
��������	�
���������	����������	������������
��
���������	�
����������	���
�������������������
�������������������������������������	� ��������!�	�""��##$%�&�##$'

 �"���"�������������(���������������������������������������	�����(�%'$%)	��**�	
��+���(���,����+������-+��$�+���.�+���(�����/��0�-.1	��2��"������(����	�3�����4�

5���"�"��������(���6����(�"�����2����6������������
������������	
�����	����	�������������������������

��	������	�������
�� ������� �����	� ��+���(��� ,����+�� ���� -+��$� +��� .�+���(��� ��/�� 0�-.1	� ������+�� ���

.�2����� +��� ���(�������	� �2��"������(����	� 3�����4� 0�(������� ��� �(�� "��!���
���������1�

�� ������!�
������	��4������5�	�-+��	��6�����
�� ����� 7���8���	�
-5�	� ��"�������� ��� ���"+���� ���� ������������ �������	� -���9"��!

:��������4	��6�����

�	����	���������
������������	�5������;���(�����	��(����������(6��!��	�
�����<������	�;�(��������	
��+���(���,����+������-+��$�+���.�+���(�����/��0�-.1	�������+������.�2�����+��
���(�������	��2��"������(����	�3�����4

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 1 Modelica 2002, March 18−19, 2002

Dymola for Multi-Engineering Modeling and Simulation

Dag Brück, Hilding Elmqvist, Sven Erik Mattsson and Hans Olsson
Dynasim AB, Research Park Ideon, SE-223 70 Lund, Sweden

E-mail: info@dynasim.se

Abstract
Dymola is an integrated environment for developing
models in the Modelica language. The growing use of
Dymola has over time increased the demands on the
development environment. Requests for extension and
redesign originate from two sources: the need to
simplify the use of Dymola to better support new and
inexperienced users, and the need to better support
“power users” which model extremely large and
complex systems.

Key areas in the development of Dymola are: a
simplified and more coherent graphical user interface,
browsing facilities for navigating large and complex
systems, new experiment facilities for managing
complex simulation tasks, distributed (parallel)
simulation, and integrated version control to help
manage model libraries and complete models.

The paper describes the extensively redesigned
Dymola 5, with an emphasis on new features compared
to Dymola 4.

Introduction
Dymola is an integrated environment for developing
models in the Modelica language [Modelica
Association, 2002; Tiller, 2001], and a simulation
environment for performing experiments. It is used
since several years within major companies for
complex simulations. For example, Dymola has been
used to simulate detailed models of complete vehicles
including engine, transmission and chassis [Tiller et al.,
2000].

Dymola uses hierarchical object-oriented modeling to
describe, in increasing detail, the systems, subsystems
and components of a model. Reuse of modeling
knowledge is a key issue, and is supported by use of
libraries containing model classes and by the use of
inheritance. Physical couplings are modeled by
defining physical connectors and graphically
connecting submodels.

Model libraries are available for electronics, rotational,
translational and 3D mechanics, thermodynamics,
hydraulics and control systems. The libraries range
from basic components to more specialized domains

such as the power train library. Predefined libraries can
be expanded with user-written model libraries.

The growing use of Dymola has over time increased
the demands on the development environment.
Requests for extension and redesign originate from two
sources:

• The need to simplify the use of Dymola to better
support new users and inexperienced users. This is of
particular importance when Dymola is used for
teaching.

• The need to better support “power users” which
model extremely large and complex systems. In this
case, the user needs significant support from the
environment to handle very large amounts of
information, to document complex systems, and to
verify results. The development of large component
libraries is a collaborative effort involving several
people, which requires adequate tool support. Also,
different software packages are used which underlines
the need for information exchange.

Key areas in the development of Dymola are:

• Simplified graphical user interface. In addition to
better structuring, the use of modern GUI elements
(help facilities, dockable windows etc.) makes it easier
to use the program.

• Browsing facilities for navigating large and complex
systems. This includes class browsers for navigating
component libraries and a new model browser for
navigating complex models.

• New experiment facilities for managing complex
simulation tasks. They handle multiple parameter sets,
models of different complexity, and tools for validating
models.

• Distributed simulation on several computers,
allowing parallel simulation for tasks such as
optimization.

• Integrated version control to help manage model
libraries and complete models. The user needs support
for version control to store/retrieve models and
associated data, to compare versions of a model, plus
mechanisms for documenting the evolution of models.

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 2 The Modelica Association

Editor

Symbolic Kernel

Experimentation

Plot and Animation

Reporting

External Graphics
(vector, bitmap)

CAD (DXF, STL,
topology, properties)

Model ParametersExperimental Data

Simulink
MATLAB

Model doc. and
Experiment log (HTML,

VRML, PNG, …)

xPC

dSPACE

HIL

Modelica

C Functions

LAPACK

Scripting

Distributed
Simulation

Optimization

Modelica
Libraries

User Models

M
o

d
el

in
g

S
im

u
la

tio
n

V
is

u
al

iz
at

io
n

an
d

 A
na

ly
si

s D
ym

ol
a

P
ro

gr
am

Figure 1. The Dymola architecture.

Dymola architecture
Dymola is an integrated environment for modeling and
simulation. Figure 1 describes the architecture and
connectivity of Dymola 5.

At the modeling level, models are composed from
library components (from the Modelica standard
library, other free libraries, commercial and proprietary
libraries), as well as models developed by the user.
Models are either composed of other, more primitive,
components, or described by equations at the lowest
level. The equation-based nature of Modelica is
essential for enabling truly reusable libraries.
Measurement data and model parameters cover
additional model aspects.

Detailed model knowledge can be imported from CAD
packages. Examples of such information are mass and
inertia of 3D mechanical bodies, and the topology of a
multibody system (bodies and joints). Graphical
properties may be described in DXF and STL format.
The icons of model components are defined either by
drawing shapes in Dymola, or by importing graphics
from other tools in common vector or bitmap formats.

At the simulation level, Dymola transforms a
declarative, equation-based, model description into
efficient simulation code. Advanced symbolic
manipulation (computer algebra) is used to handle very

large sets of equations. Efficient simulation, including
realtime simulation of hydraulic systems, can only be
achieved after extensive symbolic transformations of
the equations [Elmqvist et al., 2002].

Dymola provides a complete simulation environment,
but can also export code for simulation in Simulink. In
addition to the usual offline simulation, Dymola can
generate code for specialized Hardware-in-the-Loop
(HIL) systems, such as, dSPACE, xPC and others.

Recent developments in Dymola 5 allow distributed
(parallel) simulation on several computers in a
network, for example to perform parameter studies.
There are facilities for optimization, also carried out
with parallel simulation runs. Such experiments are
controlled with a Modelica-based scripting language,
which combines the expressive power of Modelica
with access to external C libraries, e.g., LAPACK.

The built-in plotting and animation features of Dymola
provide the basis for visualization and analysis of
simulation data. Experiments are documented with logs
of all operations in HTML format, including
animations in VRML (Virtual Reality Modeling
Language) and images. Models and libraries are
extensively documented in HTML automatically
generated by Dymola from the models themselves.

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 3 Modelica 2002, March 18−19, 2002

Figure 2. The model editor.

Graphical user interface
The graphical user interface has been extensively
redesigned. In Dymola 5 emphasis has been put both
on simplifying the task of building models for the
novice user and on providing tools for building and
managing large and complex models developed by a
collaborating team of engineers.

Graphical editor
Figure 2 shows a screen dump of the Dymola modeling
environment. The top left tree browser shows the
(Package) hierarchy of a library called SimpleCar
[Tiller, 2001]. When I4_Engine is chosen different
representations (icon and composition diagram) of the
model I4_Engine are shown. The lower left tree
browser, “Component and Extends hierarchy”, shows
the hierarchical decomposition, for example, that the
engine model contains crankshaft-inertia and the four
cylinders: cylinder1, … cylinder4. A visual
representation of that is shown in the Diagram in the
middle. An Icon representation of the engine is shown
at the top right. A The Documentation window is
shown at the lower right. Such a documentation
window contains HTML formatted information, i.e.

also graphics and links to other resources may be
included.

Editing of models at the fundamental level has been
improved by syntax highlighting of the Modelica code,
see Figure 3. Another convenience is that models can
be dragged from the package browser into the text
editor, which gives access to fundamental types in the
Modelica library with no typing. Editing in the textual
view is instantaneously represented in the graphical
view.

Figure 3. Model editor with syntax highlighting.

The Icon representation can be created with a built-in
graphical editor. It allows insertion of lines, rectangles,
ellipses, polygons and text strings. Figure 4 shows the
tool bar for the graphical editor.

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 4 The Modelica Association

Figure 4. Drawing tools.

It is also possible to insert scalable bitmaps created in
other tools like MS Paint and scalable vector graphics
from the clipboard. Advanced graphics can thus be
created in, for example, MS PowerPoint or MS Visio
and inserted into Dymola as Icons or backgrounds for
the composition diagrams.

The toolbar also contains controls for setting graphical
attributes, e.g., foreground and background color, line
style and fill pattern.

As indicated above, Dymola 5 supports Modelica’s
notion of different layers of information:

• Icon layer
• Diagram layer
• Documentation layer
• Modelica text layer
• Model dependencies layer (generated by Dymola)

It should be noted that Dymola 5 allows several layers
to be shown simultaneously.

Figure 5. Navigation tools.

Figure 5 shows the buttons of the navigation tool in
Dymola. The first two buttons are used to navigate in
the component hierarchy, similar to navigation with a
web browser. The back arrow displays the previously
visited component; the forward arrow negates the
backward move. The other buttons are used to display
layers in the graphical editor

Simplifications
In response to user comments, a major design goal was
to simplify the graphical user interface. The first step
has been to reduce the number windows: both model
editing and simulation is controlled from a single
window, and plot/animation windows are not opened
until a simulation has been performed (or opened
explicitly by the user). The design has been influenced
by common paradigms, for example, the web-browser
approach to navigation.

The design of Dymola 5 more closely follows
published guidelines [Microsoft, 1999], and has in
general adopted more modern idioms compared to
Dymola 4. Common operations are invoked by buttons
in addition to menu commands. Dockable windows
which either can be part of the main editor window,
float on the desktop or be minimized, are used for
browsers and similar tools.

The extended use of commonly used GUI elements
(toolbars, dockable windows, “what’s this” help
information) makes Dymola consistent with other
applications.

Browsing
The “Package hierarchy” browser shows the library
structure and it is possible to drag a component model
from the tree into a Diagram in order to add a
component to a model, see Figure 6. The browser can
either be docked to the editor window as shown in
Figure 2, or be dragged onto the desktop.

Figure 6. The package browser.

The components of a library can also be viewed as
icons in a separate library window, see Figure 7, from
which components can be dragged.

Figure 7. Library window.

The hierarchical structure of a model is shown in the
“Component and Extends hierarchy” browser. The top-
level components of an engine model are shown in
Figure 8.

Maneuvering in this hierarchical structure can be done
by clicking in the tree which then changes the view to
the selected model. It is also possible to point at an
icon and “zoom-in” on the content, i.e. next abstraction
layer.

When a model is chosen in the package browser, it
becomes the root model of the graphical editor. The
root model is used in check, translate and simulate

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 5 Modelica 2002, March 18−19, 2002

Figure 8. The component browser.

commands. Navigation into its component hierarchy
allows inspection of model details, but does not change
the root model or permit editing. This view is
consistent with the common metaphor used in web
browsers.

Dymola 5 has search facilities, for example to search
for models that mention particular keywords in the
documentation. It may also be useful to find models
with a component or a parameter with a known name.

For advanced users, the biggest problem has been to
organize the large amount of information in complex
models and extensive component libraries. The biggest
improvement in Dymola 5 is the use of hierarchical
browsers for navigating packages and models. The
package browser is also the natural focal point for
copying/renaming of models and restructuring of
packages.

Advanced Modelica concepts, such as, replaceable
classes, is given an intuitive user interface via the
component browser. If a class is declared as
replaceable, the actual class can be dragged from the
package browser onto the replaceable class in the
component browser. Other features that benefit from
the new user interface are choices (a selection of
replaceable classes) and arrays of components.

Visualization in 3D
The graphical editor represents a abstraction of the
model, the object diagram. When building 3D
mechanical systems, the user greatly benefits from the
instantaneous 3D visualization available in Dymola 5.
Parameters settings for e.g. the length of a bar can be
visually checked in the animation window.

Experimentation
By “experimentation” we mean all the steps necessary
to use a model in order to achieve useful results. That
includes setting up model parameters and initial
conditions, running simulations, analysis of simulation
data, and report generation.

Parameter values specific to the studied model have to
be entered in a form associated with a component, see
Figure 9. Parameters and initial conditions can be set at
three different abstraction levels:

• The default values specified in the model of a
component, when a reasonable default exists.

• Parameter values that are specified in the modifier list
of a specific component. For example, the crankshaft
shift is different for each cylinder in an engine.

• Model parameters which are specific for a given top-
level model. Such parameters are specified at the top-
level of the model, and then propagated through a
hierarchical modifier.

Dymola allows the user to set parameters and initial
conditions at each of these levels, either through the
model editor or while running simulations.

Figure 9. Parameters for specification of details of
the engine

For visualization, Dymola offers plotting and 3D
animation. Figure 10 shows a window with multiple

Figure 10. Plot of car speed, engine RPM and
selected gear versus time.

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 6 The Modelica Association

plots of car speed, engine RPM and selected gear
versus time during such an experiment. The car
accelerated to 100 km/h in 6.66 seconds. Plots can be
exported as PNG files for inclusion in session log or as
vector graphics.

Animation is provided by specialized visualization
properties which are present in the mechanical libraries
by default. These properties are calculated during
simulation and then used to show 3D views in Dymola,
as shown in Figure 11. It is also possible to export such
animations in VRML format [VRML, 1997], which
can be examined with special viewers or with plugins
for web browsers.

Figure 11. Animation of an automatic gearbox.

Dymola 5 has powerful features for postprocessing of
simulation results. It is possible to compare simulation
results with experimental data. Data can be imported
and exported to other programs like Matlab and
Microsoft Excel. There is a scripting language based on
Modelica for automating design studies and analysis.
Interfaces to subroutine packages such as LAPACK (or
other libraries written in C or FORTRAN) enables
advanced numerical calculations. The scripting
language is also used for running parameter studies in a
distributed environment (see below) and for
performing optimization.

Figure 12. Dymola session window

Automatic logging of design sessions including
graphics is provided as HTML code for archiving and
sharing over the Internet, see Figure 12. A complete
experiment report can be written by editing the session
log.

Distributed simulation
During the design phase, hundreds or thousands of
simulations have to be performed with different
parameter sets. Optimization is used to determine
parameters in the model by fitting simulation results to
experimental data and to optimize the parameters of a
design. It is a task that significantly benefits from
parallel simulation. Dymola 5 can use many computers
and automatically schedule simulations in parallel to
shorten the design cycle.

Figure 13 shows the Dymola monitoring window for
parallel simulations. It shows the status of each
simulation run: the parameters used and optional
criteria result. The Dymola scheduler assigns tasks to
computers as they become available. When a
simulation finishes, the next task is run on the freed
computer. Transfers of the simulation code, input data
(parameters and initial conditions) and results are fully
automated.

Figure 13. Dymola monitoring window for parallel
simulations.

During normal simulation on a single computer, a
simulation is performed through cooperation between
the Dymola program and a separate simulation process.
In a distributed environment, a third party, known as
the simulation proxy, handles data transfers between
Dymola and the simulation task; the use of a proxy
allows exactly the same simulation code to run locally
and on another computer. As a special case, the
“distributed” scheme can utilize multiple CPUs on one
computer.

Simulator

Proxy

Simulator

Proxy
Dymola

DDE

TCP/IP

Figure 14. Architecture of distributed simulation.

A proxy is started on each machine willing to act as
“compute server”, see Figure 14. On receiving a
connection via TCP/IP from a Dymola program, its
first task is to help copy the simulation code and input
files to a unique area on the server. It then relays
parameter settings and commands from Dymola, and

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 7 Modelica 2002, March 18−19, 2002

handles data transfers from the simulation to Dymola
for online animation and plotting. The Dymola
program maintains a list of computers that may be
asked to run simulations; the user can control this list
by simple commands.

This scheme for distributed simulation is designed for
cooperative sharing of resources and quite simple;
security measures are limited. First, a computer can
only be used as server after the proxy has been started.
Second, the proxy runs as an unprivileged process,
having only the capabilities of the user starting it. Load
is limited because each proxy blocks requests while a
simulation is running, but it is possible to start
additional proxies to handle multiple simulations (e.g.,
if the computer has multiple CPUs). Ways to utilize
existing system security features need to be further
investigated.

Collaborative development
In developing model components for a complex system
such as a vehicle, many different kinds of competence
are needed. Experts in engines, transmissions and
chassis etc. are needed. Because several people are
involved in the process, it becomes essential to break
up or decompose the overall problem into modular
units during development.

The equation-based modeling supported by the
Modelica language is fundamental in enabling true
reuse of modeling knowledge and the practical use of
model libraries. Dymola is able to transform equations
of subcomponents as required by the structure of the
system. Without the equation-based foundation, several
variants of a single model are needed to handle
different computational causality. Even worse would
have been that the user of a library is given the
responsibility to analyze the computational causality of
the system in order to pick the right variant.

Inheritance is also important for supporting reuse.
Model libraries may include partial models that
describe common properties of a set of component
types. Such a partial model is conveniently used as a
base class to develop models for the individual types of
the set by just adding a specific part that distinguish it
from the others in the set. This approach makes it
simpler to add new component models as well as
simplifies maintenance since the common properties of
the component types are described only once.

Furthermore, as more people are involved in the
process, the development is geographically and
chronologically distributed because it is natural to have
centers with specific core-competencies. This implies
that the modular units developed must be seamlessly
integrated to solve the overall problem, and the
partitioning should be able to reflect the organizational
structure of the model development teams.

In order to increase quality and reduce development
time, tools should be made available to

• Provide a structure for organizing, storing and
retrieving information (models, documentation,
experiment data).

• Support the exchange of information and simplify
reuse of models throughout the organization.

• Ensure that correct information is available to each
user (versions of libraries, corresponding experiments).

A version control system provides means to track
changes to a set of files. A “commit” operation
associates a developer and documentation with each
change to the common storage of files. The Modelica
text of two versions can be compared, and it is possible
to back up to any previous version.

The underlying version control system must be able to
support multiple concurrent developers working on the
same set of models. Extensive locking of files is
undesirable in a collaborative environment, and more
recent tools also support concurrent development of
closely related parts (with appropriate safety nets). A
single physical person may have multiple roles in the
development or use of the library.

Tracability is essential for maintaining quality over
time. Tool enforcement to document modifications
before they become publicly available gives the
opportunity to review changes and improves quality.
The development history and documentation of
changes may also be needed for tracing model
incompatibilities, for example.

Model testing should be integrated with model
development, which implies that the version control
system must be able to handle test scripts, support
utilities and binary test data. Regression testing, where
models are simulated and compared with known good
simulation results, is very powerful in detecting
involuntary changes to model libraries. A failed
regression test may cause either a change of a model,
or the revision of the test itself.

Multiple libraries are often used together. In this case,
version compatibility across libraries becomes
essential. It must be possible to “tag” releases of
multiple libraries to indicate compatibility at the
project level.

Dymola will support storing, retrieving, etc. of models
in version control systems such as CVS (Concurrent
Version System) [CVS]. We have deliberately chosen
to build on existing version control systems, which
offers greater flexibility and better integration than a
proprietary system. Because of the textual
representation of models in the Modelica language,
existing text-based tools can be used, for example, to
compare versions. To browse changes in large systems,
support in the graphical environment of Dymola is
needed.

The use of public libraries has increased in industry
over several years. More recent is “open source

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 8 The Modelica Association

development”, which can be described as the loosely
organized development (typically of software) by
several geographically separated parties. Public
websites, such as SourceForge, support Open Source
development with web-based tools and CVS. The
Modelica Standard Library is maintained as a project at
SourceForge.

Library protection
There are many closed simulation packages on the
market where you are not able to see what model is
used. Modeling is an art in the sense of describing the
relevant aspects of the object under observation. It is
thus very important to be able to see what assumptions
and approximation that the author of a model made.
Dymola is open to view all and possibly modify the
details by showing of the Modelica code. However, if a
company want to protect proprietary information when
shipping models, Dymola will support encryption of
model details.

A protected library typically consists of parts that are
open, and other parts that need protection. Protected
parts may require different degree of information
hiding, for example

• Preventing unauthorized modification of models (but
viewing is unrestricted).

• Parameters and documentation are visible, but model
structure and equations are protected.

• The model is regarded as a “black box”. Only model
connectors and the icon are available to the user.

The other aspect of library protection is to ensure
authorized use. In this case, any use of the library is
controlled by options in a license file. A special license
is also needed to make protected libraries in order to
prevent unauthorized distribution.

Acknowledgements
The authors would like to thanks all users of Dymola,
who through their suggestion have directly influenced
the development of Dymola.

This work was in parts supported by the European
Commission under contract IST-199-11979 with
Dynasim AB under the Information Societies
Technology as the project entitled “Real-time
simulation for design of multi-physics systems”.

References
CVS: http://www.cvshome.org/

Elmqvist, Hilding, Sven Erik Mattsson and Hans
Olsson (2002): “New Methods for Hardware-in-the-
loop Simulation of Stiff Models”, Modelica 2002,
Modelica Association.

Microsoft (1999): Microsoft Windows User
Experience, Microsoft Press.

Modelica Association (2002): “Modelica — A Unified
Object-Oriented Language for Physical Systems
Modeling”, Language specification version 2.0,
January 30, 2002.

Tiller, Michael, Paul Bowles, Hilding Elmqvist, Dag
Brück, Sven Erik Mattsson, Andreas Möller and Hans
Olsson (2000): “Detailed Vehicle Powertrain Modeling
in Modelica”, Modelica 2000, Modelica Association.

Tiller, Michael (2001): Introduction to Physical
Modeling with Modelica, Kluwer Academic Publ.

VRML (1997): “Information technology — Computer
graphics and image processing — The Virtual Reality
Modeling Language (VRML) — Part 1: Functional
specification and UTF-8 encoding”, International
Standard ISO/IEC 14772-1:1997.

