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Homework 4 - Solution

BI4/50.45 Integration

[H3.15] Backinterpolation With Step-Size Control

We want to repeat Hw.[H3.14] once more, this time using a step-size controlled
algorithm. The step-size control to be used is the following. On the explicit semi-step,
compute now both correctors, and find εrel according to the formula:

εrel =
‖x1 − x2‖∞

max(‖x1‖2, ‖x2‖2, δ)

If εrel ≤ 10−4, use the Gustafsson algorithm to compute the step size to be used in
the next step:

hnew =

(
0.8 · 10−4

εrelnow

)0.06

·
(

εrellast

εrelnow

)0.08

· hold

except during the first step, when we use:

hnew =

(
0.8 · 10−4

εrelnow

)0.2

· hold
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[H3.15] Backinterpolation With Step-Size Control II

However, if εrel > 10−4, we reject the step at once, i.e., we never even proceed to the
implicit semi-step, and compute a new step size in accordance with the same equation
as during the first step.

If a step was repeated, the step size for the immediately following next step is also
computed according to that equation.

Apply this step-size control algorithm to the same problem as before, and determine
the largest global relative error by comparing the solution with the analytical solution
of this linear time-invariant system.
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[H3.15] Backinterpolation With Step-Size Control III

We start out by implementing the step-size control in the forward semi-step of the
BI4/50.45 code:

function [xnew, err, tnew, hnew ] = bi45tv step(x, t, h, errl, theta, tol)
err = 2 ∗ tol ;
rep = 0;
while err > tol,

[x left4, x left5] = rkf45 step(x, t, theta ∗ h);
err = norm(x left4 − x left5,’inf’)/max([norm(x left4),norm(x left5), 1.0e − 10]);
if err > tol,

h = (0.8 ∗ tol/err) ∧ (0.2) ∗ h;
rep = 1;

else
if errl > 0 & rep == 0,

hnew = (0.8 ∗ tol/err) ∧ (0.06) ∗ (errl/err) ∧ (0.08) ∗ h;
else

hnew = (0.8 ∗ tol/err) ∧ (0.2) ∗ h;
end,

end,
end
if rep == 1,

err = −err ;
end
tnew = t + h;
xnew = x left4;
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[H3.15] Backinterpolation With Step-Size Control IV

err2 = tol ;
H = hessian(x, t, (theta − 1) ∗ h, 5);
while err2 > 0.1 ∗ tol,

[dummy, x right] = rkf45 step(xnew, t + h, (theta − 1) ∗ h);
xnew = xnew − H\(x right − x left4);
err2 = norm(x right − x left4,’inf’)/max([norm(x left4),norm(x right), 1.0e − 10]);

end
return

The backward semi-step is still the same as before.
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[H3.15] Backinterpolation With Step-Size Control V

We also need the analytical solution of this linear system. We compute this in the
frequency domain, i.e., using Laplace transform.
We start by building a system in the time domain:

S = ss(A, b, c, d);

We convert to the frequency domain by computing the transfer function:

G = tf(S);

The Laplacian of a step input is 1
s
:

Pu = 1;
Qu = [ 1 0 ];
U = tf(Pu, Qu);

The input response in the frequency domain is the product of the transfer function
and the input signal:

Y = G ∗ U;
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[H3.15] Backinterpolation With Step-Size Control VI

We need to convert the input response back into the time domain. To this end, we
perform a partial fraction expansion:

[Py, Qy] = tfdata(Y ,’v’);
[r2, l2] = residue(Py, Qy);

The analytical solution is the superposition of the input response and the initial state
response:

ycorr = zeros(size(yvec));
for i = 1 : nm,

t = tvec(i);
y = sum( r2 .∗ exp(l2 ∗ t) ) + c∗expm(A ∗ t) ∗ x0;
ycorr(i) = y ;

end
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[H3.15] Backinterpolation With Step-Size Control VII
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[H3.15] Backinterpolation With Step-Size Control VIII

The average step size used by the algorithm is havg = 0.3118.

The relative error achieved is errrel = 3.2851e − 005.

This is quite good. We wanted to get tol = 1.0e − 005, i.e., the actual global error is
about three times larger than the desired error, but then again, all we do is to control
the local error. We simply assumed that the local error would be roughly one order of
magnitude smaller than the global error (rule of thumb), and therefore, we checked for
err > 0.1 ∗ tol .
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[H3.19] Order Star

Find the damping order star for BI4/50.45, and plot it together with the pole and zero
locations. Compare with the damping order star of BI4 that was shown in class.

Find the frequency order star for BI4/50.45, and plot it together with the pole and
zero locations. Compare with the frequency order star BI4 that was shown in class.

Finally, compute and plot the order star accuracy domain of this method.

For this problem, it may be easier to use MATLAB’s contour plot, than your own
domain tracking routine.
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[H3.19] Order Star II

We need to compute the three-dimensional function σ̂d (σd , ωd ). We place a roster of
values on the two-dimensional plane spanned by σd and ωd , and compute σ̂d at each
roster point:

j = sqrt(−1);
svec = zeros(161, 201);
s = [−10 : 0.1 : 10];
w = [−8 : 0.1 : 8];
for i = 1 : 201,

ss = s(i);
for k = 1 : 161,

ww = w(k);
lambd = ss + j ∗ ww ;
shat = −damp(−lambd, algor);
svec(k, i) = ss − shat;

end
end
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[H3.19] Order Star III

The function damp computes the numerical damping:

function shat = damp(a, algor)
f = ff(−a, 1, algor);
shat = −log(abs(f ));

return

whereby the function ff computes the F-matrix of the ODE solver:

function [F ] = ff(A, h, algor)
I = eye(size(A));
Ah = A ∗ h;
theta = 0.45;
Af = Ah ∗ theta;
Af 2 = Af ∗ Af ; Af 3 = Af 2 ∗ Af ;
Af 4 = Af 3 ∗ Af ; Af 5 = Af 4 ∗ Af ;
Ff = I + Af + Af 2/2 + Af 3/6 + Af 4/24 + Af 5/104;
Ab = Ah ∗ (1 − theta);
Ab2 = Ab ∗ Ab; Ab3 = Ab2 ∗ Ab; Ab4 = Ab3 ∗ Ab;
Ab5 = Ab4 ∗ Ab; Ab6 = Ab5 ∗ Ab;
Fb = I − Ab + Ab2/2 − Ab3/6 + Ab4/24 − Ab5/120 + Ab6/2080;
F = Fb\Ff ;

return

based on the f4(q) and f5(q) functions that I presented in class for the RKF4/5
algorithm.
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[H3.19] Order Star IV

We also need to compute the poles and zeros of f (q) for the BI4/50.45 algorithm:

function [p, z] = pz(algor)
z = tf(’z’, 1);
theta = 0.45;
zf = z ∗ theta;
zf 2 = zf ∗ zf ; zf 3 = zf 2 ∗ zf ;
zf 4 = zf 3 ∗ zf ; zf 5 = zf 4 ∗ zf ;
Gf = 1 + zf + zf 2/2 + zf 3/6 + zf 4/24 + zf 5/104;
zb = z ∗ (1 − theta);
zb2 = zb ∗ zb; zb3 = zb2 ∗ zb; zb4 = zb3 ∗ zb;
zb5 = zb4 ∗ zb; zb6 = zb5 ∗ zb;
Gb = 1 − zb + zb2/2 − zb3/6 + zb4/24 − zb5/120 + zb6/2080;
G = Gb\Gf ;
G = zpk(G);
[z, p, k] = zpkdata(G ,’v’);

return
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[H3.19] Order Star V

We could now cut the three-dimensional function σ̂d (σd , ωd ) with a horizontal plane
going through the origin. This would give us another way to plot the stability domain
of the method. Matlab’s contour function will do just that:

contour(σd , ωd , σ̂d , [0 0],’k-’)

However, we want to get the damping order star, which can be computed in the same
fashion:

contour(σd , ωd , εσ , [0 0],’k-’)
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[H3.19] Order Star VI
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Figure: Damping order star of BI4/50.45 method
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[H3.19] Order Star VII

The rational function f (q) has six poles and five zeros, located at:

p =

21.8413
−0.5210 + 6.0863i
−0.5210 − 6.0863i
4.2886
3.2137 + 3.3423i
3.2137 − 3.3423i

and:

z =

0.8496 + 6.9172i
0.8496 − 6.9172i
−4.5705
−3.3792 + 3.7377i
−3.3792 − 3.7377i
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The frequency order star can be computed in the same fashion. We now need to
compute the three-dimensional function ω̂d (σd , ωd ). To this end, we need a function
freq:

function ohat = freq(a, algor)
f = ff(a, 1, algor);
ohat = atan2(imag(f ),real(f ));

return
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[H3.19] Order Star IX
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Figure: Frequency order star of BI4/50.45 method
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[H3.19] Order Star X

The order star accuracy domain is once again computed in the same fashion. Now, we
compute oserr at each roster point:

shat = −damp(−lambd, algor);
ohat = atan2(imag(f ),real(f ));
errvec(k, i) = abs(ss − shat) + abs(ww − ohat);

and plot:

tol = 1.0e − 4;
contour(s, w, errvec, [tol tol ],’k-’)
hold on
tol = 1.0e − 3;
contour(s, w, errvec, [tol tol ],’k-’)
tol = 1.0e − 2;
contour(s, w, errvec, [tol tol ],’k-’)
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[H3.19] Order Star XI
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Figure: Order star accuracy domain of BI4/50.45 method
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