
Numerical Simulation of Dynamic Systems: Hw3 - Solution

Numerical Simulation of Dynamic Systems: Hw3
- Solution

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

March 19, 2013



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

RK Order Increase by Blending

[H3.4] RK Order Increase by Blending

Given two separate nth-order accurate RK algorithms in at least (n + 1) stages:

f1(q) = 1 + q +
q2

2!
+ · · · + qn

n!
+ c1 · qn+1

f2(q) = 1 + q +
q2

2!
+ · · · + qn

n!
+ c2 · qn+1

where c2 �= c1.

Show that it is always possible to use blending:

xblended = ϑ · x1 + (1 − ϑ) · x2

where x1 is the solution found using method f1(q) and x2 is the solution found using
method f2(q), such that xblended is of order (n + 1).

Find a formula for ϑ that will make the blended algorithm accurate to the order
(n + 1).



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

RK Order Increase by Blending

[H3.4] RK Order Increase by Blending II

fblended (q) = 1 + q +
q2

2!
+ · · · + qn

n!
+ (ϑ · c1 + (1 − ϑ) · c2) · qn+1

!
= 1 + q +

q2

2!
+ · · · + qn

n!
+

qn+1

(n + 1)!

⇒ ϑ · c1 + (1 − ϑ) · c2
!
=

1

(n + 1)!

⇒ ϑ =
1 − c2 · (n + 1)!

(c1 − c2) · (n + 1)!

has a solution for c2 �= c1.



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

Runge-Kutta Integration

[H3.6] Runge-Kutta Integration

Given the following linear time-invariant continuous-time system:

ẋ =

⎛
⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 −9613
250 −5060 −12079 −8586 −4826
−750 15101 36086 25637 14420
250 −4963 −11896 −8438 −4756

⎞
⎟⎟⎟⎠ · x +

⎛
⎜⎜⎜⎝

5
2
1
−3
1

⎞
⎟⎟⎟⎠ · u

y =
(−1 26 59 43 23

) · x

with initial conditions:

x0 =

⎛
⎜⎜⎜⎝

1
−2
3
−4
5

⎞
⎟⎟⎟⎠



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

Runge-Kutta Integration

[H3.6] Runge-Kutta Integration II

Simulate the system across 10 seconds of simulated time with step input using the
RK4 algorithm with the α-vector and β-matrix:

α =

⎛
⎜⎜⎝

1/2
1/2
1
1

⎞
⎟⎟⎠ ; β =

⎛
⎜⎜⎝

1/2 0 0 0
0 1/2 0 0
0 0 1 0

1/6 1/3 1/3 1/6

⎞
⎟⎟⎠

The following fixed step sizes should be tried:

1. h = 0.32,

2. h = 0.032,

3. h = 0.0032.

Plot the three trajectories on top of each other. What can you conclude about the
accuracy of the results?



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

Runge-Kutta Integration

[H3.6] Runge-Kutta Integration III

0 1 2 3 4 5 6 7 8 9 10
0

50

100
RK4 Integration with Different Step Sizes

Time

y

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time

y

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time

y

Figure: RK4 simulation with different step sizes



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

Runge-Kutta Integration

[H3.6] Runge-Kutta Integration IV

Defining the error as the infinity norm of the difference between the “correct” solution
(computed using the lsim function) and the solution obtained using RK4, we find:

1. err(h = 0.32) = 44.9013,

2. err(h = 0.032) = 0.0012,

3. err(h = 0.0032) = 1.1801e − 006.

Clearly, h = 0.32 leads to an unacceptably large error (the difference between the two
curves is clearly visible by naked eye), whereas the other two step sizes may be
acceptable for most engineering problems.



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems

Given the following linear time-invariant continuous-time system:

ẋ =

⎛
⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 −9613
250 −5060 −12079 −8586 −4826
−750 15101 36086 25637 14420
250 −4963 −11896 −8438 −4756

⎞
⎟⎟⎟⎠ · x +

⎛
⎜⎜⎜⎝

5
2
1
−3
1

⎞
⎟⎟⎟⎠ · u

y =
(−1 26 59 43 23

) · x

with initial conditions:

x0 =

⎛
⎜⎜⎜⎝

1
−2
3
−4
5

⎞
⎟⎟⎟⎠



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems II

Simulate the system across 10 seconds of simulated time with step input using
BI4/50.45. The explicit semi-step uses the fourth-order approximation of RKF4/5.
There is no need to compute the fifth-order corrector. The implicit semi-step uses the
fifth-order corrector. There is no need to compute the fourth–order corrector. Since
the system to be simulated is linear, the implicit semi-step can be implemented using
matrix inversion. No step-size control is attempted.

The following fixed step sizes should be tried:

1. h = 0.32,

2. h = 0.032,

3. h = 0.0032.

Plot the three trajectories on top of each other.



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems III

Let us find an integrator that can be used to simulate the linear problem:

ẋ = A · x + B · u

assuming a zero-order hold (ZOH) on the input, i.e., u = uk,∀t ∈ [tk , tk+1].

Let us demonstrate the approach for the RK4 algorithm introduced in class:

0th stage: ẋk = f(xk, tk )

1st stage: xP1 = xk + h
2
· ẋk

ẋP1 = f(xP1 , t
k+ 1

2
)

2nd stage: xP2 = xk + h
2
· ẋP1

ẋP2 = f(xP2 , t
k+ 1

2
)

3rd stage: xP3 = xk + h · ẋP2

ẋP3 = f(xP3 , tk+1)

4th stage: xk+1 = xk + h
6
· [ẋk + 2 · ẋP1 + 2 · ẋP2 + ẋP3 ]



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems IV

ẋk = A · xk + B · uk = A0 · xk + B0 · uk

xP1 = xk +
h

2
· (A0 · xk + B0 · uk) = F1 · xk + G1 · uk

ẋP1 = A · (F1 · xk + G1 · uk) + B · u
k+ 1

2
= A1 · xk + B1 · uk

xP2 = xk +
h

2
· (A1 · xk + B1 · uk) = F2 · xk + G2 · uk

ẋP2 = A · (F2 · xk + G2 · uk) + B · u
k+ 1

2
= A2 · xk + B2 · uk

xP3 = xk + h · (A2 · xk + B2 · uk) = F3 · xk + G3 · uk

ẋP3 = A · (F3 · xk + G3 · uk) + B · uk+1 = A3 · xk + B3 · uk

xk+1 = xk +
h

6
· (A0 · xk + B0 · uk + 2 · (A1 · xk + B1 · uk) + 2 · (A2 · xk + B2 · uk) + A3 · xk + B3 · uk)

= F · xk + G · uk

We can apply the same technique to Runge-Kutta-Fehlberg:

[F4, G4, F5, G5] = rkf45 lin(A, B, h);



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems V

We can now implement the linear BI4/50.45 algorithm. The forward semi-step is:

x
k+ 1

2
= F4 · xk + G4 · uk

and the backward semi-step can be written as:

xk+ 1
2

= F5 · xk+1 + G5 · uk+1

and since we assume uk+1 = uk:

xk+1 = F5
−1 · xk+ 1

2
− F5

−1 · G5 · uk

Therefore:

xk+1 = F5
−1 · F4 · xk + F5

−1 · (G4 − G5) · uk = FBI · xk + GBI · uk



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems VI

Implemented:

function [F , G ] = bi45t lin(A, B, h, theta)
[F4, G4, dummy1, dummy2] = rkf45 lin(A, B, theta ∗ h);
[dummy1, dummy2, F5, G5] = rkf45 lin(A, B, (theta − 1) ∗ h);
F = F5\F4;
G = F5\(G4 − G5);

return

Now the simulation is a simple loop.



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems VII

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80
BI4/5(0.45) Linear Integration with Different Step Sizes

Time

y

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time

y

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time

y

Figure: BI4/50.45 linear simulation with different step sizes



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.12] BI4/50.45 Integration for Linear Systems VIII

Defining the error as the infinity norm of the difference between the “correct” solution
(computed using the lsim function) and the solution obtained using the linear version
of BI4/50.45, we find:

1. err(h = 0.32) = 0.0912,

2. err(h = 0.032) = 3.4369e − 006,

3. err(h = 0.0032) = 2.0777e − 006.

The solution with h = 0.32 leads to an error that is a bit on the large side but still
quite reasonable, whereas the solution with h = 0.032 is perfect. Using h = 0.0032,
we don’t gain much. The roundoff (shift-out) error kills the additional accuracy that
we might gain when using a larger mantissa.



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.14] BI4/50.45 Integration for Non-linear Systems

Repeat Hw.[H3.12]. This time, we want to replace the matrix inversion by Newton
iteration. Of course, since the problem is linear and time-invariant, Newton iteration
and modified Newton iteration are identical. Iterate until δrel ≤ 10−5, where:

δrel =

‖xright

k+ 1
2

− xleft
k+ 1

2

‖∞
max(‖xleft

k+ 1
2

‖2, ‖xright

k+ 1
2

‖2, δ)

Compare the results obtained with those found in Hw.[H3.12].



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.14] BI4/50.45 Integration for Non-linear Systems II

We implement the Newton iteration in the routine that computes a single step of
BI4/50.45:

function [xnew ] = bi45t step(x, t, h, theta, tol)
H = hessian(x, t, (theta − 1) ∗ h, 4);
[x left, dummy] = rkf45 step(x, t, theta ∗ h);
xnew = x left;
err = 1;
while err > 0.1 ∗ tol,

[dummy, x right] = rkf45 step(xnew, t + h, (theta − 1) ∗ h);
xnew = xnew − H\(x right − x left);
err = norm(x right − x left,’inf’)/max([norm(x left),norm(x right), 1.0e − 10]);

end
return



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.14] BI4/50.45 Integration for Non-linear Systems III

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80
BI4/5(0.45) Integration with Different Step Sizes

Time

y

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time

y

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time

y

Figure: BI4/50.45 non-linear simulation with different step sizes



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.14] BI4/50.45 Integration for Non-linear Systems IV

Defining the error as the infinity norm of the difference between the “correct” solution
(computed using the lsim function) and the solution obtained using the non-linear
version of BI4/50.45, we find:

1. err(h = 0.32) = 0.0912,

2. err(h = 0.032) = 3.4248e − 006,

3. err(h = 0.0032) = 1.2194e − 006.

The results are almost identical as for the linear solution. This is not surprising,
because for a linear system, Newton iteration converges to the correct solution within
a single iteration step.



Numerical Simulation of Dynamic Systems: Hw3 - Solution

Homework 3 - Solution

BI4/50.45 Integration

[H3.14] BI4/50.45 Integration for Non-linear Systems V

Building a special linear version of the BI4/50.45 code wasn’t worth it, and is hardly
ever done. In fact, we were lucky, because, by simulating a step response, the ZOH
applied to the input had no influence on the solution. In general, the non-linear
solution will be better, because it makes use of the correct values of the inputs
throughout the step.

The only situation, where we might want to use the linear version is in a real-time
context. The linear BI4/50.45 code computes almost everything off-line, i.e., before
the simulation starts. The simulation loop is reduced to two multiplications and an
addition. The non-linear BI4/50.45 code needs to call bi45t step, which in return calls
rkf45 step twice, during each simulation step.


	Homework 3 - Solution
	
	
	




