
Numerical Simulation of Dynamic Systems I

Numerical Simulation of Dynamic Systems I

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

February 26, 2013

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

A Circuit Example

Given the electrical circuit:

U
0=

10

R=20
C

=1
.0

e-
6

L=
0.

00
15

Ground

R
=1

00

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

Figure: Circuit diagram of electrical RLC circuit

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Implicit Differential Algebraic Equation (DAE) Model

Constitutive equations:

u0 = 10

u1 − R1 · i1 = 0

u2 − R2 · i2 = 0

iC − C · duC

dt
= 0

uL − L · diL

dt
= 0

Mesh equations (Kirchhoff’s Voltage law - KVL):

u0 − u1 − uC = 0

uL − u1 − u2 = 0

uC − u2 = 0

Node equations (Kirchhoff’s current law - KCL):

i0 − i1 − iL = 0

i1 − i2 − iC = 0

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Explicit DAE Model

We can causalize the equations (for now, we won’t discuss, how this is being done):

u0 = 10

u2 = uC

i2 =
1

R2
· u2

u1 = u0 − uC

i1 =
1

R1
· u1

uL = u1 + u2

iC = i1 − i2
diL

dt
=

1

L
· uL

duC

dt
=

1

C
· iC

i0 = i1 + iL

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Ordinary Differential Equation (ODE) Model

By substitution, we can eliminate the algebraic equations:

State equations:

duC

dt
= − R1 + R2

R1 · R2 · C · uC +
1

R1 · C · u0

diL

dt
=

1

L
· u0

Output equation:

i2 =
1

R2
· uC

Such a model is often referred to as a state-space model.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Linear State-space Model

If the state-space model is linear, as in the given case, it can be written in a
matrix-vector form:

⎛
⎜⎝

duC
dt

diL
dt

⎞
⎟⎠ =

⎛
⎝
− R1+R2

R1·R2·C 0

0 0

⎞
⎠ ·

⎛
⎝

uC

iL

⎞
⎠ +

⎛
⎝

1
R1·C

1
L

⎞
⎠ · u0

i2 =
(

1
R2

0
)
·
⎛
⎝

uC

iL

⎞
⎠

The variables uC and iL are called state variables, and the vector consisting of the
state variables constitutes the state vector. In general:

ẋ = A · x + B · u ; x ∈ Rn ; u ∈ Rm ; y ∈ Rp

y = C · x + D · u ; A ∈ Rn×n ; B ∈ Rn×m ; C ∈ Rp×n ; D ∈ Rp×m

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

MATLAB Simulation Program

% Enter parameter values
%
R1 = 100;
R2 = 20;
L = 0.0015;
C = 1e-6;
%
% Generate system matrices
%
R1C = 1/(R1 ∗ C);
R2C = 1/(R2 ∗ C);
a11 = −(R1C + R2C);
A = [a11 , 0 ; 0 , 0];
b = [R1C ; 1/L];
c = [1/R2 , 0];
d = 0;
%
% Make a system and simulate
%
S = ss(A, b, c, d);
t = [0 : 1e-6 : 1e-4];
u = 10 ∗ ones(size(t));
x0 = zeros(2, 1);
y = lsim(S, u, t, x0);
%

% Plot the results
%
subplot(2, 1, 1)
plot(t, y, ′k − ′)
grid on
title(Electrical RLC Circuit)
xlabel(time)
ylabel(i2)
print −deps fig1 2.eps
return

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

MATLAB Simulation Program

% Enter parameter values
%
R1 = 100;
R2 = 20;
L = 0.0015;
C = 1e-6;
%
% Generate system matrices
%
R1C = 1/(R1 ∗ C);
R2C = 1/(R2 ∗ C);
a11 = −(R1C + R2C);
A = [a11 , 0 ; 0 , 0];
b = [R1C ; 1/L];
c = [1/R2 , 0];
d = 0;
%
% Make a system and simulate
%
S = ss(A, b, c, d);
t = [0 : 1e-6 : 1e-4];
u = 10 ∗ ones(size(t));
x0 = zeros(2, 1);
y = lsim(S, u, t, x0);
%

% Plot the results
%
subplot(2, 1, 1)
plot(t, y, ′k − ′)
grid on
title(Electrical RLC Circuit)
xlabel(time)
ylabel(i2)
print −deps fig1 2.eps
return

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10−4

0

0.02

0.04

0.06

0.08

0.1
Electrical RLC Circuit

time

i2

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Modeling vs. Simulation

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Modeling vs. Simulation

� The transition from the graphical model representation (in our example, a
circuit diagram) to the executable MATLAB code is long and cumbersome, even
for such a trivial example as the one presented.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Modeling vs. Simulation

� The transition from the graphical model representation (in our example, a
circuit diagram) to the executable MATLAB code is long and cumbersome, even
for such a trivial example as the one presented.

� This process needs to be automated.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Modeling vs. Simulation

� The transition from the graphical model representation (in our example, a
circuit diagram) to the executable MATLAB code is long and cumbersome, even
for such a trivial example as the one presented.

� This process needs to be automated.

� For this, we have tools such as Dymola. In fact, the circuit diagram shown at
the beginning is a Dymola program.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Modeling vs. Simulation

� The transition from the graphical model representation (in our example, a
circuit diagram) to the executable MATLAB code is long and cumbersome, even
for such a trivial example as the one presented.

� This process needs to be automated.

� For this, we have tools such as Dymola. In fact, the circuit diagram shown at
the beginning is a Dymola program.

� However, it is not the aim of this class to discuss that transition. For this, we
provide a second class, entitled Mathematical Modeling of Physical Systems,
which is offered in the fall semester.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Modeling vs. Simulation

� The transition from the graphical model representation (in our example, a
circuit diagram) to the executable MATLAB code is long and cumbersome, even
for such a trivial example as the one presented.

� This process needs to be automated.

� For this, we have tools such as Dymola. In fact, the circuit diagram shown at
the beginning is a Dymola program.

� However, it is not the aim of this class to discuss that transition. For this, we
provide a second class, entitled Mathematical Modeling of Physical Systems,
which is offered in the fall semester.

� The purpose of the class Numerical Simulation of Dynamic Systems is to
discuss the properties of numerical ODE solvers and their codes, as well as the
algorithms behind these solvers.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Time and Again

When we simulate a continuous-time system on a digital computer, some quantity will
have to be discretized, as we cannot update the state variables infinitely often within a
finite time period. Most numerical ODE solvers discretize the time axis, i.e., they
advance the simulation clock using finite time steps. The time step, h, may either be
fixed or variable.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Time and Again

When we simulate a continuous-time system on a digital computer, some quantity will
have to be discretized, as we cannot update the state variables infinitely often within a
finite time period. Most numerical ODE solvers discretize the time axis, i.e., they
advance the simulation clock using finite time steps. The time step, h, may either be
fixed or variable.

We notice in the MATLAB code shown earlier the statement:

t = [0 : 1e-6 : 1e-4];

However, 10−6 is not the time step, but rather the communication interval. With this
statement, we instruct the program to report the simulation results back once every
10−6 time units.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Time and Again

When we simulate a continuous-time system on a digital computer, some quantity will
have to be discretized, as we cannot update the state variables infinitely often within a
finite time period. Most numerical ODE solvers discretize the time axis, i.e., they
advance the simulation clock using finite time steps. The time step, h, may either be
fixed or variable.

We notice in the MATLAB code shown earlier the statement:

t = [0 : 1e-6 : 1e-4];

However, 10−6 is not the time step, but rather the communication interval. With this
statement, we instruct the program to report the simulation results back once every
10−6 time units.

If a time step passes through a communication point, some numerical ODE solvers will
reduce their time step to hit the communication point precisely, whereas others will
simulate across with the full step size and then interpolate back to report the state
vector at the desired time instant.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Time and Again II

� The step size, h, is not necessarily identical with the time advance, Δt, of
model evaluations. Many integration algorithms, such as the famous
Runge-Kutta algorithms, perform multiple model evaluations within a single
time step. Thus, each time step, h, contains several micro-steps, Δt, whereby
Δt is not necessarily a fixed divider of h. Instead, the simulation clock may
jump back and forth within each individual time step.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Time and Again II

� The step size, h, is not necessarily identical with the time advance, Δt, of
model evaluations. Many integration algorithms, such as the famous
Runge-Kutta algorithms, perform multiple model evaluations within a single
time step. Thus, each time step, h, contains several micro-steps, Δt, whereby
Δt is not necessarily a fixed divider of h. Instead, the simulation clock may
jump back and forth within each individual time step.

� Even if the integration algorithm used is such that Δt remains positive at all
times, the simulation clock does not necessarily advance monotonously with real
time. There are two types of error-controlled integration algorithms that differ
in the way they handle steps that exhibit an error estimate that is too large.
Optimistic algorithms simply continue, in spite of the exceeded error tolerance,
while reducing the step size for the subsequent step. In contrast, conservative
algorithms reject the step, and repeat it with a smaller step size. Thus,
whenever a step is rejected, the simulation clock in a conservative algorithm
turns back to repeat the step, while not committing the same error.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Time and Again III

� Even if an optimistic algorithm with positive Δt values is being employed, the
simulation clock may still not advance monotonously with real time. The reason
is that integration algorithms cannot integrate across discontinuities in the
model. Thus, if a discontinuity is encountered somewhere inside an integration
step, the step size must be reduced and the step must be repeated, in order to
place the discontinuity in between subsequent steps.

Numerical Simulation of Dynamic Systems I

Introduction, Scope, Definitions

A Circuit Example

Time and Again III

� Even if an optimistic algorithm with positive Δt values is being employed, the
simulation clock may still not advance monotonously with real time. The reason
is that integration algorithms cannot integrate across discontinuities in the
model. Thus, if a discontinuity is encountered somewhere inside an integration
step, the step size must be reduced and the step must be repeated, in order to
place the discontinuity in between subsequent steps.

One of the important tasks that we shall be dealing with in this class, beside from
looking at the different numerical integration algorithms themselves, is to discuss the
various time advance mechanisms.

	Introduction, Scope, Definitions
	

