
Numerical Simulation of Dynamic Systems XI

Numerical Simulation of Dynamic Systems XI

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

April 9, 2013

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Method of Lines

The Method of Lines

Until now, we have dealt with ordinary differential equations (ODEs) only. We would
now like to extend the discussion to partial differential equations (PDEs) as well.

Given the PDE that describes the diffusion of heat in a single space dimension:

∂u

∂t
= σ · ∂2u

∂x2

We may discretize the space variable:

∂2u

∂x2

∣∣∣∣
x=xi

≈ ui+1 − 2ui + ui−1

δx2

while keeping the time variable continuous.

δx is the (here equidistantly chosen) distance between two neighboring discretization
points in space, i.e., the so-called grid width of the discretization.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Method of Lines

The Method of Lines II

In this way, we convert the former PDE to a set of ODEs that approximate the PDE:

dui

dt
≈ σ · ui+1 − 2ui + ui−1

δx2

The resulting ODEs can now be simulated using any of the numerical ODE solvers
introduced in the earlier presentations.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Method of Lines

Differentiation in Space

It makes sense to differentiate the solution function of the PDE with respect to the
space variable using the same order of approximation accuracy that we use for the
integration over time. To this end, we can once again make use of Newton-Gregory
polynomials.

For example, if we like to obtain an approximation of fourth order of the second
spatial derivative, we can formulate a polynomial of fourth order that passes through
the five support values xi−2, xi−1, xi , xi+1, and xi+2.

We use a backward Newton-Gregory polynomial around the point xi+2:

u(x) = ui+2 + s∇ui+2 +

(
s2

2
+

s

2

)
∇2ui+2 +

(
s3

6
+

s2

2
+

s

3

)
∇3ui+2 + . . .

Therefore:

∂2u

∂x2
=

1

δx2

[
∇2ui+2 + (s + 1)∇3ui+2 +

(
s2

2
+

3s

2
+

11

12

)
∇4ui+2 + . . .

]

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Method of Lines

Differentiation in Space II

We evaluate at x = xi , i.e., at s = −2 and truncate the ∇ operator after the
fourth-order term:

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1

12δx2
(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2)

Third-order methods must pass through four points. Hence the support values can no
longer be placed symmetrically around the evaluation point. For example, we might
try to obtain a method that passes through the four points xi−1, xi , xi+1, and xi+2.

Identifying the method parameters, we obtain:

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1

δx2
(0ui+2 + ui+1 − 2ui + ui−1)

We conclude that the symmetric method of order 2 is in reality a method of order 3.

This is no accident. Symmetric methods always gain one additional order of
approximation accuracy.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Method of Lines

Differentiation in Space III

To obtain a fourth-order accurate method for ∂2u/∂x2 at x3, we can either develop a
backward Newton-Gregory polynomial around the point x5 and evaluate it at s = −2,
or alternatively, we can develop a Newton-Gregory forward polynomial around the
point x1 and evaluate it at s = +2. The resulting formulae will be identical, and they
will, in fact, be fifth-order accurate due to symmetry.

Unfortunately, we cannot use symmetric methods in the vicinity of the domain
boundaries. For example, to obtain a fourth-order accurate method for ∂2u/∂x2 at x2,
we can either develop a backward Newton-Gregory polynomial around the point x5

and evaluate it at s = −3, or alternatively, we can develop a Newton-Gregory forward
polynomial around the point x1 and evaluate it at s = +1. The resulting formulae will
again be identical, but they are no longer symmetric around the point x2. Hence, we
no longer gain the additional order of approximation accuracy. If we really want a
fifth-order method, we should use an additional support value at x6.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Method of Lines

Differentiation in Space IV

Let us assume our domain contains 11 points in space and we wish to develop a
fourth-order method. Then, the following formulae will need to be used in the vicinity
of the two borders:

∂2u

∂x2

∣∣∣∣
x=x1

=
1

12δx2
(11u5 − 56u4 + 114u3 − 104u2 + 35u1)

∂2u

∂x2

∣∣∣∣
x=x2

=
1

12δx2
(−u5 + 4u4 + 6u3 − 20u2 + 11u1)

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(11u11 − 20u10 + 6u9 + 4u8 − u7)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(35u11 − 104u10 + 114u9 − 56u8 + 11u7)

Since most of the points are internal to the domain, odd-order approximations are
usually preferred over even-order approximations.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions

We need to talk about the topic of boundary conditions. Each PDE is accompanied
not only by initial conditions, but also by boundary conditions.

The heat equation in one space dimension, x ∈ [0.0, 1.0], requires two boundary
conditions, e.g.:

u(x = 0.0, t) = 100.0

∂u

∂x
(x = 1.0, t) = 0.0

The simplest type of boundary conditions is the Dirichlet condition that imposes at
the border a value on the variable u. In this case, we need to eliminate the differential
equation at that point and replace it by an algebraic equation. In the above example:

u1 = 100.0

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions II

Another simple type of boundary conditions is the symmetrical Neumann condition
that imposes at the border a value of zero on the variable ∂u

∂x
.

In this case, we can use a simple trick. We double the domain, i.e., in the above
example, we would enlarge the domain in space to x ∈ [0.0, 2.0] and apply the same
boundary condition at the point x = 2.0 as at the point x = 0.0:

u21 = 100.0

For symmetry reasons, we obtain implicitly at the center the condition:

∂u11

∂x
= 0.0

Yet, it is not necessary to formulate this condition explicitly.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions III

Therefore we can use symmetrical formulae at the center:

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(−u12 + 16u11 − 30u10 + 16u9 − u8)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(−u13 + 16u12 − 30u11 + 16u10 − u9)

and as we know, due to symmetry, that u12 = u10 and u13 = u9, we can rewrite the
above equations as:

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(16u11 − 31u10 + 16u9 − u8)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(−30u11 + 32u10 − 2u9)

and now, we don’t need the symmetrical points any longer, i.e., in reality, we don’t
need to double the domain.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions IV

A third simple type of boundary conditions is the temporal condition that imposes at
the border a value on the variable ∂u

∂t
:

∂u

∂t
(x = 0.0, t) = f (t)

In this case, we replace the original differential equation at that point by a new one:

u̇1 = f (t)

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions V

A fourth type of boundary condition, that is a bit more general and difficult to treat, is
the Robin condition:

g (u(x = 1.0, t)) + h

(
∂u

∂x
(x = 1.0, t)

)
= f (t)

where f , g , and h are functions of time.

For example, we might have to deal with a boundary condition of the type:

∂u

∂x
(x = 1.0, t) = −k · (u(x = 1.0, t) − uamb(t))

where uamb(t) is the ambient temperature.

In this case, we replace the spatial derivative by an approximation using a
Newton-Gregory polynomial:

∂u

∂x

∣∣∣∣
x=x11

=
1

12δx
(25u11 − 48u10 + 36u9 − 16u8 + 3u7)

Solving for the unknown u11, we obtain an equivalent Dirichlet condition:

u11 =
12k · δx · uamb + 48u10 − 36u9 + 16u8 − 3u7

12k · δx + 25

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions VI

Sometimes, we need to deal with non-linear boundary conditions. For example:

∂u

∂x
(x = 1.0, t) = −k · (u(x = 1.0, t)4 − uamb(t)4

)

which can be converted to:

F(u11) =12k · δx · u4
11 + 25u11 − 12k · δx · u4

amb − 48u10 + 36u9

− 16u8 + 3u7 = 0.0

In this way, we obtain an implicitly formulated boundary condition that can be solved
by Newton iteration.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions VII

Finally, we may want to consider situations where we have to deal with separate
neighboring space regions governed by different PDEs.

For example, we may wish to simulate the diffusion of heat across two separate
materials that are in contact with each other. We thus have two neighboring regions
representing two different materials:

∂u

∂t
= σu · ∂2u

∂x2

∂v

∂t
= σv · ∂2v

∂x2

where the PDE in u is valid in the region x ∈ [0.0, 1.0], whereas the PDE in v is valid
in the region x ∈ [1.0, 1.1].

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Boundary Conditions

Boundary Conditions VIII

Now, we have to deal with internal boundary conditions at the common border
between the two regions, e.g.:

∂u

∂x
(x = 1.0, t) = −ku · (u(x = 1.0, t) − v(x = 1.0, t))

∂v

∂x
(x = 1.0, t) = −kv · (v(x = 1.0, t) − u(x = 1.0, t))

which can be transformed to an equivalent set of linear algebraic equations:

(12ku · δxu + 25)u11 − 12ku · δxu · v1 = 48u10 − 36u9 + 16u8 − 3u7

−12kv · δxv · u11 + (12kv · δxv + 3)v1 = 16v2 − 36v3 + 48u4 − 25v5

These equations form together an algebraic loop that can be solved either symbolically
or numerically.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Classification of PDEs

Classification of PDEs

Some simple types of PDEs are so common that they were given special names. Let
us consider the following PDE in two variables x and y :

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d

which is characteristic of many field problems in physics. x can be either spatial or
temporal variables, and a, b, c, and d can be arbitrary functions of x, y , u, ∂u/∂x ,
and ∂u/∂y . Such a PDE is called quasi-linear, since it is linear in the highest
derivatives.

Depending on the numerical relationship between a, b, and c, the above equation is
classified as either being parabolic, hyperbolic, or elliptic. The classification is as
follows:

b2 − 4ac > 0 =⇒ PDE is hyperbolic

b2 − 4ac = 0 =⇒ PDE is parabolic

b2 − 4ac < 0 =⇒ PDE is elliptic

This classification makes sense, since the numerical methods most suitable for these
three types of PDEs are vastly different.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Parabolic PDEs

Parabolic PDEs

One of the simplest parabolic PDEs is the heat equation in one space dimension.
Let us consider a complete example:

∂u

∂t
=

1

10π2
· ∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0, ∞)

u(x, t = 0) = cos(π · x)

u(x = 0, t) = exp(−t/10)

∂u

∂x
(x = 1, t) = 0

This model can be converted to the following set of ODEs using the method of lines:

u1 = exp(−t/10)

u̇2 =
n2

10π2
· (u3 − 2u2 + u1)

u̇3 =
n2

10π2
· (u4 − 2u3 + u2)

. . .

u̇n =
n2

10π2
· (un+1 − 2un + un−1)

u̇n+1 =
n2

5π2
· (−un+1 + un)

initial conditions :

u2(0) = cos

(
π

n

)

u3(0) = cos

(
2π

n

)

. . .

un(0) = cos

(
(n − 1)π

n

)

un+1(0) = cos (π)

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Parabolic PDEs

Parabolic PDEs II

This is a linear, time-invariant, inhomogeneous, nth-order, single-input system of the
type:

ẋ = A · x + b · u
where:

A =
n2

10π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
..
.

..

.
..
.

..

.
. . .

..

.
..
.

..

.
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A is a band-structured matrix of dimensions n × n. The band width of the matrix is

three.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Parabolic PDEs

Parabolic PDEs III

We can look at the distribution of eigenvalues of the A-matrix in function of the
spatial discretization:

n = 3 n = 4 n = 5 n = 6 n = 7
-0.0244 -0.0247 -0.0248 -0.0249 -0.0249
-0.1824 -0.2002 -0.2088 -0.2137 -0.2166
-0.3403 -0.4483 -0.5066 -0.5407 -0.5621

-0.6238 -0.9884 -0.9183 -0.9929
-0.8044 -1.2454 -1.4238

-1.4342 -1.7693
-1.9610

Therefore:

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70
Stiffness Ratio of 1D Diffusion Problem

Number of Segments

√
S
ti

ff
n
e
ss

R
a
ti

o

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Parabolic PDEs

Parabolic PDEs IV

� We notice that all eigenvalues of the heat equation converted to a set of ODEs
are on the negative real axis. The heat equation thus never leads to oscillations.

� We notice further that, whereas the slowest eigenvalue of the converted ODE
set remains more or less at the same location, ever faster (more heavily
damped) eigenvalues are added as the number of discretization points grows,
i.e., as the discretization grid is made finer.

� Parabolic PDEs converted to a set of equivalent ODEs using the method of
lines always lead to stiff systems.

� Hence there are now two types of stiff systems: lumped parameter systems
that are naturally stiff, and parabolic PDEs that become stiff in the
conversion to ODEs.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error

It may be interesting to analyze, how well the discretized system, described by a set of
ODEs approximates the original continuous system that is described by a PDE.

To this end, we shall compare the analytical solutions of the two problems to each
other.

Luckily, we chose a PDE problem, the analytical solution of which is known:

uc (x , t) = exp(−t/10) · cos(π · x)

The discretized problem is a bit harder to handle. We converted the PDE to a
continuous linear time-invariant system of the form:

ẋ = A · x + b · u
y = C · x + d · u

In Matlab, we can make a continuous-time system description out of the four matrices:

Sc = ss(A, b, C , d);

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error II

The continuous-time system can be converted to an equivalent discrete-time system of
the form:

xk+1 = F · xk + g · uk (1)

yk = H · xk + i · uk (2)

using the Matlab statement:

Sd = c2d(Sc, h);

from which the F-matrix and g-vector of the discrete state equations can be extracted
using the Matlab statement:

[F , g] = ssdata(Sd);

We define the consistency error as the difference between the analytical solutions of
the distributed parameter system, uc , and the discretized ODE model, ud :

err = uc − ud

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error III

The consistency error is defined for each grid point and for each time step, i.e., it is a
function of time and space:

err = err(x , t)

Yet, it makes also sense to look at the infinity norm of the consistency error. In
Matlab:

ermax = max(max(abs(err)));

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error IV

We display on one graph the analytical solution of the PDE problem, uc , the analytical
solution of the ODE problem, ud , the consistency error, err , as well as the maximal
consistency error, ermax , plotted against the number of discretization points in space.

0
0.5

1

0

5

10
−1

0

1

0
0.5

1

0

5

10
−1

0

1

0
0.5

1

0

5

10
−2

0

2

x 10−4

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

1D Diffusion (PDE) 1D Diffusion (ODE)

1D Diffusion - Error1D Diffusion - Error

Number of Segments

S
o
lu

ti
o
n

S
o
lu

ti
o
n

E
rr

or

E
rr

or

Time

TimeTime

Space

SpaceSpace

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error V

Is it possible to overcome the consistency error by using more accurate discretization
formulae in space?

u1 = exp(−t/10)

u̇2 =
n2

120π2
· (u6 − 6u5 + 14u4 − 4u3 − 15u2 + 10u1)

u̇3 =
n2

120π2
· (−u5 + 16u4 − 30u3 + 16u2 − u1)

u̇4 =
n2

120π2
· (−u6 + 16u5 − 30u4 + 16u3 − u2)

. . .

u̇n−1 =
n2

120π2
· (−un+1 + 16un − 30un−1 + 16un−2 − un−3)

u̇n =
n2

120π2
· (16un+1 − 31un + 16un−1 − un−2)

u̇n+1 =
n2

60π2
· (−15un+1 + 16un − un−1)

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error VI

The A-matrix now takes the form:

A =
n2

120π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 − 4 14 − 6 1 . . . 0 0 0 0
16 −30 16 − 1 0 . . . 0 0 0 0
− 1 16 −30 16 − 1 . . . 0 0 0 0

0 − 1 16 −30 16 . . . 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 . . . 16 −30 16 − 1
0 0 0 0 0 . . . − 1 16 −31 16
0 0 0 0 0 . . . 0 − 2 32 −30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with the eigenvalue distribution:

n = 5 n = 6 n = 7 n = 8 n = 9
-0.0250 -0.0250 -0.0250 -0.0250 -0.0250
-0.2288 -0.2262 -0.2253 -0.2251 -0.2250
-0.5910 -0.6414 -0.6355 -0.6302 -0.6273
-0.7654 -0.9332 -1.1584 -1.2335 -1.2368
-1.2606 -1.3529 -1.4116 -1.6471 -1.9150

-1.8671 -2.0761 -2.1507 -2.2614
-2.5770 -2.9084 -3.0571

-3.3925 -3.8460
-4.3147

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error VII

Comparing the stiffness ratios of the two methods of orders 3 and 5:

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80
Stiffness Ratios of 1D Diffusion Problem

Number of Segments

√
S
ti

ff
n
e
ss

R
a
ti

o

5th-order

scheme

scheme

3rd-order

The stiffness ratio isn’t much influenced by the order of approximation accuracy of
the spatial discretization scheme.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error VIII

Comparing the maximal consistency errors of the two methods of orders 3 and 5:

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8
x 10−4 1D Diffusion - Error

Number of Segments
C
o
n
si
st

en
cy

E
rr

or

5th-order

scheme

scheme

3rd-order

The consistency error is very much influenced by the order of approximation
accuracy of the spatial discretization scheme.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Consistency Error

The Consistency Error IX

� The biggest crux in the numerical solution of parabolic PDE problems is the
following. If we double the number of segments, the number of ODEs to be
simulated doubles as well. However, since the stiffness ratio grows quadratically
in the number of segments, the step size needs to decrease inverse quadratically
in order to preserve the same accuracy. Hence doubling the number of segments
forces us to quadruple the number of time steps.

� The simulation effort grows cubically in the number of segments.

� Luckily, the higher-order discretization formulae enable us to get away with a
smaller number of discretization points, i.e., use a coarser grid.

� Using a 5th-order discretization scheme usually pays off.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Richardson Extrapolation

Richardson Extrapolation

The order of approximation accuracy of the spatial differentiation would not be all
that important if only we could use a very narrow grid.

Hence we try once again the idea of the Richardson extrapolation, but this time across
space instead of time.

We shall work with 4 different approximations of order 3:

∂2u

∂x2

∣∣∣∣
P1

x=xi

(δx2) =
ui+1 − ui + ui−1

δx2

∂2u

∂x2

∣∣∣∣
P2

x=xi

(4δx2) =
ui+2 − ui + ui−2

4δx2

∂2u

∂x2

∣∣∣∣
P3

x=xi

(9δx2) =
ui+3 − ui + ui−3

9δx2

∂2u

∂x2

∣∣∣∣
P4

x=xi

(16δx2) =
ui+4 − ui + ui−4

16δx2

These approximations differ only in the grid width δx used to obtain them.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Richardson Extrapolation

Richardson Extrapolation II

We develop these approximations into Taylor series around the correct, but unknown,

second derivative, ∂2u
∂x2 :

∂2u

∂x2
(η) =

∂2u

∂x2
+ e1 · η + e2 · η2

2!
+ e3 · η3

3!
+ . . .

Therefore:

∂2u

∂x2

P1

(δx2) ≈ ∂2u

∂x2
+ e1 · δx2 +

e2

2!
· δx4 +

e3

3!
· δx6

∂2u

∂x2

P2

(4δx2) ≈ ∂2u

∂x2
+ e1 · (4δx2) +

e2

2!
· (4δx2)2 +

e3

3!
· (4δx2)3

∂2u

∂x2

P3

(9δx2) ≈ ∂2u

∂x2
+ e1 · (9δx2) +

e2

2!
· (9δx2)2 +

e3

3!
· (9δx2)3

∂2u

∂x2

P4

(16δx2) ≈ ∂2u

∂x2
+ e1 · (16δx2) +

e2

2!
· (16δx2)2 +

e3

3!
· (16δx2)3

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Richardson Extrapolation

Richardson Extrapolation III

In matrix-vector notation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u
∂x2

P1

∂2u
∂x2

P2

∂2u
∂x2

P3

∂2u
∂x2

P4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎝

(δx2)0 (δx2)1 (δx2)2 (δx2)3

(4δx2)0 (4δx2)1 (4δx2)2 (4δx2)3

(9δx2)0 (9δx2)1 (9δx2)2 (9δx2)3

(16δx2)0 (16δx2)1 (16δx2)2 (16δx2)3

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

∂2u
∂x2
e1

e2/2
e3/6

⎞
⎟⎟⎟⎠

Thus:

∂2u

∂x2
≈

(
56
35

− 28
35

8
35

− 1
35

)
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u
∂x2

P1

∂2u
∂x2

P2

∂2u
∂x2

P3

∂2u
∂x2

P4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Once again, the top row of the inverse of the Vandermonde matrix does not depend
on δx .

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Richardson Extrapolation

Richardson Extrapolation IV

By substituting the four approximations into the formula for ∂2u
∂x2 , we obtain:

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1

5040δx2
(−9ui+4 + 128ui+3 − 1008ui+2 + 8064ui+1

− 14350ui + 8064ui−1 − 1008ui−2 + 128ui−3 − 9ui−4)

which is exactly the central 9th-order accurate approximation of the second spatial
derivative.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Richardson Extrapolation

Richardson Extrapolation V

� Once again, Richardson extrapolation has maximized the order of
approximation accuracy of the method.

� The Richardson coefficients are different here from those found in the case of
time integration using Richardson extrapolation. This is due to the quadratic
δx2 used in our new application in comparison with the linear h used in the time
discretization.

� Each additional approximation used increases the order of the overall method by
two, rather than by one, as each additional approximation adds two support
values to the set, one on each side.

� Since we didn’t state in the derivation of the Richardson extrapolation, how the
individual spatial derivatives are being computed, the approach works for all
approximations. In particular, it also works for the biased formulae used in the
vicinity of the boundaries. The Richardson coefficients do not change.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Order and Grid Width Control

Order and Grid Width Control

Let us now look at a slightly different problem:

∂u

∂t
= 4

∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0, ∞)

u(x, t = 0) = 20 sin

(
π

2
x

)
+ 300

u(x = 0, t) = 20 sin

(
π

12
t

)
+ 300

∂u

∂x
(x = 1, t) = 0

� We again solve a one-dimensional heat equation, but with a different time
constant, and different initial and boundary conditions.

� This time around, we don’t know the analytical solution, hence we cannot
compute the consistency error explicitly.

� Similarly to the step-size control algorithms discussed in the previous chapters,
we need an estimator of the spatial discretization error.

� All numerical algorithms should have a second algorithm built in to them that
reasons about the sanity of the first algorithm and starts screaming if it thinks
that something is going awry. Without such a sanity check, numerical
algorithms are never safe.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Order and Grid Width Control

Order and Grid Width Control II

We propose to compute all spatial derivatives twice, once with the grid size δx , and
once with the grid size 2δx using central differences:

∂2u

∂x2

∣∣∣∣
P1

x=xi

(δx2) =
ui+1 − ui + ui−1

δx2

∂2u

∂x2

∣∣∣∣
P2

x=xi

(4δx2) =
ui+2 − ui + ui−2

4δx2

The two approximations form two separate partial derivative vectors, u
P1
xx and u

P2
xx .

Using these approximations, we can formulate a spatial error estimate:

εrel =
|uP1

xx − u
P2
xx |

max(|uP1
xx |, |uP2

xx |, δ)

where δ is a fudge factor, e.g., δ = 10−10.

If the estimated spatial discretization error is too big, we must either choose a more
narrow grid, or alternatively, we must increase the approximation order of the spatial
derivatives.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Order and Grid Width Control

Order and Grid Width Control III

Is it wasteful to compute the entire vector of spatial derivatives twice?

This question must clearly be answered in the negative. The two predictors can be
used in a Richardson corrector step:

uC
xx =

4

3
· uP1

xx − 1

3
· uP2

xx

This is equivalent to having raised the approximation order of the spatial derivatives
from three to five.

However, by writing the 5th-order accurate spatial derivative formula in this way, we
get an error estimator essentially for free.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Startup Problem

The Startup Problem

Since parabolic PDEs converted to sets of ODEs by the method of lines invariably lead
to stiff systems, we need to use a stiff system solver for their simulation. Traditionally,
we will choose a BDF algorithm.

The problem is that BDF algorithms (except for BDF1 = BE) are not self-starting.
Hence we need a starter algorithm. We now wish to compare different starter
algorithms to each other.

Let us simulate:

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10
300

305

310

315

320

1D Diffusion

S
o
lu

ti
o
n

Time Space

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Startup Problem

The Startup Problem II

Let us look at a slice through the solution. We plot u(x = 1, t):

0 1 2 3 4 5 6 7 8 9 10
300

305

310

315

320

325
1D Diffusion (x = 1)

Time

S
o
lu

ti
o
n

The solution has a fast gradient at the beginning. Hence the choice of a suitable
starter algorithm may be important.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Startup Problem

The Startup Problem III

We compare three different starter algorithms and plot the accuracy vs. the cost (step
size).

10−3 10−2 10−1
10−10

10−5

100

BDF

RK3

IEX3

Accuracy vs. Cost

Step Size

R
el

at
iv

e
E
rr

or

All three solutions were simulated using BDF3 using a fixed step size. They only differ
in the first two steps that use different startup algorithms employing the same step
size used afterwards by BDF3:

1. BDF: We used one step of BDF1 (BE) followed by one step of BDF2.

2. RK3: We used two steps of FRK3.

3. IEX3: We used two steps of IEX3.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

The Startup Problem

The Startup Problem IV

� The BDF starter didn’t work very well. The simulation accumulates lots of
errors during the first two step due to the low resolution of the low-order
algorithms, and it doesn’t recover from those errors ever.

� The RK3 starter worked much better, at least for sufficiently small step sizes.
For larger step sizes, the RK3 algorithm loses its numerical stability, and
consequently, accumulates lots of errors during the first two steps.

� The IEX3 starter worked best. It is a stiff system solver, and although the first
two steps are relatively expensive to compute, this doesn’t matter in the longer
run.

I also tried a BI4/50.45 starter. It didn’t work well on this example. The reason is that
the backward RKF semi-step is numerically highly unstable. It is only stabilized by the
Newton iteration. In the given application, we ran into roundoff error problems. The
unstable semi-step produced numbers so big that the Newton iteration could not
stabilize them any longer due to roundoff.

Numerical Simulation of Dynamic Systems XI

Partial Differential Equations

Conclusions

Conclusions

� In this presentation, we introduced the method of lines as a general means for
converting PDE problems into equivalent ODE problems that we already know
how to simulate.

� We looked at one class of PDE problems in detail, namely the class of parabolic
PDEs, that always lead to stiff systems in their conversion to ODE systems.

� We also looked at a new type of error, the consistency error, that describes the
difference between the analytical solutions of the original PDE problem and the
converted ODE problem.

� We finally discussed an interesting algorithm for grid width and order control in
spatial discretization and looked once more at the startup problem of stiff
system solvers.

