Numerical Simulation of Dynamic Systems: Hw6 - Solution

Prof. Dr. François E. Cellier Department of Computer Science ETH Zurich

April 3, 2012

[H5.3] Stability Domain of GE4/AB3

The method introduced in earlier chapters for drawing stability domains was geared towards *linear time-invariant homogeneous multi-variable state-space models*:

$$\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x}$$

We generated real-valued A-matrices $\in \Re^{2\times 2}$ with their eigenvalues located on the unit circle, at an angle α away from the negative real axis. We then computed the F-matrix corresponding to that A-matrix for the given algorithm, and found the largest value of the step size h, for which all eigenvalues of F remained inside the unit circle. This gave us one point on the stability domain. We repeated this procedure for all suitable values of the angle α .

The algorithm needs to be modified for dealing with second derivative systems described by the *linear time-invariant homogeneous multi-variable second-derivative model*:

$$\ddot{\mathbf{x}} = \mathbf{A}^2 \cdot \mathbf{x} + \mathbf{B} \cdot \dot{\mathbf{x}}$$

Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 II

We need to find real-valued A- and B-matrices such that the second derivative model has its eigenvalues located on the unit circle.

This can be accomplished using the scalar model:

$$\ddot{x} = a^2 \cdot x + b \cdot \dot{x}$$

where:

$$a = \sqrt{a_{21}}$$

 $b = a_{22}$

of the formerly used A-matrix.

[H5.3] Stability Domain of GE4/AB3 III

Write the GE4/AB3 algorithm as follows:

$$x_{k+1} = \frac{20}{11} \cdot x_k - \frac{6}{11} \cdot x_{k-1} - \frac{4}{11} \cdot x_{k-2} + \frac{1}{11} \cdot x_{k-3} + \frac{12 \cdot h^2}{11} \cdot \ddot{x}_k$$

$$h \cdot \dot{x}_{k+1} = h \cdot \dot{x}_k + \frac{23 \cdot h^2}{12} \cdot \ddot{x}_k - \frac{4 \cdot h^2}{3} \cdot \ddot{x}_{k-1} + \frac{5 \cdot h^2}{12} \cdot \ddot{x}_{k-2}$$

$$\ddot{x} = a^2 \cdot x + b \cdot \dot{x}$$

Substitute the model equation into the two solver equations, and rewrite the resulting equations in a state-space form:

$$\xi_{\mathbf{k}+\mathbf{1}} = \mathbf{F} \cdot \xi_{\mathbf{k}}$$

Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 IV

whereby the state vector ξ is chosen as:

$$\xi_{\mathbf{k}} = \begin{pmatrix} x_{k-3} \\ h \cdot \dot{x}_{k-3} \\ x_{k-2} \\ h \cdot \dot{x}_{k-2} \\ x_{k-1} \\ h \cdot \dot{x}_{k-1} \\ x_{k} \\ h \cdot \dot{x}_{k} \end{pmatrix}$$

The F-matrix turns out to be a function of $(a \cdot h)^2$ and of $b \cdot h$.

The remainder of the algorithm remains the same as before.

Draw the stability domain of GE4/AB3 using this approach.

[H5.3] Stability Domain of GE4/AB3 V

The F-matrix of GE4/AB3 is:

$$\textbf{F} = \begin{pmatrix} \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{I}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{I}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{S}^{(n)} & \textbf{S}^{(n)} & \textbf{S}^{(n)} & \textbf{S}^{(n)} & \textbf{S}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{S}^{(n)} & \textbf{S}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{($$

We generate the A-matrix as always, then extract:

$$a = a_{21} \cdot h^2$$
$$b = a_{22} \cdot h$$

Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 VI

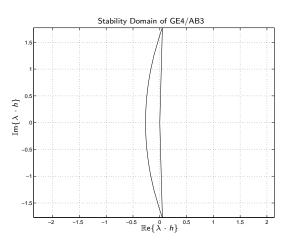
We then rewrite the F-matrix as follows:

$$\mathbf{F} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -\frac{1}{11} & 0 & -\frac{4}{11} & 0 & -\frac{6}{11} & 0 & \left[\frac{20}{11} + \frac{12}{11}a\right] & \frac{12}{11}b \\ 0 & 0 & \frac{5}{12}a & \frac{5}{12}b & -\frac{4}{12}a & -\frac{4}{12}b & \frac{23}{12}a & \left[1 + \frac{23}{12}b\right] \end{pmatrix}$$

Stability Domain of GE4/AB3

[H5.3] Stability Domain of GE4/AB3 VII

We can now apply our standard stability domain plotting routine.



[P5.1] Houbolt's Integration Algorithm

John Houbolt proposed already in 1950 a second-derivative integration algorithm that is very similar to the GI3/BDF2 method introduced in this chapter. *Houbolt's algorithm* can be written as follows:

$$\begin{array}{rcl} \mathbf{x_{k+1}} & = & \frac{5}{2} \cdot \mathbf{x_k} - 2 \cdot \mathbf{x_{k-1}} + \frac{1}{2} \cdot \mathbf{x_{k-2}} + \frac{h^2}{2} \cdot \ddot{\mathbf{x}_{k+1}} \\ h \cdot \dot{\mathbf{x}_{k+1}} & = & \frac{11}{6} \cdot \mathbf{x_{k+1}} - 3 \cdot \mathbf{x_k} + \frac{3}{2} \cdot \mathbf{x_{k-1}} - \frac{1}{3} \cdot \mathbf{x_{k-2}} \end{array}$$

The second derivative formula of Houbolt's algorithm can immediately be identified as GI3. The formula used for the velocity vector is BDF3; however, the formula was used differently from the way, it had been employed by us in the description of the GI3/BDF2 algorithm. Clearly, the Houbolt algorithm is third-order accurate. Although it would have sufficed to use BDF2 for the velocity vector, nothing would have been gained computationally by choosing the reduced-order algorithm.

[P5.1] Houbolt's Integration Algorithm II

We can transform the Houbolt algorithm to the form that we meanwhile got used to by substituting the GI3 solver into the BDF3 solver to eliminate \mathbf{x}_{k+1} from the latter. The so rewritten Houbolt algorithm assumes the form:

$$\begin{aligned} \mathbf{x}_{k+1} &= & \frac{5}{2} \cdot \mathbf{x}_{k} - 2 \cdot \mathbf{x}_{k-1} + \frac{1}{2} \cdot \mathbf{x}_{k-2} + \frac{h^{2}}{2} \cdot \ddot{\mathbf{x}}_{k+1} \\ h \cdot \dot{\mathbf{x}}_{k+1} &= & \frac{19}{12} \cdot \mathbf{x}_{k} - \frac{13}{6} \cdot \mathbf{x}_{k-1} + \frac{7}{12} \cdot \mathbf{x}_{k-2} + \frac{11 \cdot h^{2}}{12} \cdot \ddot{\mathbf{x}}_{k+1} \end{aligned}$$

Find the stability domain and damping plot of Houbolt's algorithm, and discuss the properties of this algorithm in the same way, as Newmark's algorithm has been discussed in class.

[P5.1] Houbolt's Integration Algorithm III

The F-matrix of the Houbolt algorithm is:

$$\textbf{F} = \begin{pmatrix} \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{I}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{I}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} \\ \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{Z}^{(n)} & \textbf{I}^{(n)} & \textbf{Z}^{(n)} \\ \frac{1}{2}\textbf{I}^{(n)} & \textbf{Z}^{(n)} & -2\textbf{I}^{(n)} & \textbf{Z}^{(n)} & \left[\frac{5}{2}\textbf{I}^{(n)} + \frac{1}{2}(\textbf{A}\textbf{h})^2\right] & \frac{1}{2}(\textbf{B}\textbf{h}) \\ \frac{7}{12}\textbf{I}^{(n)} & \textbf{Z}^{(n)} & -\frac{13}{6}\textbf{I}^{(n)} & \textbf{Z}^{(n)} & \left[\frac{19}{12}\textbf{I}^{(n)} + \frac{11}{12}(\textbf{A}\textbf{h})^2\right] & \frac{11}{12}(\textbf{B}\textbf{h}) \end{pmatrix}$$

We generate the A-matrix as always, then extract:

$$a = a_{21} \cdot h^2$$
$$b = a_{22} \cdot h$$

Houbolt's Integration Algorithm

[P5.1] Houbolt's Integration Algorithm IV

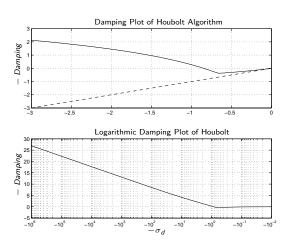
We then rewrite the F-matrix as follows:

$$\mathbf{F} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \frac{1}{2} & 0 & -2 & 0 & \left[\frac{5}{2} + \frac{1}{2}a \right] & \frac{1}{12}b \\ \frac{7}{12} & 0 & -\frac{13}{6} & 0 & \left[\frac{19}{12} + \frac{11}{12}a \right] & \frac{11}{12}b \end{pmatrix}$$

Houbolt's Integration Algorithm

[P5.1] Houbolt's Integration Algorithm V

Let us start by drawing the *damping plot* of the Houbolt algorithm:



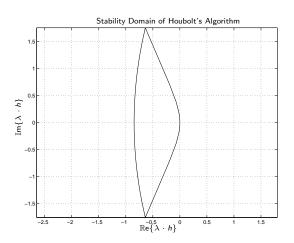
[P5.1] Houbolt's Integration Algorithm VI

- Houbolt's algorithm exhibits negative damping farther out along the negative real axis. Thus, the algorithm is not stiffly stable, and the stability domain will loop in the left-half complex plane.
- Houbolt's algorithm has an asymptotic region around the origin, which, unfortunately, is rather small. Along the negative real axis, the asymptotic region ends for $\sigma_d \approx 0.1$.
- ▶ Since Houbolt's algorithm is an *implicit second-derivative ODE solver*, we had hoped for stiff stability. Without that property, the algorithm will perform poorly in comparison with the explicit GE3/AB2 algorithm.

Houbolt's Integration Algorithm

[P5.1] Houbolt's Integration Algorithm VII

Let us now plot the stability domain of Houbolt's algorithm:



└─Houbolt's Integration Algorithm

[P5.1] Houbolt's Integration Algorithm VIII

- The flying-saucer stability domain of Houbolt's algorithm looks beautiful, but the method is hardly convincing.
- Unfortunately, we still haven't discovered an L-stable second-derivative ODE solver.
- Such an algorithm does probably exist, but we haven't found it yet.