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Let us now analyze the second class of PDE problems, the hyperbolic PDEs. The
simplest specimen of this class of problems is the wave equation or linear conservation
law:

∂2u

∂t2
= c2 · ∂2u

∂x2

which can be easily converted to two first-order PDEs:

∂u

∂t
= v

∂v

∂t
= c2 · ∂2u

∂x2

This time around, we need two initial conditions and two boundary conditions.
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One complete specification of such a model could be:

∂2u

∂t2
=

∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0,∞)

u(x , t = 0) = sin
( π

2
x
)

∂u

∂t
(x , t = 0) = 0.0

u(x = 0, t) = 0.0

∂u

∂x
(x = 1, t) = 0.0
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The PDE model can be easily converted to a set of ODEs using the method of lines:

u1 = 0.0

u̇2 = v2

. . .

u̇n = vn

u̇n+1 = vn+1

v1 = 0.0

v̇2 = n2 (u3 − 2u2 + u1)

v̇3 = n2 (u4 − 2u3 + u2)

. . .

v̇n = n2 (un+1 − 2un + un−1)

v̇n+1 = 2n2 (un − un+1)

initial conditions :

u2(0) = sin
( π

2n

)
. . .

un(0) = sin

(
(n − 1)π

2n

)

un+1(0) = sin
( π

2

)
v2(0) = 0.0

v3(0) = 0.0

. . .

vn(0) = 0.0

vn+1(0) = 0.0
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This is a linear, time-invariant, inhomogeneous, (2n)th-order, single-input system of
the type:

ẋ = A · x + b · u
where:

A =

(
0(n) I(n)

A21 0(n)

)

with:

A21 = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A is a band-structured matrix of dimensions 2n × 2n with two separate non-zero
bands.
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Let us look at the distribution of eigenvalues of the A-matrix in function of the grid
width:

n = 3 n = 4 n = 5 n = 6
±1.5529j ±1.5607j ±1.5643j ±1.5663j
±4.2426j ±4.4446j ±4.5399j ±4.5922j
±5.7956j ±6.6518j ±7.0711j ±7.3051j

±7.8463j ±8.9101j ±9.5202j
±9.8769j ±11.0866j

±11.8973j

Therefore:
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� We notice that all eigenvalues of the wave equation converted to a set of ODEs
are on the imaginary axis. The wave equation is totally undamped.

� We notice further that, whereas the eigenvalue pair of the converted ODE set
with the lowest frequency component remains more or less at the same location,
eigenvalues with ever increasing frequency components are added as the number
of discretization points grows, i.e., as the discretization grid is made finer.

� Hyperbolic PDEs converted to a set of equivalent ODEs using the method of
lines always lead to marginally stable systems.

� Hence there are now two types of marginally stable systems: lumped
parameter systems without or with little damping, and hyperbolic PDEs that
become marginally stable in the conversion to ODEs.
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We chose once again an example of a system, for which the analytical solution is
known:

u(x , t) =
1

2
sin

( π

2
(x − t)

)
+

1

2
sin

( π

2
(x + t)

)
Hence we can compute the consistency error explicitly.

� Traditionally, the numerical PDE literature talks about the three facets:
stability, consistency, and convergence. It is then customary to prove that any
two of the three imply the third one, i.e., it is sufficient to look at any selection
of two of the three.

� However, that way of reasoning is more conducive to fully discretized (finite
difference or finite element) schemes, where the step size in time, h, is locked in
a fixed relationship with the grid width in space, δx .

� Consequently, h and δx approach zero simultaneously.

In the context of the method of lines methodology, our approach may be more
appealing.
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We compare the analytical solutions of the original PDE problem and the discretized
ODE problem with each other and compute the consistency error:
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Let us compare the frequency ratios of the third-order and fifth-order approximations
of the spatial derivative:
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3rd-order

� The frequency ratio of the more accurate 5th-order scheme is consistently higher
than that of the less accurate 3rd -order scheme for the same number of
segments.

� Since the true PDE solution, corresponding to the solution with infinitely many
infinitely dense discretization lines, has a frequency ratio that is infinitely large,
we suspect that choosing a higher-order discretization scheme may indeed help
with the reduction of the consistency error.
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Let us compare the consistency errors of the third-order and fifth-order approximations
of the spatial derivative:
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� The improvement from the 3rd -order to the 5th-order approximation is quite
dramatic.

� The consistency error has been reduced by at least two orders of magnitude.

� Using the 5th-order scheme almost always pays off.

� The scheme should be implemented as a sequence of two 3rd -order schemes
with a Richardson corrector.
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Comparing different ODE solvers with each other for simulating the wave equation
discretized using a fifth-order approximation in space with 50 segments, we find:

h RK3 IEX3 BI3
0.1 unstable 0.6782e-4 0.4947e-6
0.05 unstable 0.8668e-5 0.2895e-7
0.02 unstable 0.5611e-6 0.1324e-8
0.01 0.7034e-7 0.7029e-7 0.2070e-8
0.005 0.8954e-8 0.8791e-8 0.2116e-8
0.002 0.2219e-8 0.2145e-8 0.2120e-8
0.001 0.2127e-8 0.2119e-8 0.2120e-8

h AB3 ABM3 AM3 BDF3
0.1 unstable unstable unstable garbage
0.05 unstable unstable unstable garbage
0.02 unstable unstable unstable garbage
0.01 unstable 0.6996e-7 unstable garbage
0.005 0.7906e-7 0.8772e-8 0.8783e-8 0.9469e-2
0.002 0.5427e-8 0.2156e-8 0.2149e-8 0.1742e-6
0.001 0.2239e-8 0.2120e-8 0.2120e-8 0.4363e-7
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� Using a step size of h = 0.001, all seven 3rd -order accurate ODE solvers
simulate the problem successfully. In fact, all of them with the exception of
BDF3 are down to the level of the consistency error. Some of them are more
efficient than others, but all of them are successful.

� As the step size becomes smaller, the higher-order terms in the Taylor-series
expansion become less and less important. For sufficiently small step sizes, all
integration algorithms behave either like forward or backward Euler.

� BDF3 performs a bit poorer than the other algorithms, because its error
coefficient is considerably larger than that of its competitors. BDF algorithms
perform generally somewhat poor in terms of accuracy in comparison with their
peers of equal order.

Numerical Simulation of Dynamic Systems XII

Partial Differential Equations II

Hyperbolic PDEs

Simulation of Hyperbolic PDEs III

� It turns out that the problem is kind of “stiff,” although it does not meet most
of the conventional definitions of stiffness. The problem is “stiff” in the sense
that all the algorithms with stability domains looping into the left-half plane are
unable to produce solutions with the desired accuracy of 1.0%, since they are
numerically unstable when a step size is used that would produce the desired
accuracy otherwise.

� BDF3 doesn’t suffer the same fate, but it eventually succumbs to error
accumulation problems. As the step sizes grow too big, the computations
become so inaccurate that the simulation error exceeds the simulation output in
magnitude. Hence BDF3 starts accumulating numerical garbage.

� Only IEX3 and BI3 are capable of solving the problem successfully for large step
sizes. Between the two, BI3 seems to work a little better, which is no big
surprise. Being an F-stable algorithm, BI3 is earmarked for these types of
applications.
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Representing the same information graphically:
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� The BI3 algorithm is the one that is most effective in solving this problem.

� We did not try the GE3 algorithm. That algorithm would be expected to be
quite efficient also for this problem.
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Let us now study a more involved hyperbolic PDE problem.

A thin tube of length 1 m is initially pressurized at pB = 1.1 atm. The tube is located
at sea level, i.e., the surrounding atmosphere has a pressure of
p0 = 1.0 atm = 760.0 Torr = 1.0132 · 105 N m−2. The current temperature is
T = 300.0 K.

At time zero, the tube is opened at one of its two ends. We wish to determine the
pressure at various places inside the tube as functions of time.

As the tube is opened, air rushes out of the tube, and a rarefaction wave enters the
pipe. Had the initial pressure inside the pipe been smaller than the outside pressure,
air would have rushed in, and a compression wave would have formed.
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The problem can be mathematically described by a set of first-order hyperbolic PDEs:

∂ρ

∂t
= −v · ∂ρ

∂x
− ρ · ∂v

∂x

∂v

∂t
= −v · ∂v

∂x
− a

ρ

∂p

∂t
= −v · a − γ · p · ∂v

∂x

a =
∂p

∂x
+

∂q

∂x
+ f

q =

⎧⎨
⎩ β · δx2 · ρ ·

(
∂v
∂x

)2
; ∂v

∂x
< 0.0

0.0 ; ∂v
∂x

≥ 0.0

f =
α · ρ · v · |v|

δx

where ρ(x , t) denotes the gas density inside the tube at position x and time t, v(x , t)
denotes the gas velocity, and p(x , t) denotes the gas pressure. The quantity a was
pulled out into a separate algebraic equation, since the same quantity is used in two
places within the model.
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The two quantities, q and f , are artificial, as their dependence on δx shows. Clearly,
δx is not a physical quantity, but is introduced only in the process of converting the
(small) set of PDEs into a (large) set of ODEs. q denotes the pseudo viscous pressure,
and f denotes the frictional resistance. These quantities were introduced by Richtmyer
and Morton in order to smoothen out numerical problems with the solution.

γ is the ratio of specific heat constants, a non-dimensional constant with a value of
γ = cp/cv = 1.4. α and β are non-dimensional numerical fudge factors. We shall
initially assign the following values to them: α = β = 0.1. The “ideal” (i.e.,
undamped) problem has α = β = 0.0.

Introduction of the two dissipative terms is not a bad idea, since the “ideal” solution
does not represent a physical phenomenon in any true sense. Phenomena without any
sort of dissipation belong allegedly in the world that we may enter after we die. They
certainly don’t form any part of this universe.
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The initial conditions are:

ρ(x , t = 0.0) = ρB

v(x , t = 0.0) = 0.0

p(x , t = 0.0) = pB

where ρB is determined by the equation of state for ideal gases:

ρB =
pB · Mair

R · T

with T = 300.0 denoting the absolute temperature (measured in Kelvin),
R = 8.314 J K−1 mole−1 the gas constant, and Mair = 28.96 g mole−1 the average
molar mass of air.
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The boundary conditions are:

v(x = 0.0, t) = 0.0

ρ(x = 1.0, t) = ρ0{
v(x = 1.0, t) = −

√
2(p0−p(x=1.0,t)

ρ(x=1.0,t)
; v(x = 1.0, t) < 0.0

p(x = 1.0, t) = p0 ; v(x = 1.0, t) ≥ 0.0

The air velocity, v(x , t), is zero at the closed end (x = 0.0). The air density, ρ(x , t), is
equal to the ambient air density, ρ0, at the open end (x = 1.0). The third boundary
condition is formulated differently depending on the current air flow direction. If air is
flowing out of the tube (v ≥ 0.0), we set the air pressure, p(x , t), equal to the
ambient air pressure, p0. If air is rushing in (v < 0.0), we formulate an equation for
the air velocity at the open end as a function of the pressure gradient and the air
density at that location.
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We converted all spatial derivatives by means of second-order accurate central
differences using the formula:

∂u

∂x

∣∣∣∣
x=xi

≈ 1

2δx
· (ui+1 − ui−1)

where we gained one order of approximation accuracy due to symmetry, with the
exception of locations near the boundaries, where we used second-order accurate
biased differences:

∂u

∂x
(x = x1, t) ≈ 1

2δx
·(−u3 + 4u2 − 3u1)

∂u

∂x
(x = xn+1, t) ≈ 1

2δx
·(3un+1 − 4un + un−1)

The variable u can stand for either ρ, v , p, or q.
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I coded a Matlab function that realizes the computation of the first spatial derivative
including special treatment of boundary conditions:

ux = partial(u, δx, bc, bctype);

where bc denotes the location of the boundary condition:

bc = −1 : boundary condition specified at left boundary

bc = 0 : no boundary condition specified

bc = +1 : boundary condition specified at right boundary

and bctype determines the type of boundary condition:

bctype = 0 : Neumann boundary condition

bctype = 1 : Dirichlet boundary condition
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Now the discretized model can be formulated as follows (in pseudo-Matlab code):

function [xdot] = st eq(x, t)
%
% State − space model of shock − tube problem
%
n = round(length(x)/3);
n1 = n + 1;
δx = 1/n;
%
% Constants
%
R = 8.314;
%
% Physical parameters
%
Temp = 300;
Mair = 0.02896;
p0 = 1.0132e5;
ρ0 = p0 ∗ Mair/(R ∗ Temp);
γ = 1.4;
%
% Fudge factors
%
global α β
%
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% Unpack individual state vectors from total state vector
%
ρ = [ x(1 : n) ; ρ0 ];
v = [ 0 ; x(n1 : 2 ∗ n) ];
p = x(n1 + n : n1 + 2 ∗ n);
%
% Calculate nonlinear boundary condition
%
if v(n1) < 0,

v(n1) = −sqrt(max([2 ∗ (p0 − p(n1))/ρ(n1), 0]));
else

p(n1) = p0;
end
%
% Calculate spatial derivatives
%
ρx = partial(ρ, δx, +1, +1);
vx = partial(v, δx, −1, +1);
px = partial(p, δx, +1, +1);
%
% Calculate algebraic quantities
%
f = α ∗ (ρ . ∗ v . ∗ abs(v))/δx ;
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q = zeros(n1, 1);
for i = 1 : n1,

if vx (i) < 0,

q(i) = β ∗ (δx2) ∗ ρ(i) ∗ (vx (i)2);
end,

end
qx = partial(q, δx,−1, +1);
a = px + qx + f ;
%
% Calculate temporal derivatives
%
ρt = −(v . ∗ ρx ) − (ρ . ∗ vx );
vt = −(v . ∗ vx ) − (a ./ ρ);
pt = −(v . ∗ a) − γ ∗ (p . ∗ vx );
%
% Pack individual state derivatives into total state derivative vector
%
xdot = [ ρt (1 : n) ; vt (2 : n1) ; pt ];

return
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The resulting set of 151 nonlinear ODEs was simulated across 0.01 sec using the
RKF4/5 algorithm with step-size control.
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� The bottom right curve shows the air pressure as a function of time. The solid
curve depicts the pressure 20 cm away from the closed end, the dashed line
shows the pressure 40 cm away, the dot-dashed line 60 cm away, and the dotted
line 80 cm away.

� As the end of tube opens, the point closest to the opening experiences the
rarefaction wave first. The points further into the tube experience the wave
later. From the bottom right graph, it can be concluded that the wave travels
through the tube with a constant wave-front velocity of roughly 35 cm per
0.001 sec, or 350.0 m sec−1. This is the correct value of the velocity of sound
at sea level and at a temperature of T = 300 K. Thus, our simulation seems to
be working fine.

� As the rarefaction wave reaches the closed end of the tube, the inertia of the
flowing air creates a vacuum. The air flows further, but cannot be replaced by
more air from the left. Consequently, the air pressure now sinks below that of
the outside air.

� As the vacuum reaches the open end of the tube, a new wave is created, this
time a compression wave, that races back into the tube.
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I ended the simulation at t = 0.01 sec, since shortly thereafter, the Runge-Kutta
algorithm would finally give up on me, and die with an error message!

We need to ask ourselves, how accurate are the results? To answer this question, I
repeated the simulation with 100 segments.
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� The simulation results are visibly different. Moreover, the differences grow over
time. Is this a consistency error, or simply the result of an inaccurate
simulation?
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� To answer this question, I repeated the same experiment once more, this time
using the BI4 algorithm that is supposed to work for this problem at least as
well as the RK algorithm.

� The simulation results are indistinguishable by naked eye. Whereas the largest
relative distance between the air pressure with 50 and 100 segments:

err =
max(max(abs(p100 − p50)))

max([‖p100‖, ‖p50‖])

is err = 7.5726e − 4, the largest relative distance between the air pressure with
50 segments comparing the two different integration algorithms is
err = 1.2374e − 7, and with 100 segments, it is err = 6.3448e − 7.

� Hence the simulation error is smaller than the consistency error by three orders
of magnitude. Evidently, we are not faced with a simulation problem at all, but
rather with a modeling problem. The simulation is as accurate as can be
expected.
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The BI4 algorithm turned out to be at least as accurate as the RKF4/5 algorithm on
this problem. Yet BI4 was disappointingly inefficient in spite of using step sizes that
were quite a bit larger than those employed by RKF4/5.

The inefficiency is caused by the computation of the Jacobian matrix, which was
approximated numerically:

function [J] = jacobian(x, t)
%
% Jacobian of shock − tube problem
%
n = length(x);
J = zeros(n, n);
xdref = st eq(x, t);
for i = 1 : n,

xnew = x ;
if abs(x(i)) < 1.0e − 6,

xnew (i) = 0.05;
else

xnew (i) = 1.05 ∗ x(i);
end,
xdnew = st eq(x, t);
J(:, i) = (xdnew − xdref )/(xnew (i) − x(i));

end
return
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� Every single Jacobian, which is being computed once per integration step,
requires 152 additional function evaluations in the case of a 50-segment
simulation, and 302 additional function evaluations in the case of a 100-segment
simulation.

� The overhead is atrocious and kills the efficiency of the algorithm.

� We shall have to do something about the size of these matrices. This problem
shall be tackled in the next chapter.

What can we do to reduce the consistency error?

From our previous discussions, we know the answer to this question. If we increase the
approximation order of the spatial derivatives by two, the consistency error is expected
to decrease by two orders of magnitude.
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To this end, I modified the partial function to use fourth-order accurate central
differences instead of the previously used second-order accurate central differences:

∂u

∂x

∣∣∣∣
x=xi

≈ 1

12δx
· (−ui+2 + 8ui+1 − 8ui−1 + ui−2)

and near the boundaries:

∂u

∂x
(x = x1, t) ≈ 1

12δx
·(−3u5 + 16u4 − 36u3 + 48u2 − 25u1)

∂u

∂x
(x = x2, t) ≈ 1

12δx
·(u5 − 6u4 + 18u3 − 10u2 − 3u1)

∂u

∂x
(x = xn, t) ≈ 1

12δx
·(3un+1 + 10un − 18un−1 + 6un−2 − un−3)

∂u

∂x
(x = xn+1, t) ≈ 1

12δx
·(25un+1 − 48 ∗ un + 36un−1 − 16un−2 + 3un−3)
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with the following modifications for Neumann boundary conditions:

∂u

∂x
(x = x1, t) ≈ 0.0

∂u

∂x
(x = x2, t) ≈ 1

12δx
· (−u4 + 8u3 + u2 − 8u1)

∂u

∂x
(x = xn, t) ≈ 1

12δx
· (8un+1 − un − 8un−1 + un−2)

∂u

∂x
(x = xn+1, t) ≈ 0.0
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Shock Waves XIX

� We simulated the system using RKF4/5.

� Unfortunately, the experiment failed miserably. The integration step size had to
be reduced by three orders of magnitude to values around h = 10−8, in order to
obtain a numerically stable solution, and the results are still incorrect.

� Shift-out killed us.

� With step sizes that small, the higher order terms of the Taylor-series expansion
become irrelevant, and RKF4/5 behaves just like forward Euler. Consequently,
also the stability domain of the method shrinks to that of forward Euler, which
is totally useless with eigenvalues of the Jacobian spread up and down along the
imaginary axis of the complex λ · h-plane.

� Unfortunately, BI4 didn’t work any better. The roundoff errors still killed us.
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Shock Waves XX

� Why did all simulation attempts fail after a little more than 0.01 seconds of
simulated time?

� In flow simulations (and in real flow experiments), it can happen that the top of
the wave travels faster than the bottom of the wave. When this happens, the
wave will eventually topple over, and at this moment, the wave front becomes
infinitely steep. The flow is no longer laminar; it has now become turbulent.

� This is what happens in our shock-tube problem as subsequent versions of
rarefaction and compression waves chase after each other back and forth
through the tube at ever shorter time intervals. No wonder that the bottom of
the three-dimensional plots of the shock-tube simulation look like the bottom of
a water fall.

� The method of lines method doesn’t work for simulating turbulent flows. There
exist other simulation techniques (such as vortex methods) that work well for
simulating models with very high Reynolds numbers (above 100 or 1000), and
that don’t work at all for laminar flows.
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� Reynolds numbers between 1.0 (transition from laminar to turbulent flow)
and 100, is where the real research in numerical solution of hyperbolic PDE
problems is to be found. Until this day, we don’t have any decent simulation
methods that can deal appropriately with turbulent flows at low Reynolds
numbers.
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Upwind Discretization

One very simple and appealing way to alleviate the numerical problems in simulating
hyperbolic PDEs is to use upwind discretization.

The idea of upwind discretization is trivial. As a wave travels through space, e.g. from
left to right, it may make sense to use in the computation of the spatial derivatives
more points from the “past” of the wave, i.e., from the direction, where the wave
comes from, i.e., from the “upwind” direction. Rather than using central differences,
we now use biased differences, biased in the upwind direction.

Many wave propagation problems can be formulated in the following way:

∂u

∂t
+ v · ∂u

∂x
= 0.0

The velocity v determines the direction of flow of the wave. If v > 0, the wave moves
from left to right. If v < 0, it moves from right to left.
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Upwind Discretization II

The upwind discretization scheme can thus be implemented e.g. as follows:

∂u

∂x
(x = xi , t) ≈

⎧⎨
⎩

(3ui − 4ui−1 + ui−2)/(2δx) , v � 0
(ui+1 − ui−1)/(2δx) , v ≈ 0

(−ui+2 + 4ui+1 − 3ui )/(2δx) , v 	 0

Looking at the shock-tube problem with α = β = 0.0:

∂ρ

∂t
= −v · ∂ρ

∂x
− ρ · ∂v

∂x
∂v

∂t
= −v · ∂v

∂x
− 1

ρ
· ∂p

∂x

∂p

∂t
= −v · ∂p

∂x
− γ · p · ∂v

∂x

we recognize three traveling waves each with a correction term.
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Upwind Discretization III

We encoded the upwind formulae in the Matlab function:

ux = upwindv(u, δx, bc, bctype, fdirv);

where fdirv is a vector of flow directions.

Carver proposed in his Forsim-VI manual, from where we borrowed the shock-tube
example, to compute the spatial derivatives of the ρ-variable by upwind discretization.
I did the same, and it worked, but didn’t accomplish much, i.e., it did not resolve any
of the numerical difficulties encountered earlier.

I then tried to also compute the spatial derivatives of the v - and p-variables by upwind
discretization, but this didn’t help at all. The numerical problems actually got worse.
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� Simulation hyperbolic PDEs is still more of an art than a science.

� We are still far from a situation, where we can formulate a hyperbolic PDE
problem by just writing down the model and then press a button to get the
model simulated.

� Unfortunately, the numerical solution depends heavily on the right combination
of algorithms employed, and it is not easy to know beforehand, which algorithms
to use. This requires much experience and often quite a bit of experimentation.

� The simulation of hyperbolic PDEs is to this day the discipline of kings among
applied mathematicians. Most mathematicians have meanwhile left the field of
numerical ODE solutions, considering the problem solved once and for all
(although it is not). Hyperbolic PDEs are nowadays their preferred playground.
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Grid-width Control

How can we make the solution more accurate without paying too much for it?

We already know that it is generally a bad idea to reduce the consistency error by
decreasing the grid width. It is much more effective to increase the approximation
order of the spatial discretization scheme, whenever possible. Yet, the shock-tube
problem has demonstrated that this approach may not always work.

A more narrow grid may be needed in order to accurately compute a wave front. It
seems intuitively evident that a more narrow grid width should be used where the
absolute spatial gradient is large, thus:

δxi (t) ∝
∣∣∣∣∂u

∂x
(x = xi , t)

∣∣∣∣−1

In the context of hyperbolic PDEs, this unfortunately suggests use of an adaptively
moving grid, since the narrowly spaced regions of the grid should follow the wave
fronts through space and time.
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Grid-width Control II

Mack Hyman published some interesting work relating to this issue. He proposed the
following:

� We basically operate on a fixed grid as before.

� However, we want to make sure that:

δxi (t) ·
∣∣∣∣∂u

∂x
(x = xi , t)

∣∣∣∣ ≤ kmax

� If the absolute spatial gradient grows at some point in space and time, we must
reduce the local grid size in order to keep the above inequality satisfied.

� We do this by inserting a new auxiliary grid point in the middle between two
existing points.
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Grid-width Control III

� We should do this before the consistency error grows too large. It makes sense
to look at the quantity:

1

h

(∣∣∣∣ ∂u

∂x
(x = xi , t = tk )

∣∣∣∣ −
∣∣∣∣∂u

∂x
(x = xi , t = tk−1)

∣∣∣∣
)

≈ d

dt

(∣∣∣∣∂u

∂x
(x = xi , t)

∣∣∣∣
)

� If the inequality is in danger of not being satisfied any longer and if the temporal
gradient of the absolute spatial gradient is positive, we insert a new grid point.

� On the other hand, if the inequality shows a sufficiently small value and if
furthermore the temporal gradient is negative, neighboring auxiliary grid points
can be thrown out again.

� The new grid point solutions are computed using spatial interpolation. These
solutions are then used as initial conditions for the subsequent integration of the
newly activated differential equations over time. When a grid point is thrown
out again, so is the differential equation that accompanies it.
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� The entire process is completely transparent to the user. Only those solution
points are reported, for which a solution had been requested. The actually used
basic grid width (determined using true grid-width control at time zero) and the
auxiliary grid points that are introduced and removed during the simulation are
internal to the algorithm, and the casual user doesn’t need to be made aware of
their existence.

� This is analogous to the concepts of communication points and a
communication interval, which are disjoint from the concepts of the step size
and the sampling rate introduced when discussing integration across time.
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Conclusions

� In this presentation, we have looked at the simulation of hyperbolic PDEs in a
single space dimension.

� We have discovered that there is a strong interaction between the efficiency of
the simulation and the combination of numerical algorithms used to achieve it.

� The simulation of hyperbolic PDEs still defies the desire to fully automate the
process of converting the model to a form that can be successfully simulated.
The user requires a lot of insight in order to choose the best possible
combination of algorithms, and often insight is not enough. The modeling and
simulation environment should offer a fairly large number of algorithms that can
be conveniently and easily combined so that the user can experiment with them.

� This was the approach taken in Forsim-VI, a Fortran-coded software
environment for the numerical simulation of PDEs.
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Conclusions II

� However, other environments have chosen a different approach.

� The currently most successful environment for the simulation of PDEs is
Comsol (formerly Femlab).

� Comsol offers templates for a fairly large variety of PDE problems. Each
template is simulated by a set of algorithms well suited for the specific type of
PDE problem.

� The user selects the appropriate template and adjusts it to his or her needs by
entering the correct coefficients in the form of template parameters.

� Comsol is not as general as Forsim, because it may happen that a user doesn’t
find any template that matches his or her specific needs, but if and when a
suitable template is available, Comsol is much easier to use and in most cases
quite efficient in its simulations.
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