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In principle, the MOL methodology can be extended without modification to the case
of PDEs in multiple space dimensions. For example, the two-dimensional heat flow
problem:

∂u

∂t
= σ

(
∂2u

∂x2
+

∂2u

∂y2

)

discretized using third-order accurate finite difference formulae for both the
discretization in the x- and in the y -directions leads to the following ODE at point
x = xi and y = yj :

dui,j

dt
≈ σ

(
ui+1,j − 2ui,j + ui−1,j

δx2
+

ui,j+1 − 2ui,j + ui,j−1

δy2

)

Yet, the problems are formidable. The first, and most frightening, problem is
concerned with the sheer numbers of resulting ODEs.

Let us assume that we use 50 segments in each space dimension. Then, the 2D
problem has 50 × 50 = 2500 ODEs, whereas the 3D problem has
50 × 50 × 50 = 125, 000 ODEs. The A-matrix of the 3D problem has
125, 000 × 125, 000 = 15, 624, 000, 000 elements.
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The second problem has to do with the distribution of the non-zero elements in the
A-matrix. Until now, it always happened that the A-matrix of a single linear PDE
converted by use of finite differences was band-structured with a narrow band width.
There exist special matrix routines for very efficient handling of band-structured
matrices.

The A-matrices of 2D and 3D problems are still band-structured, but the bandwidth is
no longer as narrow.
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Let n be the number of segments. In the 1D case, the bandwidth was constant. In the
2D case, it grows proportional in n. In the 3D case, it grows proportional in n2.
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The third problem has to do with the location of the boundary conditions. Until now,
we could always assume that the boundary conditions were applied at grid points.

We can no longer make that assumption in the 2D and 3D cases:
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Let us assume that four neighboring values on grid points in x-direction for y = yj are
u1,j , u2,j , u3,j , and u4,j . Let us assume further that the boundary value is known at
x = x1.35 located between x1 and x2.

If we know the four solution values u1,j , u2,j , u3,j , and u4,j , we can use the Nordsieck
vector approach to compute u1.35,j . u1.35,j can be expressed as a weighted sum of u1,j ,
u2,j , u3,j , and u4,j .

In reality, however, we know u1.35,j (boundary value), and u2,j , u3,j , and u4,j (through
numerical integration - internal to the domain). What is unknown is u1,j (external to
the domain).

Thus, we need to solve the previously determined equation for the unknown u1,j

instead for the known u1.35,j .
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� PDEs in one space dimension were still lots of fun. PDEs in multiple space
dimensions are painful, to say the least.

� A large number of applied mathematicians devote their entire academic careers
to nothing but solving these types of challenging numerical PDE problems.

� Unfortunately, the recipes that they have come up with so far are often rather
ad hoc. There are no good theories available yet for which techniques work best
when and why.

� Consequently, there remains a formidable amount of research yet to be explored.
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The class of elliptic PDEs is the one easiest to solve. yet, we have saved it until now,
because elliptic PDE problems are rarely defined in a single space dimension.

The simplest elliptic PDE is the Laplace equation, e.g. in two space dimensions:

∂2u

∂x2
+

∂2u

∂y2
= 0.0

Let us assume the Laplace equation is defined in a circular domain of radius r = 1.0
around the origin. Since the domain is circular, it is much more appropriate to
formulate the problem using polar coordinates:

x = r · cos ϕ

y = r · sin ϕ

or:

r =
√

x2 + y2

ϕ = arctan
( y

x

)
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We can express u(x , y) as ũ(r(x , y), ϕ(x , y)). Thus:

∂u

∂x
=

∂ũ

∂r
· ∂r

∂x
+

∂ũ

∂ϕ
· ∂ϕ

∂x

or, in short–hand notation:
ux = ũr · rx + ũϕ · ϕx

Using the chain rule and the multiplication rule, we find:

uxx + uyy =
(
r2
x + r2

y

)
ũrr + 2 (rxϕx + ryϕy ) ũrϕ +

(
ϕ2

x + ϕ2
y

)
ũϕϕ

+ (rxx + ryy ) ũr + (ϕxx + ϕyy ) ũϕ

or finally:
∂2ũ

∂r2
+

1

r
· ∂ũ

∂r
+

1

r2
· ∂2ũ

∂ϕ2
= 0.0
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The boundary condition might be:

∂ũ

∂r
= f (ϕ, t)

� Notice that there is no need for any initial condition, since the PDE doesn’t
depend on time at all (except possibly through the boundary condition as in the
above example).

� No numerical integration across time will take place at all. We are thus in
trouble with our MOL methodology.

� We may still be able to apply the MOL approach by either differentiating along
r and integrating along ϕ, or alternatively, by differentiating along ϕ and
integrating along r .

� In both cases, however, we would be lacking one initial condition, and would
instead have one final condition too many. This is therefore not an initial value
problem, but rather a boundary value problem.
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Let us simplify the boundary condition a bit by assuming that it does not depend on
time. In this case, the problem is totally static, i.e., the solution is not time-dependent
at all. The solution consists simply of a set of u-values at the grid points.

We can now embed this problem within another problem as follows:

∂ũ

∂t
=

∂2ũ

∂r2
+

1

r
· ∂ũ

∂r
+

1

r2
· ∂2ũ

∂ϕ2

with the boundary condition:
∂ũ

∂r
= f (ϕ)

and with arbitrary initial conditions.
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� This is now clearly a parabolic initial value problem, which we already know how
to solve.

� Since the PDE is analytically stable, and since the boundary condition is not a
function of time, the solution will eventually settle into a steady state.

� Once the steady state has been reached, the solution no longer changes with
time, thus:

∂ũ

∂t
= 0.0

� we conclude that the steady-state solution of the parabolic PDE is identical with
the solution of the original elliptic PDE.

� This method of solving elliptic PDEs is called invariant embedding.

� The price that we had to pay for this comfort is formidable. We were able to
convert a boundary value problem into an initial value problem at the expense of
increasing the number of dimensions by one.
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Those of you who followed my companion class on Mathematical Modeling of Physical
Systems know my reservations against writing down mathematical formulae deprived
of their physical meaning. Mathematics is no end in itself. Mathematics is simply the
language of physics.

Voltages and currents in an electronic circuit don’t change their values as functions of
time, because they observe some differential equations. They change their values in
order to bring the system to a state of minimal energy.

A differential equation is not the cause that makes physics tick, it is only one way of
describing, in mathematical terms and after the fact, what happens in the process of
energy exchange taking place in the physical system.



Numerical Simulation of Dynamic Systems XIII

Partial Differential Equations III

Finite Element Approximations

Finite Element Approximations II

� Looking at the solution of the previously discussed Laplace equation, we know
that the solution will minimize the amount of energy stored in the system.

� Consequently, we can write an energy function parameterized in the (unknown)
solution values, and solve a minimization problem over the set of unknown
parameters. This leads to a set of algebraic equations, possibly non-linear, in the
unknown solution vector.

� Approaches that follow this line of reasoning are called finite element methods.
They come in many shades and colors.

� The technique was originally developed by civil engineers trying to determine the
static stress in bridges and other building structures. However, the method has
a much broader range of possible applications.

� For all practical purposes, it can be viewed as an alternative to the finite
difference approaches. Thus, it can conceptually also be used for other than
elliptic PDEs.
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� The two approaches have their own particular advantages and disadvantages.

� Finite elements usually are less infected by problems with consistency errors
than finite difference methods. Consequently, we can get by with a larger (and
irregular) mesh, and thus, with a smaller number of equations.

� On the other hand, finite difference approximations always lead to sparse
matrices. Finite element approximations do not share this property. As a
consequence, although the number of equations is smaller in the finite element
case, we may not be able to use sparse matrix techniques, and it is therefore not
evident that the smaller system size truly leads to a more economical algorithm.

� Also, a finite difference formulation is usually easier to derive and harder to
solve than a finite element formulation.

� However, it is easier to incorporate irregular and even non-convex domain
boundaries into a finite element description.
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� Although elliptic PDEs are the numerically most benign class of distributed
parameter system models, they are by no means trivial to simulate.

� In the 1980s, Rice and Boisvert undertook a large research effort to collect an
impressive series of algorithms for the numerical solution of elliptic PDE
problems. They encoded them in a software called Ellpack.

� Although Ellpack represents the fruit of many man-years of research and resulted
in a Fortran code with several hundreds of subroutines and many thousands of
lines of code, Ellpack was unable to conquer the elliptic PDE market. Ellpack
was a research tool that allowed us to quickly experiment with many different
combinations of algorithms, but the resulting simulation code was too sluggish
to be practically useful. After finding out, which algorithms worked on our
specific problems, we then had to recode these algorithms from scratch to get
software that could be used for the simulation of large-scale structures.

� We used this tool primarily for experimenting with electronic device simulations,
in particular with simulating breakdown phenomena in reverse-biased power
transistors and studying the effects of total dose ionizing radiation on such
devices.
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� In this third presentation on distributed parameter system simulation, we looked
at models in multiple space dimensions.

� In particular, we discussed issues with and solution methods for the class of
elliptic PDEs.

� One quite general approach for converting boundary value problems to
equivalent initial value problems is the technique of invariant embedding. This
technique was demonstrated by embedding an elliptic PDE in two space
dimensions into an equivalent parabolic PDE in two space dimensions and one
time dimension.

� The presentation ended with a very brief introduction to finite element methods.
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