and HBr during the first <i>0.1 seconds</i>. Plot on a second graph the molar mass of H[*] during the 		
 first 0.2 seconds. Plot on a third graph the molar mass of Br[*] during the first 0.3 seconds. 			
December 6, 2012	© Prof. Dr. François E. Cellier Start Presentation		

Eligen Ossakle Textin Sche Hochschule Züllen Eniss Explorat Institute of Textina Page Zuritzte	Mathematical Modeling of Physical Systems		
• The reaction rate const follows: $k_{\theta} = 60.0$ Mode using	stants at the given temperature are as el the system in the <i>Dymola equation window</i> a matrix-vector notation.		
$k_1 = 2.3 \cdot 10^{11} \text{ mong}$ $k_2 = 4.02 \cdot 10^{9} \text{ Simu}$ $k_3 = 2.82 \cdot 10^{12} \text{ condit}$ $a_1 = 920.0 \text{ The r}$ $a_2 = 80.0 \text{ You}$ $a_3 = 920.0 \text{ DASE}$	late the system during 0.1 seconds. The initial itions are $n_{\rm H_2} = 10^{-7}$, and $n_{\rm O_2} = 0.5 \cdot 10^{-7}$. eaction volume is $V = 1.0 m^3$. need to reduce the tolerance value of the <i>SL integration algorithm</i> to 10^{-17} .		
• Plot the molar masses of H ₂ , O ₂ , and H ₂ O on one plot. Plot the molar masses of the other four species on separate plots.			
December 6, 2012 © Prof. I	Dr. François E. Cellier		

