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single Newton iteration that extends over all equations of both stages.
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variables involved in the iteration represent two different time instances.
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· ẋk+1

xk+1 = xk +
3h

4
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This is an algorithm in two stages. The first stage is evaluated at time tk+ 1
3
, whereas

the second stage is evaluated at time tk+1.

However, we are not dealing here with a prediction followed by a correction. There is a
single Newton iteration that extends over all equations of both stages.

All equations have to be evaluated simultaneously, in spite of the fact that the
variables involved in the iteration represent two different time instances.

In order to inline this algorithm, we need to duplicate the equations.
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Using the same index-0 example as in the previous presentation, we find:
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� Instead of dealing with 12 equations in 12 variables, as in the case of inlining a
BDF method, we now are confronted with 24 equations in 24 variables.

� In the duplication of the equations, we simply used variable names starting with
v and j to denote voltages and currents at time tk+ 1

3
, and we used variable

names starting with u and i to refer to voltages and currents at time tk+1.

� Although the IRK technique will allow us to use much larger step sizes in
comparison with the BDF approach, every function evaluation is now more
expensive.

� We need to analyze the number of tearing variables that result from inlining the
IRK method. This will determine the economy of the algorithm.
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iteration in 14 equations and two tearing variables instead of seven equations in
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� We were able to causalize 10 of the 24 equations at once.

� We then needed to choose a first tearing variable and a first residual equation.
We chose vC as our first tearing variable. This allowed us to causalize seven
additional equations.

� We then needed to select a second tearing variable and a second residual
equation. We chose uC as our second tearing variable. We now were able to
causalize the remaining equations.

� Comparing with the BDF algorithm, we notice that we have twice as many
model equations. Also, every function evaluation now calls for a Newton
iteration in 14 equations and two tearing variables instead of seven equations in
a single tearing variable.

� However, the larger step sizes that we can use in the simulation with Radau IIA
together with the much cheaper step-size control that the IRK algorithms offer,
make it possible to predict that simulations with the inlined Radau IIA algorithm
will likely be more economical than simulations using an inlined BDF method.
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� For step-size control, it is necessary to find an estimate of the integration error.

� Typically, designers of ODE and/or DAE solvers will look for a second solver of
the same or higher order of approximation accuracy to compare it against the
solver to be used for simulation.

� While it is always possible to run two independent solvers in parallel for the
purpose of step-size control, this approach is clearly undesirable, as it makes the
solver highly inefficient.

� In explicit Runge-Kutta algorithms, it has become customary to search for an
embedding method, i.e., a second solver that has most of the computations in
common with the original solver, such that they share a large portion of the
computational load between them.

� Unfortunately, this approach won’t work in the case of fully implicit
Runge-Kutta algorithms, since these algorithms are so compact and so highly
optimized that there simply is not enough freedom left in these algorithms for
embedding methods to co-exist with them.
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the IRK technique. This solution can be implemented cheaply, because an
appropriately accurate state derivative at time tk+1 can be obtained using the
Runge-Kutta approximation, i.e., no Newton iteration is necessary.
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where fk+1 is the function value evaluated from the model equations at time
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and xIRK
k+1 is the solution found by the Radau IIA algorithm.
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where fk+1 is the function value evaluated from the model equations at time
tk+1:

fk+1 = f(xIRK
k+1, uk+1, tk+1)

and xIRK
k+1 is the solution found by the Radau IIA algorithm.

� Unfortunately, such a solution inherits all the difficulties associated with
step-size control in linear multi-step methods.
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3
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, and ẋk+1 to estimate xk+1.

� There is only one 3rd -order polynomial going through these four pieces of
information, and that polynomial wouldn’t even be 3rd -order accurate, because
the intermediate computations of the method, x
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and ẋ
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, are themselves

only 2nd -order accurate.

� However, enough redundancy can be obtained to define an embedding algorithm
if information from the two last steps is being used. In this case, the following
eight pieces of information are available: xk−1, xk− 2

3
, xk, xk+ 1

3
, ẋk− 2

3
, ẋk, ẋk+ 1
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,

and ẋk+1.
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� It was decided to look for 4th-order polynomials that go through any five of
these eight pieces of information. This technique defines 56 possible embedding
methods.
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� Two of those six techniques are not A-stable. One method has a stability
domain with a discontinuous derivative at the real axis, which is suspicious.
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� It was decided to look for 4th-order polynomials that go through any five of
these eight pieces of information. This technique defines 56 possible embedding
methods.

� Out of these 56 methods, only six are stiffly stable.

� Two of those six techniques are not A-stable. One method has a stability
domain with a discontinuous derivative at the real axis, which is suspicious.

� The remaining three methods are:
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ẋk+1

x3
k+1 = − 2

23
x
k− 2

3
+

50

23
xk − 25

23
x
k+ 1

3
+

25h

23
ẋ
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It is possible to write these methods in the linear case as:

xk+1 = F · xk−1



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method V

It is possible to write these methods in the linear case as:

xk+1 = F · xk−1

The F-matrices of the three methods can be expanded into Taylor series around h = 0:

F1 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

2224

279

(Ah)3

6
+

877

58

(Ah)4

24

F2 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

73

9

(Ah)3

6
+

859

54

(Ah)4

24

F3 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

188

23

(Ah)3

6
+

374

23

(Ah)4

24



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method V

It is possible to write these methods in the linear case as:

xk+1 = F · xk−1

The F-matrices of the three methods can be expanded into Taylor series around h = 0:

F1 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

2224

279

(Ah)3

6
+

877

58

(Ah)4

24

F2 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

73

9

(Ah)3

6
+

859

54

(Ah)4

24

F3 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

188

23

(Ah)3

6
+

374

23

(Ah)4

24

A 4th-order accurate method should have the F-matrix:

F ≈ I(n) + 2 Ah + 4
(Ah)2

2
+ 8

(Ah)3

6
+ 16

(Ah)4

24



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method V

It is possible to write these methods in the linear case as:

xk+1 = F · xk−1

The F-matrices of the three methods can be expanded into Taylor series around h = 0:

F1 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

2224

279

(Ah)3

6
+

877

58

(Ah)4

24

F2 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

73

9

(Ah)3

6
+

859

54

(Ah)4

24

F3 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

188

23

(Ah)3

6
+

374

23

(Ah)4

24

A 4th-order accurate method should have the F-matrix:
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24

All three methods are only 2nd -order accurate, because they make use of the
intermediate computations that are also only 2nd -order accurate.



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method VI
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k+1 + (1 − ϑ) · x2
k+1
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ẋk+1



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method VI

In order to get a 3rd -order accurate embedding method, it suffices to blend any two of
these three methods, e.g.:
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This method has beautifully simple rational coefficients. It is indeed 3rd -order
accurate:

F ≈ I(n) + 2 Ah + 4
(Ah)2

2
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6
+
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· 16 (Ah)4

24
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In order to get a 3rd -order accurate embedding method, it suffices to blend any two of
these three methods, e.g.:

xblended
k+1 = ϑ · x1

k+1 + (1 − ϑ) · x2
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The resulting method is:
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This method has beautifully simple rational coefficients. It is indeed 3rd -order
accurate:

F ≈ I(n) + 2 Ah + 4
(Ah)2

2
+ 8

(Ah)3

6
+

149

156
· 16 (Ah)4

24

The error coefficient of the method is:

ε =
−7

3744
(Ah)4
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We can plot the stability domain of the embedding method:
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We can also draw the damping plot of the embedding method:



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method
VIII

We can also draw the damping plot of the embedding method:

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4

−3

−2

−1

0

−106 −105 −104 −103 −102 −101 −100 −10−1 −10−2
−3

−2.5

−2

−1.5

−1

−0.5

0

Damping Plot of Radau IIA(3) Error Method

Logarithmic Damping Plot of Radau IIA(3) Error Method

−σd

−
D

am
p
in

g
−

D
am

p
in

g

log(σd )



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method IX

Which method should be propagated?



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Stiffly-stable Step-size Control of IRK Algorithms

Stiffly-stable Step-size Control of Radau IIA(3) Method IX

Which method should be propagated?

The error coefficient of the embedding method is considerably smaller than that of
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Which method should be propagated?

The error coefficient of the embedding method is considerably smaller than that of
Radau IIA. Hence on a first glance, it seems reasonable to propagate the embedding
technique to the next step.

Unfortunately, there are two problems with this choice:

1. The embedding technique was designed assuming that the Radau IIA result
would be propagated. If the embedding technique is being propagated, the
F-matrices change, and the blended method may no longer be 3rd -order
accurate.
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Which method should be propagated?

The error coefficient of the embedding method is considerably smaller than that of
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technique to the next step.

Unfortunately, there are two problems with this choice:

1. The embedding technique was designed assuming that the Radau IIA result
would be propagated. If the embedding technique is being propagated, the
F-matrices change, and the blended method may no longer be 3rd -order
accurate.

2. Comparing the damping plots of Radau IIA(3) and the embedding method with
each other, it can be seen that the embedding method is not L-stable, i.e., the
damping does not approach infinity as the eigenvalues of the model move ever
further to the left.
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Which method should be propagated?

The error coefficient of the embedding method is considerably smaller than that of
Radau IIA. Hence on a first glance, it seems reasonable to propagate the embedding
technique to the next step.

Unfortunately, there are two problems with this choice:

1. The embedding technique was designed assuming that the Radau IIA result
would be propagated. If the embedding technique is being propagated, the
F-matrices change, and the blended method may no longer be 3rd -order
accurate.

2. Comparing the damping plots of Radau IIA(3) and the embedding method with
each other, it can be seen that the embedding method is not L-stable, i.e., the
damping does not approach infinity as the eigenvalues of the model move ever
further to the left.

Therefore, in spite of the smaller error coefficient, the embedding method should be
used for step-size control only and not for propagation.
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What is the price that we pay for extending the embedding method over two steps
instead of one?
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steps with the same step size using Radau IIA(3).
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� Only after the second step has been simulated, the (blended) embedding
method is computed in order to obtain an error estimate for the method.
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� Only after the second step has been simulated, the (blended) embedding
method is computed in order to obtain an error estimate for the method.

� As a consequence of that error estimate, we either continue as before, modify
the step size for the next two steps, or reject the last two steps and repeat them
with a smaller step size.
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Stiffly-stable Step-size Control of Radau IIA(3) Method X

What is the price that we pay for extending the embedding method over two steps
instead of one?

� Step-size control is only performed every other step, i.e., we simulate across two
steps with the same step size using Radau IIA(3).

� Only after the second step has been simulated, the (blended) embedding
method is computed in order to obtain an error estimate for the method.

� As a consequence of that error estimate, we either continue as before, modify
the step size for the next two steps, or reject the last two steps and repeat them
with a smaller step size.

� Although the embedding method extends over two steps, the overall algorithm
is self-starting. It can be considered as a single-step method with double step
size and two semi-steps.
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� We decided to look for 6th-order polynomials extending over two steps. Hence
we need to choose seven out of 12 available support values. There are 792
methods to be evaluated.
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Stiffly-stable Step-size Control of Radau IIA(5) Method

� Radau IIA(5) stores six pieces of information per step, namely xk, x1k
, x2k

, ẋ1k
,

ẋ2k
, and ẋk+1, where x1k

and x2k
are the approximations of the two intermediate

stages.

� We decided to look for 6th-order polynomials extending over two steps. Hence
we need to choose seven out of 12 available support values. There are 792
methods to be evaluated.

� Of those, 26 are A-stable methods. These are only 3rd -order accurate, as the
intermediate computations of Radau IIA(5) are only 3rd -order accurate.
However, three of these methods can be blended to form an alternate 5th-order
accurate embedding algorithm.
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A very good embedding method is:

x
blended
k+1 = c1 · xk−1 + c2 · ẋ1k−1

+ c3 · x2k−1
+ c4 · ẋ2k−1

+ c5 · xk

+ c6 · x1k
+ c7 · ẋ1k

+ c8 · x2k
+ c9 · ẋ2k

+ c10 · ẋk+1

with the coefficients:

c1 = −0.00517140382204

c2 = −0.00094714677404

c3 = −0.04060469717694

c4 = −0.01364429384901

c5 = +1.41786808325433

c6 = −0.17475783086782

c7 = +0.48299282769491

c8 = −0.19733415138754

c9 = +0.55942205973218

c10 = +0.10695524944855
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A very good embedding method is:

x
blended
k+1 = c1 · xk−1 + c2 · ẋ1k−1

+ c3 · x2k−1
+ c4 · ẋ2k−1

+ c5 · xk

+ c6 · x1k
+ c7 · ẋ1k

+ c8 · x2k
+ c9 · ẋ2k

+ c10 · ẋk+1

with the coefficients:

c1 = −0.00517140382204

c2 = −0.00094714677404

c3 = −0.04060469717694

c4 = −0.01364429384901

c5 = +1.41786808325433

c6 = −0.17475783086782

c7 = +0.48299282769491

c8 = −0.19733415138754

c9 = +0.55942205973218

c10 = +0.10695524944855

We did program the computation of the coefficients also using MATLAB’s symbolic
toolbox, but the resulting expressions look quite awful, thus we decided to offer the
numerical versions instead.
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We can also draw the damping plot of the embedding method:
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We can also draw the damping plot of the embedding method:
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, and ẋk+1, where x1k

and x2k
are the approximations of the two intermediate

stages.

� Unfortunately, the intermediate stages are only 2nd -order accurate. Hence we
shall still need to blend three methods to raise the order of approximation
accuracy of the embedding algorithm to four.
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shall still need to blend three methods to raise the order of approximation
accuracy of the embedding algorithm to four.

� Although we are again working with 12 pieces of information across two steps,
Lobatto IIIC has a peculiarity. It experiences a zero time advance between the
third stage of one step and the first stage of the next. Although xk and x1k

represent the state vector at the same time instant, they are two different
approximations.
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represent the state vector at the same time instant, they are two different
approximations.

� The zero time advance reduces the flexibility in finding suitable error methods,
as no individual error method can use both xk and x1k

simultaneously.
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Stiffly-stable Step-size Control of Lobatto IIIC Method

� Lobatto IIIC stores six pieces of information per step, namely xk, x1k
, x2k

, ẋ1k
,

ẋ2k
, and ẋk+1, where x1k

and x2k
are the approximations of the two intermediate

stages.

� Unfortunately, the intermediate stages are only 2nd -order accurate. Hence we
shall still need to blend three methods to raise the order of approximation
accuracy of the embedding algorithm to four.

� Although we are again working with 12 pieces of information across two steps,
Lobatto IIIC has a peculiarity. It experiences a zero time advance between the
third stage of one step and the first stage of the next. Although xk and x1k

represent the state vector at the same time instant, they are two different
approximations.

� The zero time advance reduces the flexibility in finding suitable error methods,
as no individual error method can use both xk and x1k

simultaneously.

� 16 individual error methods were found that are all A-stable. Two of them are
even L-stable. Of course, none of these error methods is of higher order of
approximation accuracy than two.
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The best among the 4th-order accurate blended methods is:

xblended
k+1 =

63

4552
· x1k−1

− 91
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1381

81936
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The coefficients of the embedding method were calculated using MATLAB’s symbolic
toolbox.
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We can also draw the damping plot of the embedding method:
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We can also draw the damping plot of the embedding method:
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than satisfactory.

What killed the efficiency of our simulations were not small step sizes. What made our
simulations excruciatingly slow was the computation of the inverse Hessians.
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Inlining Partial Differential Equations

Let us return once more to the simulation of parabolic PDEs converted to sets of
ODEs using the MOL approach.

Until now, we simulated these types of problems using a stiff-system ODE solver, such
as a BDF algorithm.

This approach worked quite well; however, the efficiency of the simulations was less
than satisfactory.

What killed the efficiency of our simulations were not small step sizes. What made our
simulations excruciatingly slow was the computation of the inverse Hessians.

We wish to revisit the MOL simulation of the 1D heat diffusion problem discretized
using 5th-order accurate central differences with 50 segments.



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Inlining Partial Differential Equations

Inlining Partial Differential Equations

Let us return once more to the simulation of parabolic PDEs converted to sets of
ODEs using the MOL approach.

Until now, we simulated these types of problems using a stiff-system ODE solver, such
as a BDF algorithm.

This approach worked quite well; however, the efficiency of the simulations was less
than satisfactory.

What killed the efficiency of our simulations were not small step sizes. What made our
simulations excruciatingly slow was the computation of the inverse Hessians.

We wish to revisit the MOL simulation of the 1D heat diffusion problem discretized
using 5th-order accurate central differences with 50 segments.

We ended up with 50 ODEs, requiring a Hessian matrix of size 50 × 50 to be inverted.
More precisely, a linear system of 50 equations in 50 unknowns had to be solved using
Gaussian elimination during every iteration step.
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Let us now apply inline integration to the problem. Let us start by inlining a variable
step and variable order BDF algorithm.
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Let us now apply inline integration to the problem. Let us start by inlining a variable
step and variable order BDF algorithm.

We can write the inlined difference equation system in matrix form:

ẋ = A · x + b · u
x = pre(x) + h̄ · ẋ

where A is the matrix:

A =
n2

120π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 − 4 14 − 6 1 . . . 0 0 0 0
16 −30 16 − 1 0 . . . 0 0 0 0
− 1 16 −30 16 − 1 . . . 0 0 0 0

0 − 1 16 −30 16 . . . 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 . . . 16 −30 16 − 1
0 0 0 0 0 . . . − 1 16 −31 16
0 0 0 0 0 . . . 0 − 2 32 −30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The structure incidence matrix is band-structured:
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What is the smallest number of tearing variables that we can get away with?

� Two trivial tearing structures come to mind immediately. We can either plug
the model equations into the solver equations, thereby eliminating the state
derivatives:

x = pre(x) + h̄ · (A · x + b · u)

or alternatively, we can plug the solver equations into the model equations,
thereby eliminating the state variables:

ẋ = A · (pre(x) + h̄ · ẋ) + b · u
Both solutions half the number of iteration variables to 50.
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What is the smallest number of tearing variables that we can get away with?

� Two trivial tearing structures come to mind immediately. We can either plug
the model equations into the solver equations, thereby eliminating the state
derivatives:

x = pre(x) + h̄ · (A · x + b · u)

or alternatively, we can plug the solver equations into the model equations,
thereby eliminating the state variables:

ẋ = A · (pre(x) + h̄ · ẋ) + b · u
Both solutions half the number of iteration variables to 50.

� Can we do better? Applying the heuristic procedure proposed earlier, we obtain
a solution in 32 residual equations and 32 tearing variables, i.e., we are able to
reduce the number of tearing variables by a factor of three.
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What is the smallest number of tearing variables that we can get away with?

� Two trivial tearing structures come to mind immediately. We can either plug
the model equations into the solver equations, thereby eliminating the state
derivatives:

x = pre(x) + h̄ · (A · x + b · u)

or alternatively, we can plug the solver equations into the model equations,
thereby eliminating the state variables:

ẋ = A · (pre(x) + h̄ · ẋ) + b · u
Both solutions half the number of iteration variables to 50.

� Can we do better? Applying the heuristic procedure proposed earlier, we obtain
a solution in 32 residual equations and 32 tearing variables, i.e., we are able to
reduce the number of tearing variables by a factor of three.

� Increasing the look-ahead of the heuristic a bit more, we were able to obtain a
solution in 25 residual equations and 25 tearing variables, i.e., we were able to
reduce the number of tearing variables by a factor of four.
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� We don’t know whether this is the optimal solution, but it is the best solution
that we were able to find.
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� We don’t know whether this is the optimal solution, but it is the best solution
that we were able to find.

� This is a big improvement. The computational effort of the Gaussian elimination
algorithm grows quadratically in the size of the linear equation system. Hence
by reducing the size of the Hessian from 50 × 50 to 25 × 25, we increase the
simulation speed by a full factor of four.
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Let us now try to inline the Radau IIA(3) algorithm instead.
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Let us now try to inline the Radau IIA(3) algorithm instead.

The inlined difference equation system takes the form:

ẏ = A · y + b · u(tk+ 1
3
)

ẋ = A · x + b · u(tk+1)

y = pre(x) +
5

12
· h · ẏ − 1

12
· h · ẋ

x = pre(x) +
3

4
· h · ẏ +

1

4
· h · ẋ
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Let us now try to inline the Radau IIA(3) algorithm instead.

The inlined difference equation system takes the form:

ẏ = A · y + b · u(tk+ 1
3
)

ẋ = A · x + b · u(tk+1)

y = pre(x) +
5

12
· h · ẏ − 1

12
· h · ẋ

x = pre(x) +
3

4
· h · ẏ +

1

4
· h · ẋ

� We paid a hefty price, as we are now dealing with 200 equations in 200
unknowns.
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The structure incidence matrix is still band-structured:
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We can once again half the number of equations easily.
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We can once again half the number of equations easily.

We can either plug the model equations into the solver equations, thereby eliminating
the state derivatives:

y = pre(x) +
5h

12

(
A · y + b · u(tk+ 1

3
)
)
− h

12
(A · x + b · u(tk+1))

x = pre(x) +
3h

4

(
A · y + b · u(tk+ 1

3
)
)

+
h

4
(A · x + b · u(tk+1))



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Inlining Partial Differential Equations

Inlining Partial Differential Equations VIII

We can once again half the number of equations easily.

We can either plug the model equations into the solver equations, thereby eliminating
the state derivatives:

y = pre(x) +
5h

12

(
A · y + b · u(tk+ 1

3
)
)
− h

12
(A · x + b · u(tk+1))

x = pre(x) +
3h

4

(
A · y + b · u(tk+ 1

3
)
)

+
h

4
(A · x + b · u(tk+1))

or alternatively, we can plug the solver equations into the model equations, thereby
eliminating the state variables:

ẏ = A ·
(

pre(x) +
5h

12
ẏ − h

12
ẋ

)
+ b · u(tk+ 1

3
)

ẋ = A ·
(

pre(x) +
3h

4
ẏ +

h

4
ẋ

)
+ b · u(tk+1)
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We can once again half the number of equations easily.

We can either plug the model equations into the solver equations, thereby eliminating
the state derivatives:

y = pre(x) +
5h

12

(
A · y + b · u(tk+ 1

3
)
)
− h

12
(A · x + b · u(tk+1))

x = pre(x) +
3h

4

(
A · y + b · u(tk+ 1

3
)
)

+
h

4
(A · x + b · u(tk+1))

or alternatively, we can plug the solver equations into the model equations, thereby
eliminating the state variables:

ẏ = A ·
(

pre(x) +
5h

12
ẏ − h

12
ẋ

)
+ b · u(tk+ 1

3
)

ẋ = A ·
(

pre(x) +
3h

4
ẏ +

h

4
ẋ

)
+ b · u(tk+1)

In either case, we end up with 100 iteration variables.
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Let us see whether our heuristic procedure can do better.
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Let us see whether our heuristic procedure can do better.

� Unfortunately, the algorithm breaks down after having chosen about 60 tearing
variables, and after having causalized about 120 equations. The heuristic
procedure has maneuvered itself into a corner. Every further selection of a
combination of residual equation and tearing variable leads to a structural
singularity.



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Inlining Partial Differential Equations

Inlining Partial Differential Equations IX

Let us see whether our heuristic procedure can do better.

� Unfortunately, the algorithm breaks down after having chosen about 60 tearing
variables, and after having causalized about 120 equations. The heuristic
procedure has maneuvered itself into a corner. Every further selection of a
combination of residual equation and tearing variable leads to a structural
singularity.

� Although the algorithm had been programmed to ignore selections that would
lead to a structural singularity at once, it hadn’t been programmed to backtrack
beyond the last selection, i.e., throw earlier residual equations and tearing
variables away to avoid future mishap.
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Let us see whether our heuristic procedure can do better.

� Unfortunately, the algorithm breaks down after having chosen about 60 tearing
variables, and after having causalized about 120 equations. The heuristic
procedure has maneuvered itself into a corner. Every further selection of a
combination of residual equation and tearing variable leads to a structural
singularity.

� Although the algorithm had been programmed to ignore selections that would
lead to a structural singularity at once, it hadn’t been programmed to backtrack
beyond the last selection, i.e., throw earlier residual equations and tearing
variables away to avoid future mishap.

� This is why we remarked earlier that the computational complexity of the
heuristic procedure grows quadratically with the size of the equation system for
most applications. It does so, if no backtracking is required.



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Inlining Partial Differential Equations

Inlining Partial Differential Equations X

Can Dymola solve the problem?



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Inlining Partial Differential Equations

Inlining Partial Differential Equations X

Can Dymola solve the problem?

� I quickly programmed the equation system into Dymola Version 4.1d. Whereas
Dymola usually tears equation systems with tens of thousands of equations
within a few seconds, it chewed on this problem for about three hours.



Numerical Simulation of Dynamic Systems XX

Differential Algebraic Equation Solvers III

Inlining Partial Differential Equations

Inlining Partial Differential Equations X

Can Dymola solve the problem?

� I quickly programmed the equation system into Dymola Version 4.1d. Whereas
Dymola usually tears equation systems with tens of thousands of equations
within a few seconds, it chewed on this problem for about three hours.

� It turned out that the heuristic algorithm built into Version 4.1d of Dymola did
not break down. Evidently, it had been programmed to backtrack sufficiently to
get itself out of the corner. Unfortunately, Dymola came up with one of the two
trivial tearing structures.
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Can Dymola solve the problem?

� I quickly programmed the equation system into Dymola Version 4.1d. Whereas
Dymola usually tears equation systems with tens of thousands of equations
within a few seconds, it chewed on this problem for about three hours.

� It turned out that the heuristic algorithm built into Version 4.1d of Dymola did
not break down. Evidently, it had been programmed to backtrack sufficiently to
get itself out of the corner. Unfortunately, Dymola came up with one of the two
trivial tearing structures.

� I tried later with Dymola Version 5.3d. This time around, Dymola tore this
system after only six seconds of compilation time. The answer, however, was
still the same. Dymola chose one of the two trivial tearing structures.
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Can Dymola solve the problem?

� I quickly programmed the equation system into Dymola Version 4.1d. Whereas
Dymola usually tears equation systems with tens of thousands of equations
within a few seconds, it chewed on this problem for about three hours.

� It turned out that the heuristic algorithm built into Version 4.1d of Dymola did
not break down. Evidently, it had been programmed to backtrack sufficiently to
get itself out of the corner. Unfortunately, Dymola came up with one of the two
trivial tearing structures.

� I tried later with Dymola Version 5.3d. This time around, Dymola tore this
system after only six seconds of compilation time. The answer, however, was
still the same. Dymola chose one of the two trivial tearing structures.

� I had sent this example to Dynasim, when I discovered that tearing took so
long. Whenever someone stumbles upon an example that the tearing algorithm
does not handle well, the good folks up at Dynasim go into overdrive to improve
their tearing heuristics.
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� Unfortunately, these are bad news. If indeed we pay for using Radau IIA instead
of BDF3 with increasing the size of the Hessian by a factor of four, Radau IIA
would have to be able to use step sizes that are on average at least 16 times
larger than those used by BDF for the same accuracy. Otherwise, Radau IIA is
not competitive for dealing with this problem. We doubt very much that
Radau IIA will be able to do so.
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� Unfortunately, these are bad news. If indeed we pay for using Radau IIA instead
of BDF3 with increasing the size of the Hessian by a factor of four, Radau IIA
would have to be able to use step sizes that are on average at least 16 times
larger than those used by BDF for the same accuracy. Otherwise, Radau IIA is
not competitive for dealing with this problem. We doubt very much that
Radau IIA will be able to do so.

� PDE problems are notoriously difficult simulation problems. Although tearing is
a very powerful symbolic sparse matrix technique, it cannot make an intrinsically
difficult problem easy to solve.
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Let us return to the pendulum analyzed earlier:
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Over-determined DAEs

Let us return to the pendulum analyzed earlier:

xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx

x

y

ϕ �

F

m · g

describable by the following set of explicit
ODEs (after index reduction):

x = � · sin(ϕ)

vx = � · cos(ϕ) · ϕ̇

y = � · cos(ϕ)

vy = −� · sin(ϕ) · ϕ̇

dvx = − x · � · ϕ̇2 + x · cos(ϕ) · g
x · sin(ϕ) + y · cos(ϕ)

ϕ̈ =
dvx

� · cos(ϕ)
+

sin(ϕ)

cos(ϕ)
· ϕ̇2

dvy = −� · sin(ϕ) · ϕ̈ − � · cos(ϕ) · ϕ̇2

F =
m · g · �

y
− m · � · dvy

y
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� We know that the pendulum, as described, is a conservative (Hamiltonian)
system, since no friction was assumed anywhere. Hence the pendulum, once
disturbed, should swing forever with the same frequency and amplitude.
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� We know that the pendulum, as described, is a conservative (Hamiltonian)
system, since no friction was assumed anywhere. Hence the pendulum, once
disturbed, should swing forever with the same frequency and amplitude.

� The total free energy, Ef :
Ef = Ep + Ek

which is the sum of the potential energy, Ep , and the kinetic energy, Ek , should
be constant.
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� We know that the pendulum, as described, is a conservative (Hamiltonian)
system, since no friction was assumed anywhere. Hence the pendulum, once
disturbed, should swing forever with the same frequency and amplitude.

� The total free energy, Ef :
Ef = Ep + Ek

which is the sum of the potential energy, Ep , and the kinetic energy, Ek , should
be constant.

� The potential energy can be modeled as:

Ep = m · g · (y0 − y)

and the kinetic energy can be expressed using the formula:

Ek =
1

2
· m · v2

x +
1

2
· m · v2

y
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� We know that the pendulum, as described, is a conservative (Hamiltonian)
system, since no friction was assumed anywhere. Hence the pendulum, once
disturbed, should swing forever with the same frequency and amplitude.

� The total free energy, Ef :
Ef = Ep + Ek

which is the sum of the potential energy, Ep , and the kinetic energy, Ek , should
be constant.

� The potential energy can be modeled as:

Ep = m · g · (y0 − y)

and the kinetic energy can be expressed using the formula:

Ek =
1

2
· m · v2

x +
1

2
· m · v2

y

� Let us add these three equations to the model.
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We shall inline the FE algorithm:

ϕ̇k+1 = ϕ̇k + h · ϕ̈k

ϕk+1 = ϕk + h · ϕ̇k

and simulate the problem across 10 sec of
simulated time with a fixed step size of
h = 0.01 sec by simply iterating over the
13 equations in 13 unknowns.

We use: g = 9.81 m/(sec2), m = 10 kg ,
� = 1 m, ϕ0 = +45o = π/4 rad , and
ϕ̇0 = 0 rad/sec . Thus, y0 =

√
2/2 m.
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We shall inline the FE algorithm:

ϕ̇k+1 = ϕ̇k + h · ϕ̈k

ϕk+1 = ϕk + h · ϕ̇k

and simulate the problem across 10 sec of
simulated time with a fixed step size of
h = 0.01 sec by simply iterating over the
13 equations in 13 unknowns.

We use: g = 9.81 m/(sec2), m = 10 kg ,
� = 1 m, ϕ0 = +45o = π/4 rad , and
ϕ̇0 = 0 rad/sec . Thus, y0 =

√
2/2 m.
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We shall inline the FE algorithm:

ϕ̇k+1 = ϕ̇k + h · ϕ̈k

ϕk+1 = ϕk + h · ϕ̇k

and simulate the problem across 10 sec of
simulated time with a fixed step size of
h = 0.01 sec by simply iterating over the
13 equations in 13 unknowns.

We use: g = 9.81 m/(sec2), m = 10 kg ,
� = 1 m, ϕ0 = +45o = π/4 rad , and
ϕ̇0 = 0 rad/sec . Thus, y0 =

√
2/2 m.
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� We just solved the world’s energy depletion problem once and for all as we
seem to be able to generate free energy out of thin air.
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Let us inline the BE algorithm instead:

ϕ̇ = pre(ϕ̇) + h · ϕ̈
ϕ = pre(ϕ) + h · ϕ̇
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Let us inline the BE algorithm instead:

ϕ̇ = pre(ϕ̇) + h · ϕ̈
ϕ = pre(ϕ) + h · ϕ̇

Since BE is an implicit algorithm, we
encounter another algebraic loop in six
equations and one tearing variable, ϕ̈. We
solve that algebraic equation by Newton
iteration and simulate across 10 sec of
simulated time with a fixed step size of
h = 0.01 sec.
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Let us inline the BE algorithm instead:

ϕ̇ = pre(ϕ̇) + h · ϕ̈
ϕ = pre(ϕ) + h · ϕ̇

Since BE is an implicit algorithm, we
encounter another algebraic loop in six
equations and one tearing variable, ϕ̈. We
solve that algebraic equation by Newton
iteration and simulate across 10 sec of
simulated time with a fixed step size of
h = 0.01 sec.
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Let us inline the BE algorithm instead:

ϕ̇ = pre(ϕ̇) + h · ϕ̈
ϕ = pre(ϕ) + h · ϕ̇

Since BE is an implicit algorithm, we
encounter another algebraic loop in six
equations and one tearing variable, ϕ̈. We
solve that algebraic equation by Newton
iteration and simulate across 10 sec of
simulated time with a fixed step size of
h = 0.01 sec.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

Backward Euler Simulation of Pendulum

time

time

ϕ
E

f

� This time around, the numerical simulation dissipates energy.
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I tried once more with inlining the BI2
algorithm.

For simplicity, I implemented the
trapezoidal rule as a cyclic method,
toggling between one step of FE and one
step of BE.
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I tried once more with inlining the BI2
algorithm.

For simplicity, I implemented the
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� This time, it finally worked! The free energy doesn’t stay exactly constant,
but it varies in the mW range only (for numerical reasons), and it doesn’t
either systematically increase or decrease over time.
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linear, it would have its eigenvalues on the imaginary axis. Since it is non-linear,
the eigenvalues of its Jacobian may wobble back and force between the left-half
and the right-half plane, but will stay in the vicinity of the imaginary axis at all
times.
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� The results are not exactly surprising. This is a conservative system. If it were
linear, it would have its eigenvalues on the imaginary axis. Since it is non-linear,
the eigenvalues of its Jacobian may wobble back and force between the left-half
and the right-half plane, but will stay in the vicinity of the imaginary axis at all
times.

� Since FE has its stability domain loop in the left-half plane, it sees the
imaginary axis as unstable, and consequently, the oscillation will grow.

� Since BE has its stability domain loop in the right-half plane, it sees the
imaginary axis as stable, and consequently, the oscillation will decay.

� Since BI2 is an F-stable algorithm, it sees the imaginary axis as borderline
stable, and consequently, the oscillation will neither grow nor decay.

We were finally able to get a “stable” oscillation, but only, because we analyzed
the problem and came up with a suitable solution. The BI2 code itself still has no
inkling that it is supposed to conserve free energy. It does so by accident rather
than by design.
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Let us try to change that. We shall force the BE algorithm to preserve the free energy.

To this end, we simply add the equation:

Ef = 0

to the set of equations.

This is a completely new situation. We haven’t added any new variables to the set of
equations. We only added another equation. Thus, we now have 14 equations in 13
unknowns. Clearly, this problem is constrained.

If we present this problem to the Pantelides algorithm, it will differentiate itself to
death, or rather, until the compiler runs out of virtual memory. The Pantelides
algorithm always adds exactly as many equations as variables, thus after each
application of the algorithm, the number of equations is still one larger than the
number of variables.
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Inlining again saves our neck.

We simply add the constraint equation to the iteration equations of the Newton
iteration. Thus, the set of zero functions can now be written as:

F =

(
ϕ̈new − ϕ̈

Ef

)

and therefore:

H =
∂F
∂ϕ̈

=

(
∂ϕ̈new/∂ϕ̈ − 1

∂Ef /∂ϕ̈

)
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Inlining again saves our neck.

We simply add the constraint equation to the iteration equations of the Newton
iteration. Thus, the set of zero functions can now be written as:

F =

(
ϕ̈new − ϕ̈

Ef

)

and therefore:

H =
∂F
∂ϕ̈

=

(
∂ϕ̈new/∂ϕ̈ − 1

∂Ef /∂ϕ̈

)

The Newton iteration can be written as:

H� · dx� = F�

x�+1 = x� − dx�
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to be a rectangular matrix with n + p rows and n columns. Thus, the Newton
iteration is over-determined. It cannot be satisfied exactly. The dx-vector can only be
determined in a least square sense.

This can be accomplished by multiplying the linear equation system from the left with
H∗, i.e., with the Hermitian transpose of H. If the rank of H is n, then H∗ · H is a
Hermitian matrix of full rank.

Thus, we can compute dx as:

dx = (H∗ · H)−1 · H∗ · F
where (H∗ · H)−1 · H∗ is the Penrose-Moore pseudo-inverse of H.
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However, H is no longer a square matrix. It is now a rectangular matrix with 2 rows
and 1 column.

In general with n tearing variables and p additional constraints, the Hessian turns out
to be a rectangular matrix with n + p rows and n columns. Thus, the Newton
iteration is over-determined. It cannot be satisfied exactly. The dx-vector can only be
determined in a least square sense.

This can be accomplished by multiplying the linear equation system from the left with
H∗, i.e., with the Hermitian transpose of H. If the rank of H is n, then H∗ · H is a
Hermitian matrix of full rank.

Thus, we can compute dx as:

dx = (H∗ · H)−1 · H∗ · F
where (H∗ · H)−1 · H∗ is the Penrose-Moore pseudo-inverse of H.

In MATLAB, this can be abbreviated as:

dx = H\F
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� The oscillation has indeed been
stabilized.
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� The oscillation has indeed been
stabilized.

� Of course, the equation:

F = 0

can no longer be solved precisely.
The equation system does not
contain enough freedom to do so.
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� The oscillation has indeed been
stabilized.

� Of course, the equation:

F = 0

can no longer be solved precisely.
The equation system does not
contain enough freedom to do so.

� Yet, the error is minimized in a least
square sense, and both the
oscillation and the free energy are
now stable by design.
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� Initially, the approach still loses a bit of free energy, but the loss stops after the
solution is stabilized.

� The solution using back-interpolation turns out to be better, but the solution
using an over-determined equation set is more robust.

� There are DAE solvers on the market that can handle over-determined DAEs,
such as ODASSLRT (a “dialect” of DASSL) and MEXX (a code based on
Richardson extrapolation).

� Over-determined DAE solvers have become popular primarily among specialists
of multi-body dynamics, and the early codes tackling this problem indeed
evolved in the engineering community. Most of these early codes were quite
specialized.
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� Ernst Hairer, rather than constraining the problem, generalized on the BI2
solution presented earlier.

� He discovered that, in order for a DAE solver to tackle such a problem
successfully, the solver must be symmetric.

� Some algorithms do not change, when h is replaced by −h. For example, the
trapezoidal rule:

xk+1 = xk +
h

2
· (ẋk + ẋk+1)

turns into:

xk = xk+1 − h

2
· (ẋk+1 + ẋk)

i.e., the formula doesn’t change.
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� More recently, the problem was discovered by mainstream applied
mathematicians.

� Ernst Hairer, rather than constraining the problem, generalized on the BI2
solution presented earlier.

� He discovered that, in order for a DAE solver to tackle such a problem
successfully, the solver must be symmetric.

� Some algorithms do not change, when h is replaced by −h. For example, the
trapezoidal rule:

xk+1 = xk +
h

2
· (ẋk + ẋk+1)

turns into:

xk = xk+1 − h

2
· (ẋk+1 + ẋk)

i.e., the formula doesn’t change.

� Such an ODE solver is called a symmetric integration algorithm.
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w.r.t. their stability properties, but also w.r.t. their damping properties. Thus,
symmetric integration algorithms are accompanied by symmetric order stars as
well.
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well.

� This symmetry can be exploited in the simulation of Hamiltonian systems. At
least, if we carefully choose our step size to be in sync with the eigenfrequency
of oscillation of the system, we can ensure that the damping errors committed
during the integration over a full period cancel out, such that the solution at the
end of one cycle coincides with that at the beginning of the cycle.
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� The stability domains of symmetric ODE solvers are evidently symmetric to the
imaginary axis.

� All of the F-stable algorithms introduced earlier are symmetric.

� Symmetric integration algorithms are not only symmetric to the imaginary axis
w.r.t. their stability properties, but also w.r.t. their damping properties. Thus,
symmetric integration algorithms are accompanied by symmetric order stars as
well.

� This symmetry can be exploited in the simulation of Hamiltonian systems. At
least, if we carefully choose our step size to be in sync with the eigenfrequency
of oscillation of the system, we can ensure that the damping errors committed
during the integration over a full period cancel out, such that the solution at the
end of one cycle coincides with that at the beginning of the cycle.

� Yet, we still prefer the constrained solution proposed in this section, as it is
considerably more robust. It works with any numerical integration scheme and
enforces the physical constraint directly rather than indirectly.
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Conclusions

� In this third and last presentation on DAE solvers, we looked at a variety of
issues not previously discussed.

� We started out with discussing how the inlining concept can be applied to
implicit Runge-Kutta (IRK) algorithms.

� We then discussed stiffly-stable step-size control algorithms for IRK methods.
To this end, we found stiffly-stable embedding algorithms spanning over two
steps of the original IRK algorithm.

� We then returned to the issue of simulating parabolic PDEs and discussed, how
inlining can help us with this endeavor.

� The presentation ended with the discussion of over-determined DAEs and how
they can be simulated using a constrained inlining approach.
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