
METHODS FOR TEARING SYSTEMS OF EQUATIONS
IN OBJECT-ORIENTED MODELING

Hilding Elmqvist
Dynasim AB

Research Park Ideon
S-223 70 Lund, Sweden

E-mail: Elmqvist@Dynasim.se

Martin Otter
Institute for Robotics and System Dynamics
German Aerospace Research Establishment

Oberpfaffenhofen (DLR)
Postfach 1116, D-82230 Weßling, Germany

E-mail: df43@master.df.op.dlr.de

ABSTRACT

Modeling of continuous systems gives a set of differential and
algebraic equations. In order to utilize explicit integration
routines, the highest order derivatives must be solved for. In
certain cases there exist algebraic loops, i.e., subsets of the
equations must be solved simultaneously. The dependency
structures of such subsets are often sparse. In such cases, the
solution may be found more efficiently by a technique called
tearing (Kron 1963) which reduces the dimensions of sub-
systems. This paper gives an overview of the principles of
tearing. Algorithms to determine how a set of equations should
be torn are, in general, inefficient. However, physical insight
often suggests how this should be done. Methods to specify
tearing in the object-oriented modeling program Dymola
(Elmqvist 1978, 1994) are discussed. In particular it is
explained, how tearing can be defined in model libraries. This
allows Dymola to perform tearing automatically and efficiently
without user interaction. Examples from electrical and
mechanical modeling are given, including a tearing strategy for
general multibody systems with kinematic loops which allow the
equations of motion to be solved by standard explicit integration
algorithms.

INTRODUCTION

In object-oriented modeling, computer models are mapped as
closely as possible to the corresponding physical systems.
Models are described in a declarative way, i.e., only (local)
equations of objects and the connection of objects are defined.
The problem formulation determines, which variables are known
and unknown. As a result, an object-oriented model usually
leads to a huge set of differential and algebraic equations.
Efficient graph-theoretical algorithms are available to transform
these equations to an algorithm for solving the unknown
variables, usually the highest order derivatives, see e.g. (Duff et
al. 1986, Mah 1990, Elmqvist 1978). Especially, algebraic loops
of minimal dimensions can be determined (Tarjan 1972).
 For models of physical systems, like electrical circuits or
mechanical systems, algebraic loops of minimal dimensions are
often quite large. Since the model equations are derived from an
object-oriented model description, the systems of equations are
usually very sparse, i.e., only few variables are present in an
equation. In such cases, the solution may be found more
efficiently by reducing the dimensions of the systems of
equations by a technique called tearing (Kron 1963). This
method has the advantage, that the system reduction can be done
symbolically and that general purpose numerical solvers for

linear and non-linear systems can be utilized to solve the
reduced systems of equations.

PRINCIPLES OF TEARING

There are different concepts of tearing depending on whether
tearing is done before or after the computational causality has
been determined, i.e., transformation from general equations to
assignment statements (Cellier and Elmqvist 1993) .

Tearing in directed graphs

Consider the following system of simultaneous equations :

x f x

x f x
1 1 2

2 2 1

= ()

= ()

The structure of these equations can be represented by the
directed graph shown below.

The mutual dependency in the equations gives a loop in the
graph, an algebraic loop. The loop can be removed by tearing
the graph apart, for example breaking the branch corresponding
to x2. This gives the following dependency graph.

This graph suggests the following way of organizing the
calculations in a successive substitution algorithm for finding the
solution of the equations.

NEWx2 = INITx2
REPEAT
 x2 = NEWx2
 x1 = f1(x2)
 NEWx2 = f2(x1)
UNTIL converged(NEWx2-x2)

It should be noted that the iteration is only performed for x2, i.e.,
the dimension of the problem has been reduced from two to one.
The fixed-point iteration scheme can easily be replaced by
Newton iteration, such that x2 is the only unknown variable and
x f f x2 2 1 2 0− =(()) is the non-linear equation to be solved for.

In this example, the causalities of the equations are given.
This is the typical problem formulation within, for example,
static simulation in chemical engineering, see e.g. (Mah 1990).

Branch tearing in bipartite graphs

Equations without assigned causality will now be studied.
Consider the following equations.

f x x x

f x x x

f x x x

1 1 2 3

2 1 2 3

3 1 2 3

0

0

0

(, ,) =

(, ,) =

(, ,) =

This system of equations can be represented by a bipartite graph
(Tarjan 1972), i.e., a graph that has two sets of vertices, one set
of vertices for equations and one for variables.

Tearing a branch in a bipartite graph, between an equation f and
a variable x,

can be done in two ways since tearing also implies assigning
causality to the torn branch. The first case means that x gets
defined by a new equation CALCx and that x is replaced by
NEWx in the equation f. The corresponding new graph is

or in a compact notation:

Assume that the branches f2 - x2 and f3 - x3 in the graph above
are torn in this way.

The resulting graph does not contain any loops. This is the usual
criterion that tearing is successful. It is thus possible to rearrange
the graph corresponding to ordering calculations to be
performed sequentially, i.e., downwards in the graph.

This graph corresponds to the following successive substitution
algorithm.

 NEWx2 = INITx2
 NEWx3 = INITx3
REPEAT
 x2 = NEWx2
 x3 = NEWx3
 x1 = f1INV1(x2, x3)
 NEWx2 = f2INV2(x1, x3)
 NEWx3 = f3INV3(x1, x2)
UNTIL converged(NEWx2-x2) AND
 converged(NEWx3-x3)

fiINVj denotes the function obtained when solving fi=0 for xj.
This algorithm is similar to the one obtained when tearing

the directed graph. There is, however, a second alternative to
tear a branch in a bipartite graph as illustrated below.

The original graph could, for example, be torn by this method in
the following way.

Rearranging this loop free graph gives a calculation order.

This corresponds to the following successive substitution
algorithm.

 x2 = INITx2
 x3 = INITx3
REPEAT
 OLDx2 = x2
 OLDx3 = x3
 x1 = f1INV1(OLDx2, OLDx3)
 x2 = f2INV2(x1, OLDx3)
 x3 = f3INV3(x1, x2)
UNTIL converged(x2-OLDx2) AND
 converged(x3-OLDx3)

Note, that x3 is calculated using the new value of x2 instead of
OLDx2. This is the difference compared to the previous
algorithm. For iterative solution of linear systems of equations,
the last method corresponds to Gauss-Seidel iteration and the
previous method to Jacobi iteration.

Node tearing in bipartite graphs

Instead of cutting single branches in the graph, it is possible to
cut all branches to a particular node and to remove the node
(Duff 1986). Alternatively it can be seen as making additions.
Removing a variable node has the same effect as adding an
equation to specify the variable. Removing an equation node is
the same as relaxing the equation by including a residue
variable. Consider again the equations

f x x x

f x x x

f x x x

1 1 2 3

2 1 2 3

3 1 2 3

0

0

0

(, ,) =

(, ,) =

(, ,) =

By specifying x2 and x3 as tearing variables and adding residues
to f2 and f3, we get the following rearranged graph.

This graph corresponds to the algorithm below for calculating
the residues.

 x2 = ...
 x3 = ...
 x1 = f1INV1(x2, x3)
 RES2 = f2(x1, x2, x3)
 RES3 = f3(x1, x2, x3)

An advantage with this method is that no inverses are required
for f2 and f3. It is well suited for Newton iteration and for
solving linear systems of equations, as shall be seen below. This
scheme does not utilize causality assignment information. On the
other hand the user must specify what equations to use as
residue equations. Only node tearing will be considered below.

SOLVING TORN NON-LINEAR SYSTEMS OF
EQUATIONS

The node tearing problem can be formulated as follows
(Elmqvist 1978). Find a partitioning of the equations f and the
variables x, and permutation matrices P and Q, such that

g

h
Pf

x Q
y

z

=

=

The system of equations f(x) = 0 can then be written as
g(y, z) 0

h(y, z) 0

=
=

The criterion for the partitioning and permutation is usually to

make the Jacobian
∂
∂
g
y

 lower triangular and the dimension of z

as small as possible. The i'th equation of g is then independent
of yi+1, ... yny, i.e., it can be written as

g y y z zi i nz(, ... , , ...) = 1 1 0

In many cases, the equation is linear in yi, it can then be solved
symbolically for yi by rearranging as

g y y z z g y y z zi i nz i i nz0 1 1 1 1 1 1 1 0(, ... , , ...) + (, ... , , ...)y =i− −

This gives a method for successively solving for all components
of y

y g(z)= �

Substituting y in the h equations gives

h(g(z), z) 0� =
or

H(z) 0=
i.e., a non-linear system of equations in only z is obtained. This
can, for example, be solved by Newton-Raphson iteration.

Given the tearing variables z and the residue equations h, the
permutation matrices P and Q can be determined by efficient
algorithms. In particular, the same algorithms can be used as
utilized for the equation and variable sorting of the original
object oriented model to determine, e.g., algebraic loops of
minimal dimensions. Dymola forms �g symbolically as
explained above. The residues h are trivially obtained. In
addition, Dymola forms the Jacobian

∂
∂

∂
∂

∂
∂

∂
∂

H
z

h
y

g
z

h
z

= +
�

by differentiating symbolically and makes call to numerical
routines for solving H(z) 0= iteratively.

SOLVING TORN LINEAR SYSTEMS OF
EQUATIONS

If the system of equations is linear in x, it is transformed to
“bordered triangular form”, i.e., to the following form:

L

A

A

A

y

z

b

b21

12

22

1

2

=

where L is lower triangular and the dimension of z low. The
inverse of L can be found efficiently without pivoting. y can
thus be expressed as:

()y L b - A z-1
1 12=

Substituting into the second equation gives:

()A A L A z = b A L b22 21
-1

12 2 21
-1

1− −

Introducing
H A A L A

c = b A L b

22 21
-1

12

2 21
-1

1

= −

−

()

gives
Hz = c

In Dymola, the matrix H and the vector c are formed
symbolically. The solution of z from Hz = c is either obtained
symbolically or by calls to numerical routines. The remaining
variables y are then solved symbolically from the original
equations.

SELECTION OF TEARING VARIABLES AND
RESIDUE EQUATIONS

Automatic selection of tearing variables and residue equations is
algorithmically hard. For an overview of heuristic algorithms,
see (Mah 1990). A good selection must also take into account
how difficult it is to solve certain equations (linear, non-linear,
etc.). Solution of certain linear non-residue equations, �g might
require division by a parameter. Such a selection might not be
feasible because it is then not possible to set the parameter value
equal to zero at simulation time. Convergence properties both
for successive substitution and Newton iteration are also
influenced by the tearing selection. For use of Newton iteration,
the complexity of the Jacobian is also influenced.

Physical insight, on the other hand, might suggest how to
make tearing. If a tearing specification is made manually, it is,
however, important with good diagnostics to handle the case
when the specification is inconsistent, does not give a complete
tearing or alternatives due to solvability need to be tested.

Two sets are needed for node tearing: the tear variables and
the residue equations. They don't have to be specified as pairs,
but by proper pairing, the matrix H for linear systems of
equations might become symmetric giving a more efficient
solution.

The specification of tearing variables poses no problem,
because in an object-oriented model every variable is uniquely
identified by its (hierarchically-structured) name. The remaining
problem is then how to specify residue equations since they don't
have names or numbers.

When a system of equations appears, the user might have to
look at the structure of the equations in order to propose tearing
variables and residue equations. For small systems, he might
include a listing of the incidence matrix. At that time there is an
assignment between variables and equations. In the
EQUATIONS section of the output from Dymola, the assigned
variable is marked by []. This association actually means that
every equation can be referred to by name, i.e., the assigned
variable name. The tearing specification could thus be done by a
translator command like:

 - variable tear tear_variable
 [residue_equation_variable]

Both specified variables should be unknown in the system of
equations under consideration. A natural default, if the second
variable is omitted, is that the residue_equation_variable is the
same as the tear_variable.

TEARING INFORMATION IN THE MODEL

Several ways of specifying tearing are needed. The one
introduced has the advantage of being general and no prepara-
tions (changes to libraries) are needed. The drawback is that the
user has to output the solved equations in order to analyze the
systems of equations before choosing tearing variables and
residue equations. For standard problems, this step should be
avoided. In such a case it is better that preparations are made to
the library. It is a matter of giving Dymola hints about possible
tearing variables and residue equations. It should be hints in the
sense that, if no systems of equations appear, the information is
just ignored.

It would be nice if “cuts” of the dependencies could be
defined among the objects instead of among the variables.
Examples are defining cuts in closed-loop mechanical

mechanisms or electrical circuits. Introduction of “cut-objects”
would give a more high-level and intuitive notation.

One way to reason in order to design appropriate notations,
is to consider why algebraic loops occur. They are often caused
by neglected dynamics, i.e., dynamics considered so fast that
“steady state” occurs immediately. Consider the scalar equation

0 = f x()

A solution to this equation could be obtained by solving the
differential equation

ε dx

dt
f x= ()

using a small value of ε . The appropriate sign of ε must be
chosen in order that the differential equation would have a stable
solution. Solving algebraic loops in this way leads to stiff
equations. A notation to make this “infinitely stiff” is needed,
i.e., a notation to state that a solution should not be obtained by
an integration method, but by a solver for simultaneous
equations. The following notation is used

residue() ()x f x=

residue is a special operator just like der (the Dymola language
construct for “derivative”). The value of residue(x) is always
maintained as zero. The model, however, gives a hint about what
to vary, x, to make residue(x) zero. The equation will be
associated with the generated identifier 'residuex', which may be
used in the 'variable tear' command. If an equation containing
residue(x) is differentiated, der(x) is considered a candidate as
tearing variable, i.e., “der(residue(x)) = residue(der(x))”.

Normal use of residue(x) introduces both a tearing variable
and a residue equation. This allows to create pairs, which are, for
example, needed in order to keep a possible symmetry property
of the matrix H above. The notation allows to specify just a
tearing variable by adding residue(x) to any equation which can
never be part of a system of simultaneous equations.
Correspondingly an equation is marked as a residue equation by
adding residue(c) to it, where c is declared as a unique constant.

To summarize, Dymola will take the following steps when
testing if tearing should be performed when a system of simul-
taneous equations is processed.

• Check for automatic tearing. Among unknowns, select as
tearing variables those that residue() has been used on.
Select as residue equations those that contain residue().

• Add or subtract user defined tearing variables and residue
equations. Since the user might have to add more variables
or vice versa, the command must allow adding a variable
only, or an equation only.

The syntax of the 'variable tear' command is thus extended with
the two cases:

- variable tear v []
{Add v as a tearing variable but no equation.}
- variable tear [residuev]
{Add residue equation with residuev.}

EXAMPLES

Electrical circuits

Systems of simultaneous equations occur, for example, in a
voltage divider consisting of two resistors. Consider the
generalization below.

A system of 15 equations is detected (trivial equations not
counted). If the symbolic solver is used, the operation counts are
totally: 126 MULT (*, /) and 93 ADD (+, -).

One alternative way of formulating the governing equations
of such a network is to find a spanning tree and for branches not
included in that tree introduce mesh currents, see e.g. (Vlach and
Singhal 1994). Assuming these mesh currents are known, it is
possible to calculate the node voltages without solving any
systems of equations. Introducing “known” mesh currents can be
seen as introducing “small” inductors in those branches since the
current of an inductor is a state variable, i.e., "known". A model
class with an infinitely small inductor is described as follows.

model class (TwoPin) MeshCut
 { Corresponds to very small inductor. }
 u = residue(i)
 { Cf normal inductor: u = der(i)*L }
end

Three MeshCuts are needed to tear the circuit, i.e., to reduce the
number of algebraic equations from 15 to 3. They are connected
as follows.

submodel (MeshCut) MC1 MC2 MC3
connect Common - U0 - R1-MC1 -
 (R2 // (R3-MC2 - (R4 // (R5-MC3 - R6)))) -
 Common

The corresponding number of operations needed in this case are:
28 MULT and 25 ADD, i.e., a speed-up by a factor 4-5.

An alternative is to introduce node voltages and formulate
equations for calculating the currents. Introducing node voltages
correspond to connecting “small” capacitors from the nodes to
ground.

model class NodeCut
 { Corresponds to very small capacitor
 connected to ground. }
 main cut A (V / i)
 i = residue(V) { i = der(V)*C }
end

Adding nodecuts for u2, u4 and u6 gives the corresponding
operation counts: 38 MULT and 25 ADD. These methods have
traditionally been used for circuit analysis. Inspecting this
particular circuit gives other possibilities, however. Assuming
that the current i1 was known, it is possible to calculate u2 = U -
R1*i1, giving i2 = u2 / R2, i3 = i1 - i2. Similarly it would be
possible to calculate i5 and i6. These should be identical, thus i5-
i6 is the residue for i1. This scheme can be formulated using the
following model class.

model class TearCut
 cut A (V / i) B (V / -i)
 main path P <A - B>
 cut Res (Vres / ires)
 ires = residue(i)
end

The main path is connected in series with R1. The residue cut is
connected at the node having voltage u6. The resulting operation
counts are: 27 MULT and 25 ADD, i.e., the best of the three
alternatives considered.

Mechanical systems

Three-dimensional mechanical systems can be described in an
object-oriented way with Dymola, see (Otter et al. 1993) for
details. Here, physical objects, like bodies, joints or force
elements, are defined as objects of corresponding Dymola
classes. These objects are connected together according to the
physical coupling of the components of a mechanism. As
generalized coordinates qi the relative coordinates of joints are
used, e.g. the angle of rotation of a revolute joint.

It turns out that such an object-oriented description of
mechanical systems leads to huge systems of algebraic equations
containing the following unknown quantities: the absolute
acceleration and the absolute angular acceleration of every frame
(= coordinate system), the second derivatives of the relative
coordinates of every joint, the cut-forces and cut-torques which
are present at every mechanical object and auxiliary variables.
For example, an object-oriented model of a typical robot with 6
revolute joints leads to a sparse, linear system of equations with
about 600 equations.

Below it is shown, that appropriate tearing transforms these
huge systems of equations into small systems of equations which
correspond to the “usual” forms derived by mechanical
principles like Lagrange's equations or Kane's equations. The
tearing information can be given in the class library for
mechanical systems, such that no user interaction is required,
i.e., the user need not be aware of the underlying tearing
procedure.

Tearing for mechanical systems will first be explained for
tree-structured mechanical systems and afterwards for general
systems containing kinematic loops.

Tree-structured mechanical systems

Mechanical systems are called “tree-structured”, when the
connection structure of bodies and joints forms a “tree”. Typical
examples for tree-structured systems are robots or satellites.
Many formalisms are known (see e.g. Schiehlen 1993) to derive
the following standard form of tree-structured systems:

M(q)q h(q,q) f�� � ,= + (1)

where q are the relative coordinates of all joints and f are the
(known) generalized forces in the joints (e.g. the torque along
the axis of rotation of a revolute joint produced by an electric
motor). This equation can be easily transformed to state space
form, by solving (1) for ��q and by using q and �q as state
variables.

By (Luh et al. 1980) it was shown, that the generalized
forces f of tree-structured mechanical systems can be calculated,
given q, �q , ��q , without encountering algebraic loops (= solution
of the inverse dynamics problem in robotics). This means, that

the generalized forces f and all other interesting quantities can be
determined in a sequential manner, given the (known state
variables) q, �q and the generalized accelerations ��q . As a
consequence, equation (1) can be generated from an object-
oriented model, by using the (unknown) generalized
accelerations ��q as tearing variables and the equations to
compute the generalized forces f as residue equations. It can be
shown that this type of tearing leads to an O(n2) algorithm to
compute (1), where n is the dimension of q. In particular, this
algorithm is equivalent to algorithm 1 of (Walker and Orin
1982). Note, that another O(n3) operations are needed to solve
(1) for ��q . Therefore, the overall algorithm is O(n3). For the
mentioned robot with six revolute joints, the explained type of
tearing reduces the number of equations from 600 to 6, i.e., to
equation (1).

The complete tearing information can be given in the joint
classes. E.g. for a revolute joint, the following equation is
present in the class description:

f = n1*t1 + n2*t2 + n3*t3 + residue(qdd)

Here, f is the generalized force of the revolute joint, i.e., the
known torque along the axis of rotation, n=[n1,n2,n3] is a
unit vector in direction of the axis of rotation, t=[t1,t2,t3]
is the cut-torque and qdd is the second derivative of the angle of
rotation q. The equation states d'Alembert's principle, i.e., that
the projection of the unknown constraint torque t onto the axis
of rotation n is the known applied torque f. As already
explained, the term residue(qdd) states that the equation is
used as residue equation and that qdd is used as tearing
variable.

Mechanical systems with kinematic loops

A simple mechanism with one kinematic loop is shown in the
figure below. One difficulty with such types of systems is, that
the relative joint coordinates are no longer independent from
each other, because the kinematic loops introduce additional
constraints. As a consequence, only a subset of the relative joint
coordinates can be selected as state variables.

spherical joint
(j2)

revolute joint
(j1)

Cardan joint
(j3)

prismatic joint
(j4)

Mechanical systems with kinematic loops can be handled by
cutting selected joints such that the resulting system has a tree-
structure. The removed cut-joints are thereby replaced by
appropriate (unknown) constraint forces and torques. Further-
more, the kinematic constraint equations of the cut-joints are

added as additional equations to the equations of motion of the
tree-structured system. It is well-known (see e.g. Schiehlen
1993) that this procedure leads to the following system of
differential-algebraic equations:

M(q)q h(q,q) f G (q)f

0 g g(q) (G
g
q

0 g G(q)q

0 g G(q)q
G(q)q

q
q

�� �

)

� �

�� ��

�

�

= + +

= = =

= =

= = +

a T c

∂
∂

∂
∂

(2a)

(2b)

(2c)

(2d)

Here, (2a) are the equations of motion of the spanning tree
mechanism, (2b, 2c, 2d) are the constraint equations of all cut
joints at position, velocity and acceleration level, respectively, q
are the relative coordinates of the joints of the spanning tree, fa

are the (known) generalized applied forces of the joints of the
spanning tree and fc are the (unknown) generalized constraint
forces of the cut-joints.

In a second step, state variables must be selected, i.e., for
every kinematic loop, 6 − nc position and 6 − nc velocity
coordinates of the joints of the spanning tree must be defined as
unknown, where nc is the number of degrees of freedom of the
cut-joint of the loop. The joint coordinates of the spanning tree
are therefore split up into q = [qmin, qrest], where qmin are the
known position state variables and qrest are the unknown
remaining position coordinates. �qmin are the velocity state
variables. The derivatives of the “remaining” coordinates �qrest ,
��qrest are treated as algebraic variables by the numerical
integration algorithm.

Given the state variables qmin, �qmin, the derivatives of the
state variables ��qmin can be calculated from (2) in the following
way: (2b) is a non-linear system of equations for qrest . (2c) is a
linear system of equations for �qrest and (2a, 2d) is a linear

system of equations for ��qmin, ��qrest , fc .

The discussed equations can be generated from an object-
oriented model by using an appropriate type of tearing. For this,
the user has to split up the joints of a mechanism into 3
categories: “cut-joints”, “state-variable tree-joints” and
“remaining tree-joints”. As already explained, the removal of all
cut-joints will result in a tree-structured system. A “state-
variable tree-joint” is a joint of the spanning tree, where the
relative coordinates of the joint and their first derivatives are
used as state variables. The “remaining tree-joints” are the
remaining joints of the spanning tree.

For example, in the four-bar mechanism, spherical joint j2 is
used as cut-joint, revolute joint j1 is used as state-variable tree-
joint and the cardan and prismatic joints j3, j4 are used as the
remaining tree-joints. Note, that this mechanism has one degree
of freedom and that the angle and the angular velocity of joint j1
are used as state variables, due to the selection of j1 as state-
variable tree-joint.

The variables qmin, �qmin, i.e., the coordinates of the state-
variable tree-joints, are known, because these quantities are used
as state variables. Assuming that qrest , �qrest , i.e., the
coordinates of the remaining tree-joints, as well as the constraint
forces fc of the cut-joints would be known, the equations of

motion could be determined, since this system has all the
properties of a tree-structured system. Therefore qrest , �qrest , fc

must be used as tearing variables in addition to ��q , which are
already known to be tearing variables, in order to tear the
spanning tree mechanism. The residue equations are just the
constraint equations of the cut-joints at position, velocity and
acceleration level in addition to the already known residue
equations for the calculation of the generalized forces fa of the
joints of the spanning tree.

For the four-bar mechanism, the object-oriented model
results in 3 distinct systems of equations: A system of 123 non-
linear equations (at position level), a system of 93 linear
equations (at velocity level) and a system of 182 linear equations
(dynamic equations). The discussed tearing procedure reduces
the dimensions of these systems of equations considerably to a
system of 3 non-linear equations (at position level), a system of
3 linear equations (at velocity level) and a system of 7 linear
equations (4 dynamic equations of the spanning tree and 3
constraint equations on acceleration level).

In a similar way as for pure tree-structured systems, the
complete tearing information can be given in the joint classes.
E.g. for a revolute joint, which is used as a joint in a spanning
tree, the following equations are present in the class description:

local tearq, tearqd

tearq = residue(q)
tearqd = residue(qd)
f = n1*t1 + n2*t2 + n3*t3 + residue(qdd)

The two local variables tearq, tearqd are dummy variables
and just used in order to define the angle q and the angular
derivative qd as tearing variables. Since tearq, tearqd do
not appear in any algebraic loop, the corresponding residue
equations (e.g. tearq = residue(q)) are just ignored. The
last equation (“f = ...”) is already known for the tearing of
tree-structured systems.

As an example for cut-joints, the spherical joint j2 of the
four-bar mechanism is discussed. This joint type contains the
following equations in its class description:

constant dummyq(3)=0, dummyqd(3)=0
local fc(3), rrel(3), vrel(3), arel(3)

residue(dummyq) = rrel
residue(dummyqd) = vrel
residue(fc) = arel

When a cut-joint is removed, two cut-planes are present, called
cut a and cut b, respectively. The relative vector from cut a to cut
b is denoted as rrel. It is calculated from the kinematic
information of the two objects attached at cut a and cut b,
respectively. For a spherical joint, this relative vector must be
zero. This equation is therefore used as residue equation of the
joint at position level. Since dummyq is a constant and therefore
known, it is not used as a tearing variable. In the same way, the
second equations states, that the relative velocity vrel must be
zero and is used as residue equation. Finally, the last equation
states, that the relative acceleration arel must be zero and is
also used as residue equation. Furthermore, the constraint forces
fc of the spherical joint are used as tearing variables.

Note, that for mechanisms with kinematic loops, the tearing
variables and the corresponding residue equations are not
defined in the same joint class. Instead, the tearing variables at
position and velocity level are defined in the joint classes for the

spanning tree, whereas the corresponding residue equations are
defined in the cut-joint classes.

CONCLUSIONS

Connecting models introduces constraints. Such constraints may
lead to the requirement to solve systems of simultaneous
equations while computing the derivatives. Users normally
introduce auxiliary variables for common subexpressions. Such
variables, however, increase the dimension of the system of
equations and makes it less efficient to solve. It is, however,
sparse. This fact is utilized in the tearing method. Tearing, in
fact, removes auxiliary variables from the set of variables being
iterated.

Different principles of tearing and how it is utilized have
been described. Notations to specify tearing in the object-
oriented language Dymola have been given.

Important applications are modeling of electrical circuits and
3D mechanical systems. In particular, it was shown that for quite
general mechanical systems, tearing can be defined in the
mechanical class library, i.e., the user must not be aware of the
underlying tearing procedure. Traditionally, special purpose
simulators are used for such systems. The object-oriented
language Dymola, with its tearing and symbolic manipulation
facilities, makes it possible to treat these kind of models in a
uniform way.

REFERENCES

Cellier, F.E., and H. Elmqvist. 1993. “Automated Formula Manipulation
Supports Object-Oriented Continuous-System Modeling,” IEEE
Control Systems. Vol. 13, No. 2.

Duff, I.S., A.M. Erisman, and J.K Reid. 1986. Direct Methods for
Sparse Matrices. Oxford Science Publications.

Elmqvist, H. 1978. A Structured Model Language for Large
Continuous Systems. Ph.D. thesis, Report CODEN:
LUTFD2/(TFRT-1015), Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Elmqvist, H. 1994. Dymola - User's Manual. Dynasim AB, Research
Park Ideon, Lund, Sweden.

Kron, G. 1963. Diakoptics - The Piecewise Solution of Large-scale
Systems. MacDonald & Co., London.

Luh J.Y.S., M.W. Walker, and R.P.C. Paul. 1980. “On-line
computational scheme for mechanical manipulators.” Trans. ASME
Journal of Dynamic Systems Measurement and Control. Vol. 102,
pp. 69-76.

Mah, R.S.M. 1990. Chemical Process Structures and Information
Flows. Butterworths.

Otter M., H. Elmqvist, and F.E. Cellier. 1993. “Modeling of Multibody
Systems With the Object-Oriented Modeling Language Dymola.” In
Proceedings of the NATO/ASI, Computer-Aided Analysis of Rigid
and Flexible Mechanical Systems (Troia, Portugal). Vol. 2, pp. 91-
110.

Schiehlen W. 1993. Advanced Multibody System Dynamics. Simulation
and Software Tools. Kluwer Academic Publishers.

Tarjan, R.E. 1972. “Depth First Search and Linear Graph Algorithms.”
SIAM J. of Comp. 1, pp. 146-160.

Walker M., and D. Orin. 1982. “Efficient Dynamic Computer
Simulation of Robotic Mechanisms.” Trans. ASME Journal of
Dynamic Systems, Measurement and Control. Vol. 104, pp. 205-
211.

Vlach, J., K. Singhal. 1994. Computer Methods for Circuit Analysis
and Design. Second Ed. Van Nostrand Reinhold.

