
Numerical Simulation of Dynamic Systems XXVI

Numerical Simulation of Dynamic Systems XXVI

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

May 21, 2013

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Introduction

We have shown in the course of this class that, in order to be able to trust the results
of a simulation, it is crucial that we understand the properties of numerical stability
and accuracy of the underlying solver.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Introduction

We have shown in the course of this class that, in order to be able to trust the results
of a simulation, it is crucial that we understand the properties of numerical stability
and accuracy of the underlying solver.

To this end, we usually analyzed the relationship between the eigenvalues of the
A-matrix of the original continuous system and those of the F-matrix of the resulting
numerical approximation.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Introduction

We have shown in the course of this class that, in order to be able to trust the results
of a simulation, it is crucial that we understand the properties of numerical stability
and accuracy of the underlying solver.

To this end, we usually analyzed the relationship between the eigenvalues of the
A-matrix of the original continuous system and those of the F-matrix of the resulting
numerical approximation.

Unfortunately, we cannot apply this same technique to QSS methods, because even if
the original system happened to be linear, the resulting discrete system is not, and
consequently, there is no F-matrix that could be analyzed.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Introduction

We have shown in the course of this class that, in order to be able to trust the results
of a simulation, it is crucial that we understand the properties of numerical stability
and accuracy of the underlying solver.

To this end, we usually analyzed the relationship between the eigenvalues of the
A-matrix of the original continuous system and those of the F-matrix of the resulting
numerical approximation.

Unfortunately, we cannot apply this same technique to QSS methods, because even if
the original system happened to be linear, the resulting discrete system is not, and
consequently, there is no F-matrix that could be analyzed.

However, we noticed that we can interpret the simulation results generated by the
QSS solver as a perturbation around the analytical solution.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Introduction

We have shown in the course of this class that, in order to be able to trust the results
of a simulation, it is crucial that we understand the properties of numerical stability
and accuracy of the underlying solver.

To this end, we usually analyzed the relationship between the eigenvalues of the
A-matrix of the original continuous system and those of the F-matrix of the resulting
numerical approximation.

Unfortunately, we cannot apply this same technique to QSS methods, because even if
the original system happened to be linear, the resulting discrete system is not, and
consequently, there is no F-matrix that could be analyzed.

However, we noticed that we can interpret the simulation results generated by the
QSS solver as a perturbation around the analytical solution.

We shall make use of this idea to approach the analysis of numerical stability and
accuracy of these solvers.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Representation of the QSS Solution as a Perturbation

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Representation of the QSS Solution as a Perturbation

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Its QSS approximation can be written as:

ẋ(t) = f(q(t), u(t))

where x(t) and q(t) are related componentwise by hysteretic quantization functions.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Representation of the QSS Solution as a Perturbation

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Its QSS approximation can be written as:

ẋ(t) = f(q(t), u(t))

where x(t) and q(t) are related componentwise by hysteretic quantization functions.

Defining Δx(t) = q(t) − x(t), The QSS approximation can be rewritten as:

ẋ(t) = f(x(t) + Δx(t), u(t))

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Representation of the QSS Solution as a Perturbation

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Its QSS approximation can be written as:

ẋ(t) = f(q(t), u(t))

where x(t) and q(t) are related componentwise by hysteretic quantization functions.

Defining Δx(t) = q(t) − x(t), The QSS approximation can be rewritten as:

ẋ(t) = f(x(t) + Δx(t), u(t))

The simulation model is a perturbed version of the original continuous system.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Introduction

Representation of the QSS Solution as a Perturbation

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Its QSS approximation can be written as:

ẋ(t) = f(q(t), u(t))

where x(t) and q(t) are related componentwise by hysteretic quantization functions.

Defining Δx(t) = q(t) − x(t), The QSS approximation can be rewritten as:

ẋ(t) = f(x(t) + Δx(t), u(t))

The simulation model is a perturbed version of the original continuous system.

We also note that the perturbation is bounded:

|Δxi (t)| = |qi (t) − xi (t)| ≤ max(ΔQi , εi)

with ΔQi being the quantum of the i th state variable, and εi being its associated
hysteresis width.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS

We can study the numerical stability and the approximation accuracy of QSS methods
by analyzing the effects of the bounded perturbations.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS

We can study the numerical stability and the approximation accuracy of QSS methods
by analyzing the effects of the bounded perturbations.

� We shall demonstrate the convergence of the QSS approximation for non-linear
systems. This means that, as the quantum and the hysteresis width are being
reduced to zero, the trajectories of the QSS solution become in the limit
identical to those of the original continuous system.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS

We can study the numerical stability and the approximation accuracy of QSS methods
by analyzing the effects of the bounded perturbations.

� We shall demonstrate the convergence of the QSS approximation for non-linear
systems. This means that, as the quantum and the hysteresis width are being
reduced to zero, the trajectories of the QSS solution become in the limit
identical to those of the original continuous system.

� Contrary to the classical solvers, where we usually limited the stability analysis
to linear systems only, we shall now discuss the numerical stability of the QSS
approximation for arbitrary non-linear systems. It shall be shown that, wherever
the original system exhibits an asymptotically stable equilibrium point, there is a
region around that equilibrium point such that, for any initial condition within
that region, we can find a quantum of finite size that guarantees that the
trajectories of the QSS approximation end up bounded in a region around that
equilibrium point.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS II

Although these results are interesting from a theoretical point of view, as they allow us
to offer assurances that the QSS approximation of an asymptotically stable continuous
system remains always numerically stable, we don’t know yet, how good the
approximation actually is, as we cannot offer in general a quantitative value for the
upper bound of the size of the region around the equilibrium point, in which the QSS
simulation terminates.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS II

Although these results are interesting from a theoretical point of view, as they allow us
to offer assurances that the QSS approximation of an asymptotically stable continuous
system remains always numerically stable, we don’t know yet, how good the
approximation actually is, as we cannot offer in general a quantitative value for the
upper bound of the size of the region around the equilibrium point, in which the QSS
simulation terminates.

Unfortunately, even if the
continuous system exhibits a
constant steady-state, the QSS
approximation will usually oscillate
around that steady state as shown
to the right for the scalar system
ẋa(t) = −xa(t) + 9.5 with
ΔQ = 1 and ε = 1:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS II

Although these results are interesting from a theoretical point of view, as they allow us
to offer assurances that the QSS approximation of an asymptotically stable continuous
system remains always numerically stable, we don’t know yet, how good the
approximation actually is, as we cannot offer in general a quantitative value for the
upper bound of the size of the region around the equilibrium point, in which the QSS
simulation terminates.

Unfortunately, even if the
continuous system exhibits a
constant steady-state, the QSS
approximation will usually oscillate
around that steady state as shown
to the right for the scalar system
ẋa(t) = −xa(t) + 9.5 with
ΔQ = 1 and ε = 1:

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
QSS Simulation of Asymptotically Stable System

QSS

analytical

Time

x a
(t

),
x
(t

)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS III

In order to judge the accuracy of the QSS simulation, we need something a bit more
concrete. We’ll need a quantitative upper bound of the oscillation. Unfortunately,
such a bound can only be given for linear time-invariant systems.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS III

In order to judge the accuracy of the QSS simulation, we need something a bit more
concrete. We’ll need a quantitative upper bound of the oscillation. Unfortunately,
such a bound can only be given for linear time-invariant systems.

However for these systems, we can offer a quantitative upper bound of the global
numerical integration error, a result that we were unable to get for classical solvers.
Until now, we were able to control the local numerical integration error within a single
integration step only.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

Convergence, Accuracy, and Stability in QSS III

In order to judge the accuracy of the QSS simulation, we need something a bit more
concrete. We’ll need a quantitative upper bound of the oscillation. Unfortunately,
such a bound can only be given for linear time-invariant systems.

However for these systems, we can offer a quantitative upper bound of the global
numerical integration error, a result that we were unable to get for classical solvers.
Until now, we were able to control the local numerical integration error within a single
integration step only.

This is a very important result that has significant practical implications.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

QSS Simulations of Linear Time-invariant Systems

Let us consider a linear time-invariant system and its QSS approximation:

ẋa(t) = A · xa(t) + B · u(t) ; ẋ(t) = A · q(t) + B · u(t)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

QSS Simulations of Linear Time-invariant Systems

Let us consider a linear time-invariant system and its QSS approximation:

ẋa(t) = A · xa(t) + B · u(t) ; ẋ(t) = A · q(t) + B · u(t)

If the A-matrix is Hurwitz, i.e., the system is analytically stable, and if x(t0) = xa(t0),
it can be shown that:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ ∀t ≥ t0

where:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

QSS Simulations of Linear Time-invariant Systems

Let us consider a linear time-invariant system and its QSS approximation:

ẋa(t) = A · xa(t) + B · u(t) ; ẋ(t) = A · q(t) + B · u(t)

If the A-matrix is Hurwitz, i.e., the system is analytically stable, and if x(t0) = xa(t0),
it can be shown that:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ ∀t ≥ t0

where:

� The operators “≤”, “| · |”, and
“Re{·}” are applied componentwise.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

QSS Simulations of Linear Time-invariant Systems

Let us consider a linear time-invariant system and its QSS approximation:

ẋa(t) = A · xa(t) + B · u(t) ; ẋ(t) = A · q(t) + B · u(t)

If the A-matrix is Hurwitz, i.e., the system is analytically stable, and if x(t0) = xa(t0),
it can be shown that:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ ∀t ≥ t0

where:

� The operators “≤”, “| · |”, and
“Re{·}” are applied componentwise.

� A = V · Λ · V−1 is the spectral
decomposition of A.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

QSS Simulations of Linear Time-invariant Systems

Let us consider a linear time-invariant system and its QSS approximation:

ẋa(t) = A · xa(t) + B · u(t) ; ẋ(t) = A · q(t) + B · u(t)

If the A-matrix is Hurwitz, i.e., the system is analytically stable, and if x(t0) = xa(t0),
it can be shown that:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ ∀t ≥ t0

where:

� The operators “≤”, “| · |”, and
“Re{·}” are applied componentwise.

� A = V · Λ · V−1 is the spectral
decomposition of A.

� ΔQ =

⎡
⎢⎣

max(ΔQ1, ε1)
...

max(ΔQn, εn)

⎤
⎥⎦.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

QSS Simulations of Linear Time-invariant Systems

Let us consider a linear time-invariant system and its QSS approximation:

ẋa(t) = A · xa(t) + B · u(t) ; ẋ(t) = A · q(t) + B · u(t)

If the A-matrix is Hurwitz, i.e., the system is analytically stable, and if x(t0) = xa(t0),
it can be shown that:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ ∀t ≥ t0

where:

� The operators “≤”, “| · |”, and
“Re{·}” are applied componentwise.

� A = V · Λ · V−1 is the spectral
decomposition of A.

� ΔQ =

⎡
⎢⎣

max(ΔQ1, ε1)
...

max(ΔQn, εn)

⎤
⎥⎦.

It should be noted that:

� The QSS method offers a
computable global error bound.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Convergence, Accuracy, and Stability in QSS

QSS Simulations of Linear Time-invariant Systems

Let us consider a linear time-invariant system and its QSS approximation:

ẋa(t) = A · xa(t) + B · u(t) ; ẋ(t) = A · q(t) + B · u(t)

If the A-matrix is Hurwitz, i.e., the system is analytically stable, and if x(t0) = xa(t0),
it can be shown that:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ ∀t ≥ t0

where:

� The operators “≤”, “| · |”, and
“Re{·}” are applied componentwise.

� A = V · Λ · V−1 is the spectral
decomposition of A.

� ΔQ =

⎡
⎢⎣

max(ΔQ1, ε1)
...

max(ΔQn, εn)

⎤
⎥⎦.

It should be noted that:

� The QSS method offers a
computable global error bound.

� The numerical solution remains
practically stable for any value of the
quantum.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Choosing Quantum and Hysteresis Width

Choosing Quantum and Hysteresis Width

The simulation results generated by the QSS solver usually exhibit steady-state
oscillations. Their frequency depends on the hysteresis.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Choosing Quantum and Hysteresis Width

Choosing Quantum and Hysteresis Width

The simulation results generated by the QSS solver usually exhibit steady-state
oscillations. Their frequency depends on the hysteresis. For example, the output
trajectories of the scalar system:

ẋa(t) = −xa(t) + 9.5 ; xa(0) = 0

with ΔQ = 1 and different values of ε are:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Choosing Quantum and Hysteresis Width

Choosing Quantum and Hysteresis Width

The simulation results generated by the QSS solver usually exhibit steady-state
oscillations. Their frequency depends on the hysteresis. For example, the output
trajectories of the scalar system:

ẋa(t) = −xa(t) + 9.5 ; xa(0) = 0

with ΔQ = 1 and different values of ε are:

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
QSS Simulations of Asymptotically Stable System

ε = 0.1

ε = 0.6 ε = 1
analytical

Time

x a
(t

),
x
(t

)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Choosing Quantum and Hysteresis Width

Choosing Quantum and Hysteresis Width

The simulation results generated by the QSS solver usually exhibit steady-state
oscillations. Their frequency depends on the hysteresis. For example, the output
trajectories of the scalar system:

ẋa(t) = −xa(t) + 9.5 ; xa(0) = 0

with ΔQ = 1 and different values of ε are:

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
QSS Simulations of Asymptotically Stable System

ε = 0.1

ε = 0.6 ε = 1
analytical

Time

x a
(t

),
x
(t

)

� To reduce the frequency (and with it
the number of integration steps), it
is convenient to choose a large value
of ε.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Choosing Quantum and Hysteresis Width

Choosing Quantum and Hysteresis Width

The simulation results generated by the QSS solver usually exhibit steady-state
oscillations. Their frequency depends on the hysteresis. For example, the output
trajectories of the scalar system:

ẋa(t) = −xa(t) + 9.5 ; xa(0) = 0

with ΔQ = 1 and different values of ε are:

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
QSS Simulations of Asymptotically Stable System

ε = 0.1

ε = 0.6 ε = 1
analytical

Time

x a
(t

),
x
(t

)

� To reduce the frequency (and with it
the number of integration steps), it
is convenient to choose a large value
of ε.

� As the error bound depends on
max(ΔQ, ε), the best choice is to
set ΔQ = ε.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Choosing Quantum and Hysteresis Width

Choosing Quantum and Hysteresis Width

The simulation results generated by the QSS solver usually exhibit steady-state
oscillations. Their frequency depends on the hysteresis. For example, the output
trajectories of the scalar system:

ẋa(t) = −xa(t) + 9.5 ; xa(0) = 0

with ΔQ = 1 and different values of ε are:

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
QSS Simulations of Asymptotically Stable System

ε = 0.1

ε = 0.6 ε = 1
analytical

Time

x a
(t

),
x
(t

)

� To reduce the frequency (and with it
the number of integration steps), it
is convenient to choose a large value
of ε.

� As the error bound depends on
max(ΔQ, ε), the best choice is to
set ΔQ = ε.

� The error bound depends linearly on
ΔQ. Thus, the quantum should be
chosen proportional to the tolerated
error in every variable.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Choosing Quantum and Hysteresis Width

Choosing Quantum and Hysteresis Width

The simulation results generated by the QSS solver usually exhibit steady-state
oscillations. Their frequency depends on the hysteresis. For example, the output
trajectories of the scalar system:

ẋa(t) = −xa(t) + 9.5 ; xa(0) = 0

with ΔQ = 1 and different values of ε are:

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
QSS Simulations of Asymptotically Stable System

ε = 0.1

ε = 0.6 ε = 1
analytical

Time

x a
(t

),
x
(t

)

� To reduce the frequency (and with it
the number of integration steps), it
is convenient to choose a large value
of ε.

� As the error bound depends on
max(ΔQ, ε), the best choice is to
set ΔQ = ε.

� The error bound depends linearly on
ΔQ. Thus, the quantum should be
chosen proportional to the tolerated
error in every variable.

� A practical rule is to choose the
quantum proportional to the
amplitude of every state variable.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Input Signals in the QSS Method

Input Signals in the QSS Method

In order to incorporate input signals u(t) in a QSS simulation, we need to construct
DEVS models that generate and couple these models with the quantized integrators
and the static functions.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Input Signals in the QSS Method

Input Signals in the QSS Method

In order to incorporate input signals u(t) in a QSS simulation, we need to construct
DEVS models that generate and couple these models with the quantized integrators
and the static functions.

Programming a DEVS model that generates a piecewise constant input signal is
trivial. The PowerDEVS library offers various source signals of this type: a step
function, a square-wave function, a pulse function, etc.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Input Signals in the QSS Method

Input Signals in the QSS Method

In order to incorporate input signals u(t) in a QSS simulation, we need to construct
DEVS models that generate and couple these models with the quantized integrators
and the static functions.

Programming a DEVS model that generates a piecewise constant input signal is
trivial. The PowerDEVS library offers various source signals of this type: a step
function, a square-wave function, a pulse function, etc.

Yet, also other types of input signals can be generated quite easily by approximating
them through piecewise constant signals. PowerDEVS offers source signals
approximating sinusoidal inputs, ramps, triangular inputs, etc.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Input Signals in the QSS Method

Input Signals in the QSS Method

In order to incorporate input signals u(t) in a QSS simulation, we need to construct
DEVS models that generate and couple these models with the quantized integrators
and the static functions.

Programming a DEVS model that generates a piecewise constant input signal is
trivial. The PowerDEVS library offers various source signals of this type: a step
function, a square-wave function, a pulse function, etc.

Yet, also other types of input signals can be generated quite easily by approximating
them through piecewise constant signals. PowerDEVS offers source signals
approximating sinusoidal inputs, ramps, triangular inputs, etc.

However, when we approximate an input signal by a piecewise constant trajectory, we
introduce a new type of error. In this case, the expression for the global error bound
needs to be augmented with an additional term:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ + |V| · |Re{Λ}−1 · V−1 · B| · Δu

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Precision in QSS

Although the QSS method exhibits many attractive features, its principal limitation
lies in the fact that it represents a first-order accurate approximation only.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Precision in QSS

Although the QSS method exhibits many attractive features, its principal limitation
lies in the fact that it represents a first-order accurate approximation only.

The equation for the error bound demonstrates that the error is proportional to the
quantum.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Precision in QSS

Although the QSS method exhibits many attractive features, its principal limitation
lies in the fact that it represents a first-order accurate approximation only.

The equation for the error bound demonstrates that the error is proportional to the
quantum.

This means that the number of integration steps grows inversely proportional to the
tolerated error. For this reason, if we tighten our accuracy requirements hundredfold,
we need to reduce the quantum by a factor of 100, which in turn increases the number
of integration steps by a factor of 100.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Precision in QSS

Although the QSS method exhibits many attractive features, its principal limitation
lies in the fact that it represents a first-order accurate approximation only.

The equation for the error bound demonstrates that the error is proportional to the
quantum.

This means that the number of integration steps grows inversely proportional to the
tolerated error. For this reason, if we tighten our accuracy requirements hundredfold,
we need to reduce the quantum by a factor of 100, which in turn increases the number
of integration steps by a factor of 100.

We can see this easily when looking at the approximation of an input ramp signal.
The signal gets represented by a stair case. The more accurate we need to represent
the ramp, the smaller we need to make the individual steps, and the more steps we
shall need.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Precision in QSS

Although the QSS method exhibits many attractive features, its principal limitation
lies in the fact that it represents a first-order accurate approximation only.

The equation for the error bound demonstrates that the error is proportional to the
quantum.

This means that the number of integration steps grows inversely proportional to the
tolerated error. For this reason, if we tighten our accuracy requirements hundredfold,
we need to reduce the quantum by a factor of 100, which in turn increases the number
of integration steps by a factor of 100.

We can see this easily when looking at the approximation of an input ramp signal.
The signal gets represented by a stair case. The more accurate we need to represent
the ramp, the smaller we need to make the individual steps, and the more steps we
shall need.

This is unacceptable for more stringent accuracy requirements. Most engineering
applications call for relative error tolerances of 10−4 or better. For such accuracy
requirements, QSS turns out to be highly inefficient. We consequently need QSS
methods of higher orders of approximation accuracy.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer

The quantizer used in QSS, with ΔQ = ε, produces a piecewise constant signal q(t)
that changes its value when |q(t) − x(t)| = ΔQ.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer

The quantizer used in QSS, with ΔQ = ε, produces a piecewise constant signal q(t)
that changes its value when |q(t) − x(t)| = ΔQ.

One way to increment the order of the approximation is to use a quantizer with an
output that is piecewise linear, the gradient of which changes whenever
|q(t) − x(t)| = ΔQ.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer

The quantizer used in QSS, with ΔQ = ε, produces a piecewise constant signal q(t)
that changes its value when |q(t) − x(t)| = ΔQ.

One way to increment the order of the approximation is to use a quantizer with an
output that is piecewise linear, the gradient of which changes whenever
|q(t) − x(t)| = ΔQ.

First-order Quantizer

ΔQ

x(t)

q(t)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer

The quantizer used in QSS, with ΔQ = ε, produces a piecewise constant signal q(t)
that changes its value when |q(t) − x(t)| = ΔQ.

One way to increment the order of the approximation is to use a quantizer with an
output that is piecewise linear, the gradient of which changes whenever
|q(t) − x(t)| = ΔQ.

First-order Quantizer

ΔQ

x(t)

q(t)

We say that x(t) and q(t) are related by a
first-order quantization function if:

q(t) =

{
x(t), if t = t0 ∨ |q(t−) − x(t−)| = ΔQ

q(tj) + mj · (t − tj), otherwise

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer

The quantizer used in QSS, with ΔQ = ε, produces a piecewise constant signal q(t)
that changes its value when |q(t) − x(t)| = ΔQ.

One way to increment the order of the approximation is to use a quantizer with an
output that is piecewise linear, the gradient of which changes whenever
|q(t) − x(t)| = ΔQ.

First-order Quantizer

ΔQ

x(t)

q(t)

We say that x(t) and q(t) are related by a
first-order quantization function if:

q(t) =

{
x(t), if t = t0 ∨ |q(t−) − x(t−)| = ΔQ

q(tj) + mj · (t − tj), otherwise

The sequence t0, . . . , tj , . . . is defined as:

tj+1 = min(t > tj), where |x(tj) + mj · (t − tj) − x(t)| = ΔQ

and the gradients are m0 = 0, mj = ẋ(t−j) for

j = 1, . . . , k,

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer II

� The way, the first-order quantizer function has been defined, implies the
presence of hysteresis with ε = ΔQ.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer II

� The way, the first-order quantizer function has been defined, implies the
presence of hysteresis with ε = ΔQ.

First-order Quantizer

ΔQ

x(t)

q(t)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer II

� The way, the first-order quantizer function has been defined, implies the
presence of hysteresis with ε = ΔQ.

First-order Quantizer

ΔQ

x(t)

q(t)

� This can be seen easily from the figure to
the left, where the linear approximation
q(t) is sometimes above and sometimes
below the continuous curve x(t)
depending on the sign of the second
derivative of x(t).

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer II

� The way, the first-order quantizer function has been defined, implies the
presence of hysteresis with ε = ΔQ.

First-order Quantizer

ΔQ

x(t)

q(t)

� This can be seen easily from the figure to
the left, where the linear approximation
q(t) is sometimes above and sometimes
below the continuous curve x(t)
depending on the sign of the second
derivative of x(t).

� q(t) is above x(t) when the second
derivative of x(t) is negative, and it is
below x(t) otherwise. q(t) always starts
at x(t), and the linear approximation
continues, until it deviates from x(t) by
±ΔQ.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

First-order Quantizer II

� The way, the first-order quantizer function has been defined, implies the
presence of hysteresis with ε = ΔQ.

First-order Quantizer

ΔQ

x(t)

q(t)

� This can be seen easily from the figure to
the left, where the linear approximation
q(t) is sometimes above and sometimes
below the continuous curve x(t)
depending on the sign of the second
derivative of x(t).

� q(t) is above x(t) when the second
derivative of x(t) is negative, and it is
below x(t) otherwise. q(t) always starts
at x(t), and the linear approximation
continues, until it deviates from x(t) by
±ΔQ.

� This avoids the possibility of occurrence
of illegitimate models.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Second-order accurate QSS Method (QSS2)

The second-order accurate QSS method (QSS2) is defined in an identical manner to
the QSS method, with the exception that the state variables xi are now related to the
quantized states qi through first-order quantization functions.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Second-order accurate QSS Method (QSS2)

The second-order accurate QSS method (QSS2) is defined in an identical manner to
the QSS method, with the exception that the state variables xi are now related to the
quantized states qi through first-order quantization functions.

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Its QSS2 approximation can be written as:

ẋ(t) = f(q(t), u(t))

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Second-order accurate QSS Method (QSS2)

The second-order accurate QSS method (QSS2) is defined in an identical manner to
the QSS method, with the exception that the state variables xi are now related to the
quantized states qi through first-order quantization functions.

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Its QSS2 approximation can be written as:

ẋ(t) = f(q(t), u(t))

We now accept that the input variables uj (t) have or are approximated by signals that
are piecewise linear.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Second-order accurate QSS Method (QSS2)

The second-order accurate QSS method (QSS2) is defined in an identical manner to
the QSS method, with the exception that the state variables xi are now related to the
quantized states qi through first-order quantization functions.

Given the non-linear continuous system:

ẋa(t) = f(xa(t), u(t))

Its QSS2 approximation can be written as:

ẋ(t) = f(q(t), u(t))

We now accept that the input variables uj (t) have or are approximated by signals that
are piecewise linear.

When using QSS2, a ramp input signal does not cause any events at all, as it can be
represented accurately by a linear trajectory.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

� The quantized variables qi (t) are now piecewise linear.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

� The quantized variables qi (t) are now piecewise linear.

� The input signals uj (t) are also piecewise linear.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

� The quantized variables qi (t) are now piecewise linear.

� The input signals uj (t) are also piecewise linear.

� In the case of a linear time-invariant system are also the state derivatives ẋi (t)
piecewise linear.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

� The quantized variables qi (t) are now piecewise linear.

� The input signals uj (t) are also piecewise linear.

� In the case of a linear time-invariant system are also the state derivatives ẋi (t)
piecewise linear.

� In that case are the state variables xi (t) piecewise parabolic.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

� The quantized variables qi (t) are now piecewise linear.

� The input signals uj (t) are also piecewise linear.

� In the case of a linear time-invariant system are also the state derivatives ẋi (t)
piecewise linear.

� In that case are the state variables xi (t) piecewise parabolic.

� In the general non-linear case do neither the state variables nor their derivatives
assume any special exploitable form.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

� The quantized variables qi (t) are now piecewise linear.

� The input signals uj (t) are also piecewise linear.

� In the case of a linear time-invariant system are also the state derivatives ẋi (t)
piecewise linear.

� In that case are the state variables xi (t) piecewise parabolic.

� In the general non-linear case do neither the state variables nor their derivatives
assume any special exploitable form.

� In that case shall the state derivatives be approximated by piecewise linear
trajectories, and consequently will the approximated state variables turn out to
be piecewise parabolic.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Trajectories in the QSS2 Method

In accordance with the definition of QSS2, the trajectories of the approximated system
assume the following form:

� The quantized variables qi (t) are now piecewise linear.

� The input signals uj (t) are also piecewise linear.

� In the case of a linear time-invariant system are also the state derivatives ẋi (t)
piecewise linear.

� In that case are the state variables xi (t) piecewise parabolic.

� In the general non-linear case do neither the state variables nor their derivatives
assume any special exploitable form.

� In that case shall the state derivatives be approximated by piecewise linear
trajectories, and consequently will the approximated state variables turn out to
be piecewise parabolic.

The simulation results do, in the non-linear case, not coincide exactly with the
definition of the QSS2 methods, but rather represent an approximation only.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

DEVS Representation of QSS2

The basic idea for obtaining an equivalent DEVS model of a QSS2 approximation is
the same as in QSS, i.e., we divide the system to be modeled into static functions and
quantized integrators. The following differences are to be noted:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

DEVS Representation of QSS2

The basic idea for obtaining an equivalent DEVS model of a QSS2 approximation is
the same as in QSS, i.e., we divide the system to be modeled into static functions and
quantized integrators. The following differences are to be noted:

� As the trajectories are piecewise linear, every event must now carry two
numbers: the value of the variable at the beginning of the segment and the
derivative of the variable throughout the segment.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

DEVS Representation of QSS2

The basic idea for obtaining an equivalent DEVS model of a QSS2 approximation is
the same as in QSS, i.e., we divide the system to be modeled into static functions and
quantized integrators. The following differences are to be noted:

� As the trajectories are piecewise linear, every event must now carry two
numbers: the value of the variable at the beginning of the segment and the
derivative of the variable throughout the segment.

� Consequently, the DEVS models of the static functions must now take into
account the values and the derivatives of its inputs, and calculate from that
information the values and the derivatives of the outputs.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

DEVS Representation of QSS2

The basic idea for obtaining an equivalent DEVS model of a QSS2 approximation is
the same as in QSS, i.e., we divide the system to be modeled into static functions and
quantized integrators. The following differences are to be noted:

� As the trajectories are piecewise linear, every event must now carry two
numbers: the value of the variable at the beginning of the segment and the
derivative of the variable throughout the segment.

� Consequently, the DEVS models of the static functions must now take into
account the values and the derivatives of its inputs, and calculate from that
information the values and the derivatives of the outputs.

� The DEVS models of the quantized integrators must also take into account the
derivatives. As the state trajectories are now piecewise parabolic, a quadratic
equation must now be solved in every step to calculate the time instant at
which |xi (t) − qi (t)| = ΔQi .

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

DEVS Representation of QSS2

The basic idea for obtaining an equivalent DEVS model of a QSS2 approximation is
the same as in QSS, i.e., we divide the system to be modeled into static functions and
quantized integrators. The following differences are to be noted:

� As the trajectories are piecewise linear, every event must now carry two
numbers: the value of the variable at the beginning of the segment and the
derivative of the variable throughout the segment.

� Consequently, the DEVS models of the static functions must now take into
account the values and the derivatives of its inputs, and calculate from that
information the values and the derivatives of the outputs.

� The DEVS models of the quantized integrators must also take into account the
derivatives. As the state trajectories are now piecewise parabolic, a quadratic
equation must now be solved in every step to calculate the time instant at
which |xi (t) − qi (t)| = ΔQi .

Except for these differences, the resulting DEVS model will look exactly the same for
QSS2 as for QSS.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Simulation with QSS2 in PowerDEVS

PowerDEVS offers as part of its libraries a DEVS model of the quantized integrator,
many static function models, and a good collection of source input signals.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Simulation with QSS2 in PowerDEVS

PowerDEVS offers as part of its libraries a DEVS model of the quantized integrator,
many static function models, and a good collection of source input signals.

PowerDEVS offers only a single quantized integrator model. The order of
approximation accuracy, i.e., whether the simulation should use QSS, QSS2, QSS3, or
even QSS4 can be specified by the user for each integrator separately by setting a
parameter value. QSS3 is currently the default value used.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Simulation with QSS2 in PowerDEVS

PowerDEVS offers as part of its libraries a DEVS model of the quantized integrator,
many static function models, and a good collection of source input signals.

PowerDEVS offers only a single quantized integrator model. The order of
approximation accuracy, i.e., whether the simulation should use QSS, QSS2, QSS3, or
even QSS4 can be specified by the user for each integrator separately by setting a
parameter value. QSS3 is currently the default value used.

Also the DEVS models of the source inputs allow the user to select the order of
approximation accuracy of the source by setting a parameter value.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Simulation with QSS2 in PowerDEVS

PowerDEVS offers as part of its libraries a DEVS model of the quantized integrator,
many static function models, and a good collection of source input signals.

PowerDEVS offers only a single quantized integrator model. The order of
approximation accuracy, i.e., whether the simulation should use QSS, QSS2, QSS3, or
even QSS4 can be specified by the user for each integrator separately by setting a
parameter value. QSS3 is currently the default value used.

Also the DEVS models of the source inputs allow the user to select the order of
approximation accuracy of the source by setting a parameter value.

The models of the static functions have all at least one input and are therefore
capable to determine the appropriate order of approximation accuracy on their own.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Simulation with QSS2 in PowerDEVS

PowerDEVS offers as part of its libraries a DEVS model of the quantized integrator,
many static function models, and a good collection of source input signals.

PowerDEVS offers only a single quantized integrator model. The order of
approximation accuracy, i.e., whether the simulation should use QSS, QSS2, QSS3, or
even QSS4 can be specified by the user for each integrator separately by setting a
parameter value. QSS3 is currently the default value used.

Also the DEVS models of the source inputs allow the user to select the order of
approximation accuracy of the source by setting a parameter value.

The models of the static functions have all at least one input and are therefore
capable to determine the appropriate order of approximation accuracy on their own.

Consequently, the block diagram of a model specified in PowerDEVS looks exactly the
same for all integration methods. The user can select the integration method by
setting parameters at all integrators and sources.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Simulation with QSS2 in PowerDEVS

PowerDEVS offers as part of its libraries a DEVS model of the quantized integrator,
many static function models, and a good collection of source input signals.

PowerDEVS offers only a single quantized integrator model. The order of
approximation accuracy, i.e., whether the simulation should use QSS, QSS2, QSS3, or
even QSS4 can be specified by the user for each integrator separately by setting a
parameter value. QSS3 is currently the default value used.

Also the DEVS models of the source inputs allow the user to select the order of
approximation accuracy of the source by setting a parameter value.

The models of the static functions have all at least one input and are therefore
capable to determine the appropriate order of approximation accuracy on their own.

Consequently, the block diagram of a model specified in PowerDEVS looks exactly the
same for all integration methods. The user can select the integration method by
setting parameters at all integrators and sources.

Since PowerDEVS supports mixed-mode integration, these parameters need to be set
for each integrator and source separately.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Stability and Accuracy of QSS2

The QSS2 approximation of a linear time-invariant system:

ẋa(t) = A · xa(t) + B · u(t)

takes the same form as the QSS approximation:

ẋ(t) = A · q(t) + B · u(t)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Stability and Accuracy of QSS2

The QSS2 approximation of a linear time-invariant system:

ẋa(t) = A · xa(t) + B · u(t)

takes the same form as the QSS approximation:

ẋ(t) = A · q(t) + B · u(t)

Also in QSS2, it is true that:

|qi (t) − xi (t)| ≤ ΔQi ∀t ≥ t0

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Stability and Accuracy of QSS2

The QSS2 approximation of a linear time-invariant system:

ẋa(t) = A · xa(t) + B · u(t)

takes the same form as the QSS approximation:

ẋ(t) = A · q(t) + B · u(t)

Also in QSS2, it is true that:

|qi (t) − xi (t)| ≤ ΔQi ∀t ≥ t0

For this reason, QSS and QSS2 share the same perturbed representation in the case of
linear time-invariant systems.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Stability and Accuracy of QSS2

The QSS2 approximation of a linear time-invariant system:

ẋa(t) = A · xa(t) + B · u(t)

takes the same form as the QSS approximation:

ẋ(t) = A · q(t) + B · u(t)

Also in QSS2, it is true that:

|qi (t) − xi (t)| ≤ ΔQi ∀t ≥ t0

For this reason, QSS and QSS2 share the same perturbed representation in the case of
linear time-invariant systems.

As the formula for the global error bound of QSS has been deduced directly from that
representation, we can conclude that the QSS2 approximation is subject to the same
error bound.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Stability and Accuracy of QSS2

The QSS2 approximation of a linear time-invariant system:

ẋa(t) = A · xa(t) + B · u(t)

takes the same form as the QSS approximation:

ẋ(t) = A · q(t) + B · u(t)

Also in QSS2, it is true that:

|qi (t) − xi (t)| ≤ ΔQi ∀t ≥ t0

For this reason, QSS and QSS2 share the same perturbed representation in the case of
linear time-invariant systems.

As the formula for the global error bound of QSS has been deduced directly from that
representation, we can conclude that the QSS2 approximation is subject to the same
error bound.

In the case of linear time-invariant systems, QSS and QSS2 share the identical
stability and accuracy properties.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Accuracy in QSS2

From the previous analysis, we conclude that, by using either QSS or QSS2 with the
same quantum, we obtain simulation results of similar accuracy.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Accuracy in QSS2

From the previous analysis, we conclude that, by using either QSS or QSS2 with the
same quantum, we obtain simulation results of similar accuracy.

What is then the advantage of using QSS2?

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Accuracy in QSS2

From the previous analysis, we conclude that, by using either QSS or QSS2 with the
same quantum, we obtain simulation results of similar accuracy.

What is then the advantage of using QSS2?

� In QSS, we saw that, by reducing the quantum 100 times, the number of
integration steps increased by a factor of 100.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Accuracy in QSS2

From the previous analysis, we conclude that, by using either QSS or QSS2 with the
same quantum, we obtain simulation results of similar accuracy.

What is then the advantage of using QSS2?

� In QSS, we saw that, by reducing the quantum 100 times, the number of
integration steps increased by a factor of 100.

� In QSS2, it can be seen easily that, by reducing the quantum 100 times, the
number of integration steps increases by a factor of 10 only.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Accuracy in QSS2

From the previous analysis, we conclude that, by using either QSS or QSS2 with the
same quantum, we obtain simulation results of similar accuracy.

What is then the advantage of using QSS2?

� In QSS, we saw that, by reducing the quantum 100 times, the number of
integration steps increased by a factor of 100.

� In QSS2, it can be seen easily that, by reducing the quantum 100 times, the
number of integration steps increases by a factor of 10 only.

� More precisely, the cost grows inversely proportional to the square root of the
tolerated error in QSS2.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

Cost vs. Accuracy in QSS2

From the previous analysis, we conclude that, by using either QSS or QSS2 with the
same quantum, we obtain simulation results of similar accuracy.

What is then the advantage of using QSS2?

� In QSS, we saw that, by reducing the quantum 100 times, the number of
integration steps increased by a factor of 100.

� In QSS2, it can be seen easily that, by reducing the quantum 100 times, the
number of integration steps increases by a factor of 10 only.

� More precisely, the cost grows inversely proportional to the square root of the
tolerated error in QSS2.

� For example, if we wish to improve the accuracy of a simulation by a factor of
10, 000, the cost increases by a factor of 10, 000 when using QSS, whereas it
only increases by a factor of 100 when using QSS2.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example

The circuit below shows a model with concentrated parameters of a transmission line.
In our case, the circuit represents a section of the path of an integrated circuit that
transmits data at a very high frequency.

RRR LLL

CCCVin Vout

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example

The circuit below shows a model with concentrated parameters of a transmission line.
In our case, the circuit represents a section of the path of an integrated circuit that
transmits data at a very high frequency.

RRR LLL

CCCVin Vout

Let us consider 5 segments. There results a linear time-invariant system of order 10
with a band-structured sparse system matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−R/L −1/L 0 0 0 0 0 0 0 0
1/C 0 −1/C 0 0 0 0 0 0 0
0 1/L −R/L −1/L 0 0 0 0 0 0
0 0 1/C 0 −1/C 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 1/C 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example II

Using PowerDEVS, we constructed the block diagram and simulated the circuit using
QSS2 with a trapezoidal input (the typical form of signals in integrated digital
circuits). We used a quantum of 4mV for the potentials and 10μA for the currents.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example II

Using PowerDEVS, we constructed the block diagram and simulated the circuit using
QSS2 with a trapezoidal input (the typical form of signals in integrated digital
circuits). We used a quantum of 4mV for the potentials and 10μA for the currents.

The simulation results were:

0 0.5 1 1.5 2 2.5 3

x 10−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Transmission Line Simulation with QSS2

Time

V
in

(t
),

V
o
u
t
(t

)

Vin

Vout

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example II

Using PowerDEVS, we constructed the block diagram and simulated the circuit using
QSS2 with a trapezoidal input (the typical form of signals in integrated digital
circuits). We used a quantum of 4mV for the potentials and 10μA for the currents.

The simulation results were:

0 0.5 1 1.5 2 2.5 3

x 10−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Transmission Line Simulation with QSS2

Time

V
in

(t
),

V
o
u
t
(t

)

Vin

Vout

� The simulation took 2536 steps (between
198 and 319 steps for each integrator).

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example II

Using PowerDEVS, we constructed the block diagram and simulated the circuit using
QSS2 with a trapezoidal input (the typical form of signals in integrated digital
circuits). We used a quantum of 4mV for the potentials and 10μA for the currents.

The simulation results were:

0 0.5 1 1.5 2 2.5 3

x 10−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Transmission Line Simulation with QSS2

Time

V
in

(t
),

V
o
u
t
(t

)

Vin

Vout

� The simulation took 2536 steps (between
198 and 319 steps for each integrator).

� Although the number of steps seems to
be quite large, every single step only
leads to scalar calculations in two or
three integrators due to the sparsity of
the A-matrix.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example II

Using PowerDEVS, we constructed the block diagram and simulated the circuit using
QSS2 with a trapezoidal input (the typical form of signals in integrated digital
circuits). We used a quantum of 4mV for the potentials and 10μA for the currents.

The simulation results were:

0 0.5 1 1.5 2 2.5 3

x 10−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Transmission Line Simulation with QSS2

Time

V
in

(t
),

V
o
u
t
(t

)

Vin

Vout

� The simulation took 2536 steps (between
198 and 319 steps for each integrator).

� Although the number of steps seems to
be quite large, every single step only
leads to scalar calculations in two or
three integrators due to the sparsity of
the A-matrix.

� As the input signal is piecewise linear, we
can obtain a theoretical upper bound of
the global error for the entire simulation.
For the variable Vout , the error bound is
250mV . That bound is conservative.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Second-order Accurate QSS Method

An Illustrative Example II

Using PowerDEVS, we constructed the block diagram and simulated the circuit using
QSS2 with a trapezoidal input (the typical form of signals in integrated digital
circuits). We used a quantum of 4mV for the potentials and 10μA for the currents.

The simulation results were:

0 0.5 1 1.5 2 2.5 3

x 10−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Transmission Line Simulation with QSS2

Time

V
in

(t
),

V
o
u
t
(t

)

Vin

Vout

� The simulation took 2536 steps (between
198 and 319 steps for each integrator).

� Although the number of steps seems to
be quite large, every single step only
leads to scalar calculations in two or
three integrators due to the sparsity of
the A-matrix.

� As the input signal is piecewise linear, we
can obtain a theoretical upper bound of
the global error for the entire simulation.
For the variable Vout , the error bound is
250mV . That bound is conservative.

� Reducing the quantum 100 times, we
estimate that the number of steps will be
augmented approximately 10 times. The
new error bound for Vout is then 2.5mV .

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods

The figure below shows the same circuit as the previous example with added surge
voltage protection formed by a resistor and a Zener diode.

RRR LLL

CCC

Rp

Rlvzvin

Line Charge

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods

The figure below shows the same circuit as the previous example with added surge
voltage protection formed by a resistor and a Zener diode.

RRR LLL

CCC

Rp

Rlvzvin

Line Charge

The new system of equations is a DAE:

di1

dt
=

1

L
· vin − R

L
· i1 − 1

L
· u1

du1

dt
=

1

C
· i1 − 1

C
· i2

.

.

.

di5

dt
=

1

L
· u4 − R

L
· i5 − 1

L
· u5

du5

dt
=

1

C
· i5 − 1

RpC
· (u5 − vz)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods

The figure below shows the same circuit as the previous example with added surge
voltage protection formed by a resistor and a Zener diode.

RRR LLL

CCC

Rp

Rlvzvin

Line Charge

The new system of equations is a DAE:

di1

dt
=

1

L
· vin − R

L
· i1 − 1

L
· u1

du1

dt
=

1

C
· i1 − 1

C
· i2

.

.

.

di5

dt
=

1

L
· u4 − R

L
· i5 − 1

L
· u5

du5

dt
=

1

C
· i5 − 1

RpC
· (u5 − vz)

where vz is an algebraic variable that satisfies the
equation:

1

Rp
· u5 −

(
1

Rp
+

1

Rl

)
· vz − I0

1 − (vz /vbr)
m

= 0

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods

The figure below shows the same circuit as the previous example with added surge
voltage protection formed by a resistor and a Zener diode.

RRR LLL

CCC

Rp

Rlvzvin

Line Charge

The new system of equations is a DAE:

di1

dt
=

1

L
· vin − R

L
· i1 − 1

L
· u1

du1

dt
=

1

C
· i1 − 1

C
· i2

.

.

.

di5

dt
=

1

L
· u4 − R

L
· i5 − 1

L
· u5

du5

dt
=

1

C
· i5 − 1

RpC
· (u5 − vz)

where vz is an algebraic variable that satisfies the
equation:

1

Rp
· u5 −

(
1

Rp
+

1

Rl

)
· vz − I0

1 − (vz /vbr)
m

= 0

and m, vbr , and I0 are parameters, the values of
which depend on the physical characteristics of the
Zener diode.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods II

� To use QSS or QSS2 in the simulation of the circuit, we just replace ij and uj by
qij and quj . The problem is the calculation of vz .

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods II

� To use QSS or QSS2 in the simulation of the circuit, we just replace ij and uj by
qij and quj . The problem is the calculation of vz .

� We can use a new DEVS models that computes vz from qu5 , iterating on the
algebraic restriction each time this quantized variable changes its value.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods III

The general scheme to simulate DAEs with QSS methods is the following:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods III

The general scheme to simulate DAEs with QSS methods is the following:

q(t)

q(t)

u(t)

z(t)

x1

xn

f1

fn

q1

qn

qr (t)

ur (t)

.

..

∫

∫

Iteration

ẋ = f(q, u, z)
0 = g(qr, ur, z)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods IV

� In index 1 DAEs, QSS methods only call for iterations in those steps involving
changes in the quantized variables that form part of the algebraic loops.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods IV

� In index 1 DAEs, QSS methods only call for iterations in those steps involving
changes in the quantized variables that form part of the algebraic loops.

� This can be an important advantage. In the transmission line example, the
simulation using the same settings as before took 2640 steps (between 200 and
316 at each integrator). However, there were only 200 steps (corresponding to
qu5) that provoked iterations. This added an almost negligible computational
cost with respect to the previous example.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods IV

� In index 1 DAEs, QSS methods only call for iterations in those steps involving
changes in the quantized variables that form part of the algebraic loops.

� This can be an important advantage. In the transmission line example, the
simulation using the same settings as before took 2640 steps (between 200 and
316 at each integrator). However, there were only 200 steps (corresponding to
qu5) that provoked iterations. This added an almost negligible computational
cost with respect to the previous example.

� PowerDEVS offers a block that solves a generic algebraic restriction
g(qr , ur, z) = 0, with z being a scalar variable and g() being a scalar function.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

DAE Simulation with QSS Methods

DAE Simulation with QSS Methods IV

� In index 1 DAEs, QSS methods only call for iterations in those steps involving
changes in the quantized variables that form part of the algebraic loops.

� This can be an important advantage. In the transmission line example, the
simulation using the same settings as before took 2640 steps (between 200 and
316 at each integrator). However, there were only 200 steps (corresponding to
qu5) that provoked iterations. This added an almost negligible computational
cost with respect to the previous example.

� PowerDEVS offers a block that solves a generic algebraic restriction
g(qr , ur, z) = 0, with z being a scalar variable and g() being a scalar function.

� The iteration uses the secant method, a variant of the regula falsi.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuity Handling

We saw that the simulation of discontinuous systems requires performing a step at the
exact moment of the discontinuity. Thus:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuity Handling

We saw that the simulation of discontinuous systems requires performing a step at the
exact moment of the discontinuity. Thus:

� in the presence of time events, we needed to adjust the step size so that it
coincides with those event instants, and,

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuity Handling

We saw that the simulation of discontinuous systems requires performing a step at the
exact moment of the discontinuity. Thus:

� in the presence of time events, we needed to adjust the step size so that it
coincides with those event instants, and,

� in the presence of state events, we had to iterate to detect when discontinuities
took place.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuity Handling

We saw that the simulation of discontinuous systems requires performing a step at the
exact moment of the discontinuity. Thus:

� in the presence of time events, we needed to adjust the step size so that it
coincides with those event instants, and,

� in the presence of state events, we had to iterate to detect when discontinuities
took place.

With QSS methods these problems will disappear for the following reasons.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuity Handling

We saw that the simulation of discontinuous systems requires performing a step at the
exact moment of the discontinuity. Thus:

� in the presence of time events, we needed to adjust the step size so that it
coincides with those event instants, and,

� in the presence of state events, we had to iterate to detect when discontinuities
took place.

With QSS methods these problems will disappear for the following reasons.

� All blocks are prepared to receive external events in an asynchronous way. Thus,
when a time event occurs, the input signal that undergoes a discontinuity simply
propagates the event to all blocks it is connected to.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuity Handling

We saw that the simulation of discontinuous systems requires performing a step at the
exact moment of the discontinuity. Thus:

� in the presence of time events, we needed to adjust the step size so that it
coincides with those event instants, and,

� in the presence of state events, we had to iterate to detect when discontinuities
took place.

With QSS methods these problems will disappear for the following reasons.

� All blocks are prepared to receive external events in an asynchronous way. Thus,
when a time event occurs, the input signal that undergoes a discontinuity simply
propagates the event to all blocks it is connected to.

� In the case of a state event, its detection is trivial, since the trajectories are
piecewise constant (QSS), linear (QSS2), or parabolic (QSS3). Thus, the event
time can be computed explicitly, and iterations are not needed to detect the
zero crossings.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuity Handling

We saw that the simulation of discontinuous systems requires performing a step at the
exact moment of the discontinuity. Thus:

� in the presence of time events, we needed to adjust the step size so that it
coincides with those event instants, and,

� in the presence of state events, we had to iterate to detect when discontinuities
took place.

With QSS methods these problems will disappear for the following reasons.

� All blocks are prepared to receive external events in an asynchronous way. Thus,
when a time event occurs, the input signal that undergoes a discontinuity simply
propagates the event to all blocks it is connected to.

� In the case of a state event, its detection is trivial, since the trajectories are
piecewise constant (QSS), linear (QSS2), or parabolic (QSS3). Thus, the event
time can be computed explicitly, and iterations are not needed to detect the
zero crossings.

For these reasons, the main advantage of the QSS methods lies in simulations of
systems with discontinuities.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example

The figure below shows an inverter circuit:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example

The figure below shows an inverter circuit:

Vin

R

L

+

−

Sw1

Sw2

Sw3

Sw4

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example

The figure below shows an inverter circuit:

Vin

R

L

+

−

Sw1

Sw2

Sw3

Sw4

which can be modeled with the ODE:

diL

dt
= −R

L
· iL +

Vin

L
· sw (t)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example

The figure below shows an inverter circuit:

Vin

R

L

+

−

Sw1

Sw2

Sw3

Sw4

which can be modeled with the ODE:

diL

dt
= −R

L
· iL +

Vin

L
· sw (t)

where sw (t) takes the values ±1 depending
on the switch positions.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example

The figure below shows an inverter circuit:

Vin

R

L

+

−

Sw1

Sw2

Sw3

Sw4

which can be modeled with the ODE:

diL

dt
= −R

L
· iL +

Vin

L
· sw (t)

where sw (t) takes the values ±1 depending
on the switch positions.

A typical way of controlling the switches in
order to obtain an approximately sinusoidal
current at the load is by using a pulse
width modulation (PWM) strategy:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example

The figure below shows an inverter circuit:

Vin

R

L

+

−

Sw1

Sw2

Sw3

Sw4

which can be modeled with the ODE:

diL

dt
= −R

L
· iL +

Vin

L
· sw (t)

where sw (t) takes the values ±1 depending
on the switch positions.

A typical way of controlling the switches in
order to obtain an approximately sinusoidal
current at the load is by using a pulse
width modulation (PWM) strategy:

Vin

−Vin

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Time Events

In order to simulate the previous system using any of the QSSi algorithms, we need a
DEVS model that generates the sequence of events corresponding to sw (t). This
DEVS model can be easily obtained.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Time Events

In order to simulate the previous system using any of the QSSi algorithms, we need a
DEVS model that generates the sequence of events corresponding to sw (t). This
DEVS model can be easily obtained.

The model coded in PowerDEVS looks as
follows:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Time Events

In order to simulate the previous system using any of the QSSi algorithms, we need a
DEVS model that generates the sequence of events corresponding to sw (t). This
DEVS model can be easily obtained.

The model coded in PowerDEVS looks as
follows:

Scope1Integrator1

+K

WSum1PWM
Signal1

∫

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Time Events

In order to simulate the previous system using any of the QSSi algorithms, we need a
DEVS model that generates the sequence of events corresponding to sw (t). This
DEVS model can be easily obtained.

The model coded in PowerDEVS looks as
follows:

Scope1Integrator1

+K

WSum1PWM
Signal1

∫
and the simulation results are:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20
QSS2 Simulation

Time

i L
(t

)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Time Events

In order to simulate the previous system using QSS, QSS2, or QSS3, we need a DEVS
model that generates the sequence of events corresponding to sw (t). This DEVS
model can be easily obtained.

The model coded in PowerDEVS looks as
follows:

Scope1Integrator1

+K

WSum1PWM
Signal1

∫
and the simulation results are:

0.6 0.61 0.62 0.63 0.64 0.65 0.66

−10

−5

0

5

10

QSS2 Simulation

Time

i L
(t

)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Time Events

In order to simulate the previous system using QSS, QSS2, or QSS3, we need a DEVS
model that generates the sequence of events corresponding to sw (t). This DEVS
model can be easily obtained.

The model coded in PowerDEVS looks as
follows:

Scope1Integrator1

+K

WSum1PWM
Signal1

∫
and the simulation results are:

0.6 0.61 0.62 0.63 0.64 0.65 0.66

−10

−5

0

5

10

QSS2 Simulation

Time

i L
(t

)

The time events are treated as a conventional inputs. In this case, the global error
bound holds. The error is bounded by the quantum ΔiL = 0.01 A.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events

A simple way to protect the previous circuit against voltage surges during transients or
faults is by adding a device that measures the load current and closes all four
switches, enforcing sw = 0, when the current surpasses its allowed maximum value.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events

A simple way to protect the previous circuit against voltage surges during transients or
faults is by adding a device that measures the load current and closes all four
switches, enforcing sw = 0, when the current surpasses its allowed maximum value.

With the addition of this device, the system equations becomes:

diL

dt
= −R

L
· iL + Vin · s̃w (t)

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events

A simple way to protect the previous circuit against voltage surges during transients or
faults is by adding a device that measures the load current and closes all four
switches, enforcing sw = 0, when the current surpasses its allowed maximum value.

With the addition of this device, the system equations becomes:

diL

dt
= −R

L
· iL + Vin · s̃w (t)

where:

s̃w (t) =

{
sw (t) if iL(t) < iM
0 otherwise

and iM is the largest allowed current.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events

A simple way to protect the previous circuit against voltage surges during transients or
faults is by adding a device that measures the load current and closes all four
switches, enforcing sw = 0, when the current surpasses its allowed maximum value.

With the addition of this device, the system equations becomes:

diL

dt
= −R

L
· iL + Vin · s̃w (t)

where:

s̃w (t) =

{
sw (t) if iL(t) < iM
0 otherwise

and iM is the largest allowed current.

Now we are dealing with a state event.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events II

The corresponding PowerDEVS model can be coded as follows:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events II

The corresponding PowerDEVS model can be coded as follows:

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events II

The corresponding PowerDEVS model can be coded as follows:

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

The Delay block represents the time required for the commutation. Had we not
included the delay, the resulting model would have been illegitimate.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events II

The corresponding PowerDEVS model can be coded as follows:

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

The Delay block represents the time required for the commutation. Had we not
included the delay, the resulting model would have been illegitimate.

The Switch block represents the equation with the if statement. It works as follows:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events II

The corresponding PowerDEVS model can be coded as follows:

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

The Delay block represents the time required for the commutation. Had we not
included the delay, the resulting model would have been illegitimate.

The Switch block represents the equation with the if statement. It works as follows:

� When the block receives an event at its center port, it computes when the signal
crosses a given threshold. At that time, it changes the switch position.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events II

The corresponding PowerDEVS model can be coded as follows:

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

The Delay block represents the time required for the commutation. Had we not
included the delay, the resulting model would have been illegitimate.

The Switch block represents the equation with the if statement. It works as follows:

� When the block receives an event at its center port, it computes when the signal
crosses a given threshold. At that time, it changes the switch position.

� When the block receives events on either of the other two ports, it may pass
them on to the output port depending on the switch position.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: State Events II

The corresponding PowerDEVS model can be coded as follows:

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

The Delay block represents the time required for the commutation. Had we not
included the delay, the resulting model would have been illegitimate.

The Switch block represents the equation with the if statement. It works as follows:

� When the block receives an event at its center port, it computes when the signal
crosses a given threshold. At that time, it changes the switch position.

� When the block receives events on either of the other two ports, it may pass
them on to the output port depending on the switch position.

The calculation of the commutation time is trivial, because the signal is either
piecewise linear (QSS2) or piecewise parabolic (QSS3).

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Simulation Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

QSS2 Simulation

Time

i L
(t

)

Figure: Load Current with Surge Protection.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

An Introductory Example: Simulation Results

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−10

−5

0

5

10

15
QSS2 Simulation

Time

i L
(t

)

Figure: Load Current with Surge Protection.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuous Systems: General Scheme

In general, the following scheme can be used to
model discontinuous systems:

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuous Systems: General Scheme

In general, the following scheme can be used to
model discontinuous systems:

q(t)

q(t)

u

z(t)

x1

xn

f1

fn

q1

qn

qrur

...

∫

∫

m(t)

m(t)

Discrete

Implicit

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuous Systems: General Scheme

In general, the following scheme can be used to
model discontinuous systems:

q(t)

q(t)

u

z(t)

x1

xn

f1

fn

q1

qn

qrur

...

∫

∫

m(t)

m(t)

Discrete

Implicit

� The discrete subsystem is in
charge of detecting and handling
discontinuities, computing a
piecewise constant signal m(t).

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuous Systems: General Scheme

In general, the following scheme can be used to
model discontinuous systems:

q(t)

q(t)

u

z(t)

x1

xn

f1

fn

q1

qn

qrur

...

∫

∫

m(t)

m(t)

Discrete

Implicit

� The discrete subsystem is in
charge of detecting and handling
discontinuities, computing a
piecewise constant signal m(t).

� The remaining blocks ignore the
presence of the discontinuities.
The signal m(t) is used as a
regular input signal by those
blocks that need it.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Discontinuity Handling

Discontinuous Systems: General Scheme

In general, the following scheme can be used to
model discontinuous systems:

q(t)

q(t)

u

z(t)

x1

xn

f1

fn

q1

qn

qrur

...

∫

∫

m(t)

m(t)

Discrete

Implicit

� The discrete subsystem is in
charge of detecting and handling
discontinuities, computing a
piecewise constant signal m(t).

� The remaining blocks ignore the
presence of the discontinuities.
The signal m(t) is used as a
regular input signal by those
blocks that need it.

� To support the computation of
the signal m(t), PowerDEVS
offers a set of different blocks
including switches, quantizers,
comparators, etc.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Conclusions

Conclusions

� We continued with the discussion of quantization-based integration methods.
We introduced second-order accurate methods. Third- and fourth-order accurate
methods can be defined accordingly and are already offered in PowerDEVS.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Conclusions

Conclusions

� We continued with the discussion of quantization-based integration methods.
We introduced second-order accurate methods. Third- and fourth-order accurate
methods can be defined accordingly and are already offered in PowerDEVS.

� We showed that the problem of stability and accuracy can be studied based on
perturbation analysis.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Conclusions

Conclusions

� We continued with the discussion of quantization-based integration methods.
We introduced second-order accurate methods. Third- and fourth-order accurate
methods can be defined accordingly and are already offered in PowerDEVS.

� We showed that the problem of stability and accuracy can be studied based on
perturbation analysis.

� We showed that the QSSi methods remain practically stable and that the global
integration error can be estimated. The latter issue is of big significance, as
classical ODE solvers that are based on time slicing only estimate the local
integration error of a single step.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Conclusions

Conclusions

� We continued with the discussion of quantization-based integration methods.
We introduced second-order accurate methods. Third- and fourth-order accurate
methods can be defined accordingly and are already offered in PowerDEVS.

� We showed that the problem of stability and accuracy can be studied based on
perturbation analysis.

� We showed that the QSSi methods remain practically stable and that the global
integration error can be estimated. The latter issue is of big significance, as
classical ODE solvers that are based on time slicing only estimate the local
integration error of a single step.

� QSSi methods are naturally asynchronous and can be easily implemented on
parallel architectures.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

Conclusions

Conclusions

� We continued with the discussion of quantization-based integration methods.
We introduced second-order accurate methods. Third- and fourth-order accurate
methods can be defined accordingly and are already offered in PowerDEVS.

� We showed that the problem of stability and accuracy can be studied based on
perturbation analysis.

� We showed that the QSSi methods remain practically stable and that the global
integration error can be estimated. The latter issue is of big significance, as
classical ODE solvers that are based on time slicing only estimate the local
integration error of a single step.

� QSSi methods are naturally asynchronous and can be easily implemented on
parallel architectures.

� QSSi methods are particularly well suited for the simulation of hybrid systems.

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

References

References

1. Cellier, F.E., E. Kofman, G. Migoni, and M. Bortolotto (2008), “Quantized
State System Simulation,” Proc. GCMS’08, Grand Challenges in Modeling and
Simulation, part of SCSC’08, Summer Computer Simulation Conference,
Edinburgh, Scotland, pp. 504-510.

2. Sanz, V., A. Urqúıa, S. Dormido, and F.E. Cellier (2010), “System Modeling
Using the Parallel DEVS Formalism and the Modelica Language,” Simulation
Modelling Practice and Theory, 18(7), pp.998-1018.

3. Sanz, V., F.E. Cellier, A. Urqúıa, and S. Dormido (2009), “Modeling of the
ARGESIM ‘Crane and Embedded Controller’ System Using the DEVSLib
Modelica Library,” Proc. ADHS’09: 3rd IFAC Conference on Analysis and
Design of Hybrid Systems, Zaragoza, Spain.

4. Beltrame, T. and F.E. Cellier (2006), “Quantized State System Simulation in
Dymola/Modelica Using the DEVS Formalism,” Simulation News Europe,
16(3), pp.3-12.

5. Beltrame, Tamara (2006), Design and Development of a Dymola/Modelica
Library for Discrete Event-oriented Systems Using DEVS Methodology, MS
Thesis, Dept. of Computer Science, ETH Zurich, Switzerland.

http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/scsc_08.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/scsc_08.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/simpat_10.html
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/simpat_10.html
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/adhs_09.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/adhs_09.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/adhs_09.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/modelica_06_beltrame.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/modelica_06_beltrame.pdf
http://www.inf.ethz.ch/personal/fcellier/MS/beltrame_ms.pdf
http://www.inf.ethz.ch/personal/fcellier/MS/beltrame_ms.pdf

Numerical Simulation of Dynamic Systems XXVI

Quantization-based Integration

References

References II

1. Floros, X., F.E. Cellier, and E. Kofman (2010), “Discretizing Time or States?
A Comparative Study between DASSL and QSS,” Proc. 3rd International
Workshop on Equation-based Object-oriented Modeling Languages and Tools,
Oslo, Norway, pp.107-115.

2. Floros, X., F. Bergero, F.E. Cellier, and E. Kofman (2011), “Automated
Simulation of Modelica Models with QSS Methods – The Discontinuous Case,”
Proc. 8th International Modelica Conference, Dresden, Germany.

http://www.inf.ethz.ch/personal/fcellier/Pubs/Sim/eoolt_2010.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/Sim/eoolt_2010.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/Sim/modelica_11.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/Sim/modelica_11.pdf

	Quantization-based Integration
	
	
	
	
	
	
	
	
	

