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Homework 6 - Solution

Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3

The method introduced in earlier chapters for drawing stability domains was geared
towards linear time-invariant homogeneous multi-variable state-space models:

ẋ = A · x

We generated real-valued A-matrices ∈ ℜ2×2 with their eigenvalues located on the
unit circle, at an angle α away from the negative real axis. We then computed the
F-matrix corresponding to that A-matrix for the given algorithm, and found the largest
value of the step size h, for which all eigenvalues of F remained inside the unit circle.
This gave us one point on the stability domain. We repeated this procedure for all
suitable values of the angle α.
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[H5.3] Stability Domain of GE4/AB3

The method introduced in earlier chapters for drawing stability domains was geared
towards linear time-invariant homogeneous multi-variable state-space models:

ẋ = A · x

We generated real-valued A-matrices ∈ ℜ2×2 with their eigenvalues located on the
unit circle, at an angle α away from the negative real axis. We then computed the
F-matrix corresponding to that A-matrix for the given algorithm, and found the largest
value of the step size h, for which all eigenvalues of F remained inside the unit circle.
This gave us one point on the stability domain. We repeated this procedure for all
suitable values of the angle α.

The algorithm needs to be modified for dealing with second derivative systems
described by the linear time-invariant homogeneous multi-variable second-derivative

model:
ẍ = A2 · x + B · ẋ
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Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 II

We need to find real-valued A- and B-matrices such that the second derivative model
has its eigenvalues located on the unit circle.
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[H5.3] Stability Domain of GE4/AB3 II

We need to find real-valued A- and B-matrices such that the second derivative model
has its eigenvalues located on the unit circle.

This can be accomplished using the scalar model:

ẍ = a2 · x + b · ẋ

where:

a =
√

a21

b = a22

of the formerly used A-matrix.
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[H5.3] Stability Domain of GE4/AB3 III

Write the GE4/AB3 algorithm as follows:

xk+1 =
20

11
· xk − 6

11
· xk−1 −

4

11
· xk−2 +

1

11
· xk−3 +

12 · h2

11
· ẍk

h · ẋk+1 = h · ẋk +
23 · h2

12
· ẍk − 4 · h2

3
· ẍk−1 +

5 · h2

12
· ẍk−2

ẍ = a2 · x + b · ẋ

Substitute the model equation into the two solver equations, and rewrite the resulting
equations in a state-space form:

ξk+1 = F · ξk
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Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 IV

whereby the state vector ξ is chosen as:

ξk =























xk−3

h · ẋk−3

xk−2

h · ẋk−2

xk−1

h · ẋk−1

xk

h · ẋk























The F-matrix turns out to be a function of (a · h)2 and of b · h.
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[H5.3] Stability Domain of GE4/AB3 IV

whereby the state vector ξ is chosen as:

ξk =























xk−3

h · ẋk−3

xk−2

h · ẋk−2

xk−1

h · ẋk−1

xk

h · ẋk























The F-matrix turns out to be a function of (a · h)2 and of b · h.

The remainder of the algorithm remains the same as before.
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[H5.3] Stability Domain of GE4/AB3 IV

whereby the state vector ξ is chosen as:

ξk =























xk−3

h · ẋk−3

xk−2

h · ẋk−2

xk−1

h · ẋk−1

xk

h · ẋk























The F-matrix turns out to be a function of (a · h)2 and of b · h.

The remainder of the algorithm remains the same as before.

Draw the stability domain of GE4/AB3 using this approach.
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Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 V

The F-matrix of GE4/AB3 is:

F =































Z(n) Z(n) I(n) Z(n) Z(n) Z(n) Z(n) Z(n)

Z(n) Z(n) Z(n) I(n) Z(n) Z(n) Z(n) Z(n)

Z(n) Z(n) Z(n) Z(n) I(n) Z(n) Z(n) Z(n)

Z(n) Z(n) Z(n) Z(n) Z(n) I(n) Z(n) Z(n)

Z(n) Z(n) Z(n) Z(n) Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) Z(n) Z(n) Z(n) Z(n) I(n)

− 1
11

I(n) Z(n) − 4
11

I(n) Z(n) − 6
11

I(n) Z(n)
[

20
11

I(n) + 12
11

(Ah)2
]

12
11

(Bh)

Z(n) Z(n) 5
12

(Ah)2 5
12

(Bh) − 4
12

(Ah)2 − 4
12

(Bh) 23
12

(Ah)2
[

I(n) + 23
12

(Bh)
]
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[H5.3] Stability Domain of GE4/AB3 V

The F-matrix of GE4/AB3 is:

F =































Z(n) Z(n) I(n) Z(n) Z(n) Z(n) Z(n) Z(n)

Z(n) Z(n) Z(n) I(n) Z(n) Z(n) Z(n) Z(n)
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Z(n) Z(n) Z(n) Z(n) Z(n) I(n) Z(n) Z(n)

Z(n) Z(n) Z(n) Z(n) Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) Z(n) Z(n) Z(n) Z(n) I(n)

− 1
11

I(n) Z(n) − 4
11

I(n) Z(n) − 6
11

I(n) Z(n)
[

20
11

I(n) + 12
11

(Ah)2
]

12
11

(Bh)

Z(n) Z(n) 5
12

(Ah)2 5
12

(Bh) − 4
12

(Ah)2 − 4
12

(Bh) 23
12

(Ah)2
[

I(n) + 23
12

(Bh)
]































We generate the A-matrix as always, then extract:

a = a21 · h2

b = a22 · h
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[H5.3] Stability Domain of GE4/AB3 VI

We then rewrite the F-matrix as follows:

F =



























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

− 1
11

0 − 4
11

0 − 6
11

0
[

20
11

+ 12
11

a
]

12
11

b

0 0 5
12

a 5
12

b − 4
12

a − 4
12

b 23
12

a
[

1 + 23
12

b
]





























Numerical Simulation of Dynamic Systems: Hw6 - Solution

Homework 6 - Solution

Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 VII

We can now apply our standard stability domain plotting routine.
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Houbolt’s Integration Algorithm

[P5.1] Houbolt’s Integration Algorithm

John Houbolt proposed already in 1950 a second-derivative integration algorithm that
is very similar to the GI3/BDF2 method introduced in this chapter. Houbolt’s

algorithm can be written as follows:

xk+1 =
5

2
· xk − 2 · xk−1 +

1

2
· xk−2 +

h2

2
· ẍk+1

h · ẋk+1 =
11

6
· xk+1 − 3 · xk +

3

2
· xk−1 − 1

3
· xk−2
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[P5.1] Houbolt’s Integration Algorithm

John Houbolt proposed already in 1950 a second-derivative integration algorithm that
is very similar to the GI3/BDF2 method introduced in this chapter. Houbolt’s

algorithm can be written as follows:

xk+1 =
5

2
· xk − 2 · xk−1 +

1

2
· xk−2 +

h2

2
· ẍk+1

h · ẋk+1 =
11

6
· xk+1 − 3 · xk +

3

2
· xk−1 − 1

3
· xk−2

The second derivative formula of Houbolt’s algorithm can immediately be identified as
GI3. The formula used for the velocity vector is BDF3; however, the formula was used
differently from the way, it had been employed by us in the description of the
GI3/BDF2 algorithm. Clearly, the Houbolt algorithm is third-order accurate.
Although it would have sufficed to use BDF2 for the velocity vector, nothing would
have been gained computationally by choosing the reduced-order algorithm.
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[P5.1] Houbolt’s Integration Algorithm II

We can transform the Houbolt algorithm to the form that we meanwhile got used to
by substituting the GI3 solver into the BDF3 solver to eliminate xk+1 from the latter.
The so rewritten Houbolt algorithm assumes the form:

xk+1 =
5

2
· xk − 2 · xk−1 +

1

2
· xk−2 +

h2

2
· ẍk+1

h · ẋk+1 =
19

12
· xk − 13

6
· xk−1 +

7

12
· xk−2 +

11 · h2

12
· ẍk+1

Find the stability domain and damping plot of Houbolt’s algorithm, and discuss the
properties of this algorithm in the same way, as Newmark’s algorithm has been
discussed in class.
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[P5.1] Houbolt’s Integration Algorithm III

The F-matrix of the Houbolt algorithm is:

F =





















Z(n) Z(n) I(n) Z(n) Z(n) Z(n)
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(Ah)2
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(Bh)























Numerical Simulation of Dynamic Systems: Hw6 - Solution

Homework 6 - Solution

Houbolt’s Integration Algorithm

[P5.1] Houbolt’s Integration Algorithm III

The F-matrix of the Houbolt algorithm is:

F =





















Z(n) Z(n) I(n) Z(n) Z(n) Z(n)

Z(n) Z(n) Z(n) I(n) Z(n) Z(n)

Z(n) Z(n) Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) Z(n) Z(n) I(n)

1
2
I(n) Z(n) −2I(n) Z(n)

[

5
2
I(n) + 1

2
(Ah)2

]

1
2
(Bh)

7
12

I(n) Z(n) − 13
6

I(n) Z(n)
[

19
12

I(n) + 11
12

(Ah)2
]

11
12

(Bh)





















We generate the A-matrix as always, then extract:

a = a21 · h2

b = a22 · h
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[P5.1] Houbolt’s Integration Algorithm IV

We then rewrite the F-matrix as follows:

F =



















0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1
2

0 −2 0
[

5
2

+ 1
2
a
]

1
2
b

7
12

0 − 13
6

0
[

19
12

+ 11
12

a
]

11
12

b
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[P5.1] Houbolt’s Integration Algorithm V

Let us start by drawing the damping plot of the Houbolt algorithm:
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[P5.1] Houbolt’s Integration Algorithm VI

◮ Houbolt’s algorithm exhibits negative damping farther out along the negative
real axis. Thus, the algorithm is not stiffly stable, and the stability domain will
loop in the left-half complex plane.
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[P5.1] Houbolt’s Integration Algorithm VI

◮ Houbolt’s algorithm exhibits negative damping farther out along the negative
real axis. Thus, the algorithm is not stiffly stable, and the stability domain will
loop in the left-half complex plane.

◮ Houbolt’s algorithm has an asymptotic region around the origin, which,
unfortunately, is rather small. Along the negative real axis, the asymptotic
region ends for σd ≈ 0.1.
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[P5.1] Houbolt’s Integration Algorithm VI

◮ Houbolt’s algorithm exhibits negative damping farther out along the negative
real axis. Thus, the algorithm is not stiffly stable, and the stability domain will
loop in the left-half complex plane.

◮ Houbolt’s algorithm has an asymptotic region around the origin, which,
unfortunately, is rather small. Along the negative real axis, the asymptotic
region ends for σd ≈ 0.1.

◮ Since Houbolt’s algorithm is an implicit second-derivative ODE solver, we had
hoped for stiff stability. Without that property, the algorithm will perform poorly
in comparison with the explicit GE3/AB2 algorithm.
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[P5.1] Houbolt’s Integration Algorithm VII

Let us now plot the stability domain of Houbolt’s algorithm:
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[P5.1] Houbolt’s Integration Algorithm VIII

◮ The flying-saucer stability domain of Houbolt’s algorithm looks beautiful, but
the method is hardly convincing.
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[P5.1] Houbolt’s Integration Algorithm VIII

◮ The flying-saucer stability domain of Houbolt’s algorithm looks beautiful, but
the method is hardly convincing.

◮ Unfortunately, we still haven’t discovered an L-stable second-derivative ODE

solver.
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[P5.1] Houbolt’s Integration Algorithm VIII

◮ The flying-saucer stability domain of Houbolt’s algorithm looks beautiful, but
the method is hardly convincing.

◮ Unfortunately, we still haven’t discovered an L-stable second-derivative ODE

solver.

◮ Such an algorithm does probably exist, but we haven’t found it yet.
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