

$\boldsymbol{U}_{\boldsymbol{\theta}} = f(t)$	$i_3 = i_1 - i_4$
$u_q = R_q \cdot i_q$	$= \frac{u_1}{R_1} - \frac{u_4}{R_4}$
$i_I = u_I / R_I$	$= (U_0 - u_q - u_4) / R_1 - (u_3 + u_c) / R_4$
$i_2 = \frac{u_2}{R_2}$	$= (U_0 - R_q \cdot i_q - u_3 - u_c) / R_1 - (u_3 + u_c) / R_4$
$\boldsymbol{u}_3 = \boldsymbol{R}_3 \cdot \boldsymbol{i}_3$	$= (U_0 - R_q \cdot i_q - R_3 \cdot i_3 - u_c) / R_1 - (R_3 \cdot i_3 + u_c) / R_4$
$i_4 = u_4 / R_4$	
$du_c/dt = i_c/C$	$(1 + R_3/R_1 + R_3/R_4) \cdot i_3 + (R_q/R_1) \cdot i_q = U_0/R_1 - u_c/R_1 - u_c/R_4$
$i_q = i_1 + i_2$	
$\mathbf{i}_3 = \mathbf{i}_1 - \mathbf{i}_4$	$(R_1R_3 + R_1R_4 + R_3R_4) \cdot i_3 + R_4R_q \cdot i_q = R_4 \cdot U_0 \cdot (R_1 + R_4) \cdot u_c$
$\mathbf{i}_c = \mathbf{i}_2 + \mathbf{i}_3$	
$\boldsymbol{u}_{I} = \boldsymbol{U}_{0} - \boldsymbol{u}_{q} - \boldsymbol{u}_{4}$	Expressions in the Expressions in
	tearing variables known variables
$u_2 = u_1 + u_3$	

ETH Eidgenössische Techn Swiss. Rederall Inscitud	ische Hochschule Zinka es et Technology zurlen
$\left[(R_{I}R_{3}$	$ + \frac{R_1R_4 + R_3R_4}{R_2R_3} \frac{R_4R_q}{(R_1R_2 + R_1R_q + R_2R_q)} \cdot \begin{bmatrix} i_3 \\ i_q \end{bmatrix} = \begin{bmatrix} R_4 \cdot U_0 \cdot (R_1 + R_4) \cdot u_c \\ (R_1 + R_2) \cdot (U_0 \cdot u_c) \end{bmatrix} $
⇒	$a_{11} = R_1 \cdot R_3 + R_1 \cdot R_4 + R_3 \cdot R_4$ $a_{12} = R_4 \cdot R_q$ $a_{21} = R_2 \cdot R_3$ $a_{22} = R_1 \cdot R_2 + R_1 \cdot R_q + R_2 \cdot R_q$ $b_1 = R_4 \cdot U_0 - (R_1 + R_4) \cdot u_c$ $b_2 = (R_1 + R_2) \cdot (U_0 - u_c)$ $d = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$ $i_3 = (a_{22} \cdot b_1 - a_{12} \cdot b_2)/d$ $i_q = (a_{11} \cdot b_2 - a_{21} \cdot b_1)/d$
October 18, 20	Image: Orgen control of the second

$f_0 = f(t)$	$\boldsymbol{u}_3 = \boldsymbol{R}_3 \cdot \boldsymbol{i}_3$	20 equations
$\mathbf{R}_{II} = \mathbf{R}_{I} \cdot \mathbf{R}_{3} + \mathbf{R}_{I} \cdot \mathbf{R}_{4} + \mathbf{R}_{3} \cdot \mathbf{R}_{4}$	$\boldsymbol{u}_q = \boldsymbol{R}_q \cdot \boldsymbol{i}_q$	
$_{12} = \boldsymbol{R}_{4} \cdot \boldsymbol{R}_{q}$	$u_4 = u_3 + u_c$	9 additions
$P_{21} = R_2 \cdot R_3$	$\boldsymbol{u}_1 = \boldsymbol{U}_0 - \boldsymbol{u}_q - \boldsymbol{u}_4$	
$R_{22} = \boldsymbol{R}_1 \cdot \boldsymbol{R}_2 + \boldsymbol{R}_1 \cdot \boldsymbol{R}_q + \boldsymbol{R}_2 \cdot \boldsymbol{R}_q$	$u_2 = u_1 + u_3$	7 subtractions
$= \mathbf{R}_4 \cdot \mathbf{U}_0 \cdot (\mathbf{R}_1 + \mathbf{R}_4) \cdot \mathbf{u}_c$	$i_I = u_I / R_I$	19 multiplications
$\mathbf{R} = (\mathbf{R}_1 + \mathbf{R}_2) \cdot (\mathbf{U}_0 - \mathbf{u}_c)$	$i_2 = u_2 / R_2$	6 divisions
$= a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$	$i_4 = u_4 / R_4$	
$-(a_{22}\cdot b_1 - a_{12}\cdot b_2)/d$	$\frac{du_c}{dt} = i_c / C$	N 47
$= (a_{11} \cdot b_2 - a_{21} \cdot b_1)/d$	$i_c = i_2 + i_3$	\Rightarrow <u>41 operations</u>

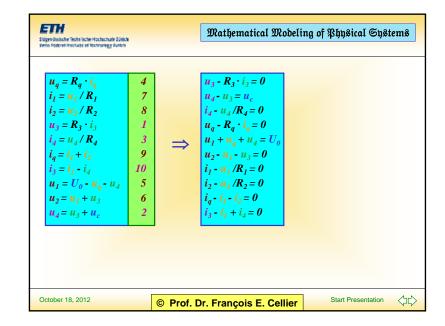
Standolaufun Technische Hochschule Sänich Niss Faderal Institutie af Technology Zurich	Mathematical Modeling of Physical Systems
Relaxa	tion Algorithm I
• Apply the relaxation circuit.	on algorithm to the same electrical
make use of the follo	sequence of equations and variables, wing heuristics: ausal in the same way as for <i>Problem 4.1</i> .
 Start with the first r 	esidual equation. It is being placed as the <i>last</i> the corresponding tearing variable is the <i>last</i>
assumption that the equation #1, and set solved also at the b	is, which can be made causal on the basis of the tearing variable is already known, starting with the variables for which these equations are being beginning of the list of variables, starting with v_{ay} , the diagonal elements can be normalized to I .
October 18, 2012 © Prof	f. Dr. François E. Cellier Start Presentation くけ

ETH		
	e Technische Hochschule Zünich hocitwize of Technology Zunich	

	R	att	emati	cal 🛛	Moi	belina	ı of	Bh)Sical	ିଙ୍କା	18temé
--	---	-----	-------	-------	-----	--------	------	----	--------	-------	--------

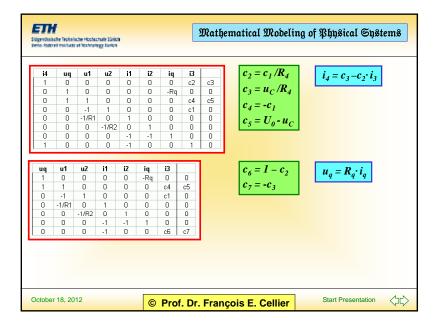
Relaxation Algorithm II

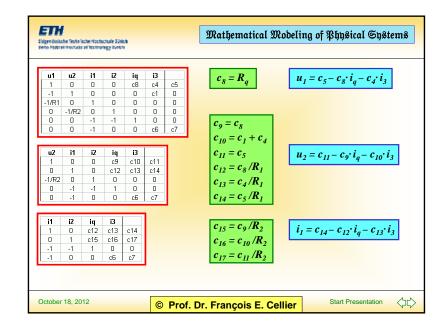
- Set the second residual equation as the second to last equation, whereby the corresponding tearing variable is also the second to last variable.
- Number the equations, which can be causalized based on the assumption that the second tearing variable is already known, in increasing order following the first set of equations (with the exception of the first residual equation, which comes at the very end).

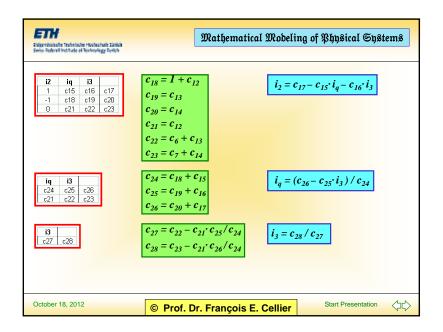

The resulting equation system in matrix form has diagonal elements that are all normalized to 1, and contains exactly two non-zero elements above the diagonal. These are located in the columns of the tearing variables and in the rows of the first equation of the causalized equation system.

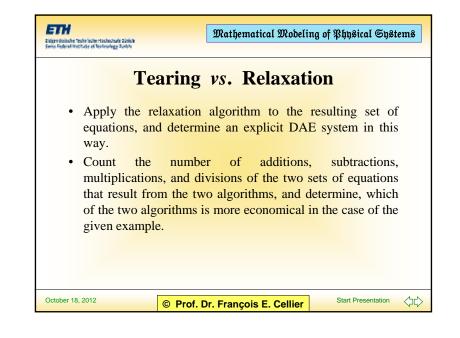
• Consequently, the problem of minimizing the number of non-zero elements above the diagonal in the case of the relaxation algorithm is indeed identical with the search for suitable tearing variables.

October 18, 2012


© Prof. Dr. François E. Cellier Start Presentation


 $\langle \downarrow \downarrow \rangle$




$u_4 - u_3 = u_c$		u3	u4	i4	uq	u1	u2	i1	i2	iq	i3		
$i_4 - u_4 / R_4 = 0$		-1	0	0	0 N	0 N	0	0	0	0	R3 0	0	
$u_q - R_q \cdot i_q = 0$			-1/R4	1	0	0	0	0	0	0	0	uC D	
TT		0	-0.64	0	1	0	0	0	0	-Rq	0	0	
$\boldsymbol{u}_1 + \boldsymbol{u}_q + \boldsymbol{u}_4 = \boldsymbol{U}_0$	\Rightarrow	n n	1	0	1	1	0	n	n	п.ч П	n	Un	
$u_2 - u_1 - u_3 = 0$		-1	0	0	Û	-1	1	0	0	0	0	0	
$i_1 - u_1 / R_1 = 0$		0	0	0	0	-1/R1	0	1	0	0	0	0	
		0	0	0	0	0	-1/R2	0	1	0	0	0	
$i_2 - u_2 / R_2 = 0$			0	0	0	0	0	0	-1	-1	1	0	0
$i_q - i_1 - i_2 = 0$		0	0	1	0	0	0	-1	0	0	1	0	
$i_3 - i_1 + i_4 = 0$													

u3	u4	i4	uq	u1	u2	i1	i2	iq	i3	$u_3 = R_3 \cdot i_3$	
1	0	0	0	0	0	0	0	0	-R3	0	
-1	1	0	0	0	0	0	0	0	0	uC	
0	-1/R4	1	0	0	0	0	0	0	0	0	
Π	Π	Π	1	Π	Π	Π	Π	-Rq	Π	<u>n</u>	
0	1	0	1	1	0	0	0	0	0		
-1	0	0	0	-1	1	0	0	0	0	0	
0	0	0	0	-1/R1	0	1	0	0	0	0	
0	0	0	0	0	-1/R2	0	1	0	0	0	
0	0	0	0	0	0	-1	-1	1	0	0	
0	0	1	0	0	0	-1	0	0	1		
u4	i4	uq	u1	u2	i1	i2	iq	i3		$c_1 = -R_3 \qquad u_4 = u_C - c_1$:i
1	0	0	0	0	0	0	0	c1	uC		1
-1/R4	1	0	0	0	0	0	0	0	0		
0	0	1	0	0	0	0	-Rq	0	0		
1	0	1	1	0	0	0	0	0	UO		
0	0	0	-1	1	0	0	0	c1	0		
0	0	0	-1/R1	0	1	0	0	0	0		
0	0	0	0	-1/R2	0	1	0	0	0		
0	0	0	0	0	-1	-1	1	0	0		
Π	1	Π	0	0	-1	0	0	1	0		

ETH Eidgenössische Technische Ho Swiss-Tederall institute of Tech		Mathematical Modeling	1 of Physical Systems
$ \begin{array}{c} \boldsymbol{U}_{0} = f(t) \\ \boldsymbol{c}_{1} = -\boldsymbol{R}_{3} \\ \boldsymbol{c}_{2} = \boldsymbol{c}_{1}/\boldsymbol{R}_{4} \\ \boldsymbol{c}_{3} = \boldsymbol{u}_{C}/\boldsymbol{R}_{4} \\ \boldsymbol{c}_{4} = -\boldsymbol{c}_{1} \\ \boldsymbol{c}_{5} = \boldsymbol{U}_{0} - \boldsymbol{u}_{C} \\ \boldsymbol{c}_{6} = 1 - \boldsymbol{c}_{2} \\ \boldsymbol{c}_{7} = -\boldsymbol{c}_{3} \\ \boldsymbol{c}_{8} = \boldsymbol{R}_{q} \\ \boldsymbol{c}_{9} = \boldsymbol{c}_{8} \\ \boldsymbol{c}_{10} = \boldsymbol{c}_{1} + \boldsymbol{c}_{4} \\ \boldsymbol{c}_{11} = \boldsymbol{c}_{5} \\ \boldsymbol{c}_{12} = \boldsymbol{c}_{8}/\boldsymbol{R}_{1} \\ \boldsymbol{c}_{13} = \boldsymbol{c}_{4}/\boldsymbol{R}_{1} \end{array} $	$c_{14} = c_5 / R_1$ $c_{15} = c_9 / R_2$ $c_{16} = c_{10} / R_2$ $c_{17} = c_{11} / R_2$ $c_{18} = 1 + c_{12}$ $c_{19} = c_{13}$ $c_{20} = c_{14}$ $c_{21} = c_{12}$ $c_{23} = c_7 + c_{14}$ $c_{24} = c_{18} + c_{15}$ $c_{25} = c_{19} + c_{16}$ $c_{26} = c_{20} + c_{17}$ $c_{27} = c_{22} - c_{21} \cdot c_{25} / c_{24}$	$c_{28} = c_{23} - c_{21} \cdot c_{26} / c_{24}$ $i_3 = c_{28} / c_{27}$ $i_q = (c_{26} - c_{25} \cdot i_3) / c_{24}$ $i_2 = c_{17} - c_{15} \cdot i_q - c_{16} \cdot i_3$ $u_1 = c_{14} - c_{12} \cdot i_q - c_{10} \cdot i_3$ $u_1 = c_5 - c_8 \cdot i_q - c_4 \cdot i_3$ $u_q = R_q \cdot i_q$ $i_4 = c_3 - c_2 \cdot i_3$ $u_4 = u_c - c_1 \cdot i_3$ $u_3 = R_3 \cdot i_3$ $du_c / dt = i_c / C$ $i_c = i_2 + i_3$	41 equations 8 additions 18 subtractions 15 multiplications 13 divisions ⇒ 54 operations
October 18, 2012	© Prof. D	r. François E. Cellier	Start Presentation

ETH Sidgenössische Technische H Swiss-Rederal Institute of Tec		Mathematical Modeling	g of Physical Systems
It is also pos	ssible to mix the relaxation	ion algorithm and the tear	ring algorithm.
	$c_{14} = c_5 / R_1$ $c_{15} = c_9 / R_2$ $c_{16} = c_{10} / R_2$	$c_{28} = c_{23} - c_{21} \cdot c_{26} / c_{24}$ $i_3 = c_{28} / c_{27}$ $i_q = (c_{26} - c_{25} \cdot i_3) / c_{24}$	41 equations
$c_3 = u_C/R_4$ $c_4 = -c_1$ $c_5 = U_0 - u_C$ $c_6 = 1 - c_2$	$c_{17} = c_{11} / R_2$ $c_{18} = 1 + c_{12}$	$u_{3} = R_{3} \cdot i_{3}$ $u_{q} = R_{q} \cdot i_{q}$ $u_{4} = u_{3} + u_{c}$ $u_{1} = U_{0} \cdot u_{q} \cdot u_{4}$	10 additions 10 subtractions 5 multiplications 16 divisions
$c_{9} = c_{8}$ $c_{10} = c_{1} + c_{4}$ $c_{11} = c_{5}$ $c_{12} = c_{8}/R_{1}$	$c_{22} = c_6 + c_{13}$ $c_{23} = c_7 + c_{14}$ $c_{24} = c_{18} + c_{15}$ $c_{25} = c_{19} + c_{16}$ $c_{26} = c_{20} + c_{17}$ $c_{27} = c_{22} - c_{21} \cdot c_{25} / c_{24}$	$u_2 = u_1 + u_3$ $i_1 = u_1 / R_1$ $i_2 = u_2 / R_2$ $i_4 = u_4 / R_4$ $du_e / dt = i_e / C$ $i_e = i_2 + i_3$	$\Rightarrow 41 \text{ operations}$
October 18, 2012		Dr. François E. Cellier	Start Presentation