
Numerical Simulation of Dynamic Systems XV

Numerical Simulation of Dynamic Systems XV

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

April 16, 2013

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

Algebraic Loops

Algebraic Loops

Unfortunately, the approach proposed in the previous presentation doesn’t always work:

U
0=

10

R=20

L=
0.

00
15

Ground

R
=1

00

+

-

R1

R2

R3

L

U0

i0 u1

i1

u2

i2

u3

i3

uL

iL 1: u0 = f (t)
2: u1 = R1 · i1
3: u2 = R2 · i2
4: u3 = R3 · i3
5: uL = L · diL

dt

6: u0 = u1 + u3

7: uL = u1 + u2

8: u3 = u2

9: i0 = i1 + iL
10: i1 = i2 + i3

⇒ We got again 10 implicitly
formulated DAEs in 10 unknowns.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

Algebraic Loops

Algebraic Loops II

Let us try the same approach. The structure digraph of the DAE system can be drawn
as follows:

Eq.(1)

Eq.(2)

Eq.(3)

Eq.(4)

Eq.(5)

Eq.(6)

Eq.(7)

Eq.(8)

Eq.(9)

Eq.(10)

u0

i0

u1

i1

u2

i2

uL

diL/dt

u3

i3

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

Algebraic Loops

Algebraic Loops III

After a few steps of causalization:

Eq.(1)

Eq.( )

Eq.( )

Eq.( )

Eq.(9)

Eq.( )

Eq.(8)

Eq.( )

Eq.(10)

Eq.( )

u0

i0

u1

i1

u2

i2

uL

diL/dt

u3

i3

� After four causalization steps, the
algorithm stalls.

� Every remaining acausal equation
has at least two black lines attached,
i.e., contains at least two unknowns.

� Every remaining non-causalized
variable has at least two black lines
attached, i.e., appears in at least two
different equations.

� The remaining acausal equations
form an algebraic loop.



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

Algebraic Loops

Algebraic Loops IV

Let us read out the partially causalized equations from the structure digraph. I placed
all unknowns of the acausal equations to the left of the equal sign:

u0 = f (t)

u1 − R1 · i1 = 0

u2 − R2 · i2 = 0

u3 − R3 · i3 = 0

u1 + u3 = u0

u2 − u3 = 0

i1 − i2 − i3 = 0

uL = u1 + u2

diL

dt
= uL/L

i0 = i1 + iL

There is a group of six equations in six unknowns that have not yet been causalized
and that need to be solved together, because they form an algebraic loop.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

Algebraic Loops

Algebraic Loops V

The structure incidence matrix of the partially sorted equations is in block lower
triangular (BLT) form:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0 u1 i1 u2 i2 u3 i3 uL
diL
dt

i0

1: 1 | 0 0 0 0 0 0 0 0 0
− + − − − − − − .

2: 0 | 1 1 0 0 0 0 | 0 0 0
3: 0 | 0 0 1 1 0 0 | 0 0 0
4: 0 | 0 0 0 0 1 1 | 0 0 0
5: 1 | 1 0 0 0 1 0 | 0 0 0
6: 0 | 0 0 1 0 1 0 | 0 0 0
7: 0 | 0 1 0 1 0 1 | 0 0 0

. − − − − − − + − .
8: 0 1 0 1 0 0 0 | 1 | 0 0

. − + − .
9: 0 0 0 0 1 0 0 1 | 1 | 0

. − + −
10: 0 0 1 0 0 0 0 0 0 | 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

Algebraic Loops

Algebraic Loops VI

How do we solve the loop equations?

� If the equations are linear in the unknown variables, we can use matrix
techniques. In the above example:

⎛
⎜⎜⎜⎜⎜⎝

1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

u1

i1
u2

i2
u3

i3

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
u0

0
0

⎞
⎟⎟⎟⎟⎟⎠

� If the equations are non-linear in the unknown variables, we can use Newton
iteration.

However in either case, we are still dealing with too many unnecessary loop variables.

We shall discuss next, how the number of loop (iteration) variables can be reduced.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm

Let us look more closely at the algebraic loop found earlier. The equations were:

u1 − R1 · i1 = 0

u2 − R2 · i2 = 0

u3 − R3 · i3 = 0

u1 + u3 = u0

u2 − u3 = 0

i1 − i2 − i3 = 0

with the structure digraph:

Eq.(1)

Eq.(2)

Eq.(3)

Eq.(4)

Eq.(5)

Eq.(6)

u1

i1

u2

i2
u3

i3



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm II

Clearly, every equation contains at least two unknowns, and every unknown appears in
at least two equations.

Let me assume, we can solve the former Eq.(6) for the unknown i3. This assumption
is reflected in the partially causalized structure digraph below:

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Eq.(1)

u1

i1

u2

i2
u3

i3

We cannot use that same equation to also compute one of the other two unknowns, i1
or i2, and we can also not compute i3 from the former Eq.(3). Hence the blue lines in
the structure digraph.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm III

Now, everything is settled, and we can causalize the remaining equations without any
difficulties:

Eq.(5)

Eq.(6)

Eq.(2)

Eq.(3)

Eq.(4)

Eq.(1)

u1

i1

u2

i2
u3

i3

⇒ i3 = i1 − i2

u3 = R3 · i3

u1 = u0 − u3

u2 = u3

i1 = u1/R1

i2 = u2/R2

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm IV

Of course, it is all only a pipe dream, because in reality, we do not know either i1 or i2,
and therefore, we cannot compute i3. Or is it not?
Let us substitute the equations into each other, starting with the equation that defines
i3:

i3 = i1 − i2

=
1

R1

· u1 − 1

R2

· u2

=
1

R1

· u0 − 1

R1

· u3 − 1

R2

· u3

=
1

R1

· u0 − R1 + R2

R1 · R2

· u3

=
1

R1

· u0 − R3 · (R1 + R2)

R1 · R2

· i3

and thus: [
1 +

R3 · (R1 + R2)

R1 · R2

]
· i3 =

1

R1

· u0

or:
R1 · R2 + R1 · R3 + R2 · R3

R2

· i3 = u0

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm V

We can solve for i3:

i3 =
R2

R1 · R2 + R1 · R3 + R2 · R3

· u0

We can plug this equation back into the original equation system, replacing the
original Eq.(6) by it, and obtain the perfectly causal set of equations:

i3 =
R2

R1 · R2 + R1 · R3 + R2 · R3

· u0

u3 = R3 · i3

u1 = u0 − u3

u2 = u3

i1 = u1/R1

i2 = u2/R2

Evidently, it hadn’t been a pipe dream after all.



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm VI

� After substituting the equations into each other in the proposed form, we ended
up with one equation in one unknown, instead of six equations in six unknowns.
This is clearly much more economical.

� We call i3 in the above example a tearing variable, and we call the equation
from which the tearing variable is being solved a residual equation.

� Had the equations been non-linear in the variable i3, everything would have
worked exactly the same way, except for the very last step, where we would have
had to involve a Newton iteration to solve for i3, rather than solving for i3
explicitly.

� Only the tearing variables are included in the set of iteration variables.

� Substituting equations into each other may actually be a bad idea. The
substituted equations may grow in size, and the same expressions may appear in
them multiple times. It may be a better idea to iterate over the entire set of
equations, but treat only i3 as an iteration variable in the Newton iteration
algorithm.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm VII

Given the set of equations:

u3 = R3 · i3

u1 = u0 − u3

i1 = u1/R1

u2 = u3

i2 = u2/R2

i3new = i1 − i2

where i3 is an initial guess, and i3new is an improved version of that same variable.

We can set up the following zero function:

F = i3new − i3 = 0.0

Since F is a scalar, also the Hessian is a scalar:

H =
∂F
∂i3

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm VIII

A convenient way to compute the Hessian H is by means of algebraic differentiation:

du3 = R3

du1 = −du3

di1 = du1/R1

du2 = du3

di2 = du2/R2

di3new = di1 − di2

H = di3new − 1

We can then compute the next version of i3 as:

i3 = i3 − H\F

If the set of equations is linear, the Newton iteration converges in a single step.
Hence it will not be terribly inefficient to employ Newton iteration even in the
linear case.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm IX

� The algorithm that we just described is a so-called tearing algorithm, as the set
of equations is torn apart by making an assumption about one variable or
possibly several variables to be known.

� The variables that are assumed known, such as i3 in the above example, are
called tearing variables.

� The equations, from which the tearing variables are to be computed are called
residual equations.

� A version of tearing similar to the one described in this presentation has been
implemented in Dymola to accompany the Tarjan algorithm used in the efficient
solution of algebraic equation systems resulting from the automated symbolic
conversion of DAE systems to ODE form. The Tarjan algorithm, a
graph-theoretical algorithm, had been introduced in the previous presentation
for the causalization of equation systems.



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm X

How did we know to choose i3 as tearing variable and Eq.(6) as residual equation?
What would have happened if we had chosen i1 as the tearing variable and Eq.(1) as
the residual equation?

The initial situation is depicted below:

Eq.(1)

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Eq.( )

u1

i1

u2

i2
u3

i3

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XI

We apply the Tarjan algorithm to the structure digraph. Unfortunately, the algorithm
stalls once again after only one more step:

Eq.(1)

Eq.( )

Eq.( )

Eq.(6)

Eq.( )

Eq.( )

u1

i1

u2

i2
u3

i3

Once again, we are faced with an algebraic loop, this time in four equations and four
unknowns, and therefore have to choose a second tearing variable and a second
residual equation.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XII

Let us chose u2 as the second tearing variable and the former Eq.(2) as the second
residual equation.

The new situation is depicted below:

Eq.(1)

Eq.(2)

Eq.( )

Eq.(6)

Eq.( )

Eq.( )

u1

i1

u2

i2
u3

i3

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XIII

We once more apply the Tarjan algorithm to the structure digraph. This time around,
we can complete the causalization:

Eq.(1)

Eq.(2)

Eq.(4)

Eq.(6)

Eq.(3)

Eq.(5)

u1

i1

u2

i2
u3

i3

The completely causalized equations are:

i1 = u1/R1

u2 = R2 · i2

u3 = u2

i3 = u3/R3

i2 = i1 − i3

u1 = u0 − u3



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XIV

Let us apply substitution. We begin with the first residual equation. We substitute all
variables except for the tearing variables.

i1 = u1/R1

=
1

R1

· u0 − 1

R1

· u3

=
1

R1

· u0 − 1

R1

· u2

and consequently:
R1 · i1 + u2 = u0

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XV

For the second residual equation, we find:

u2 = R2 · i2

= R2 · i1 − R2 · i3

= R2 · i1 − R2

R3

· u3

= R2 · i1 − R2

R3

· u2

Thus: [
1 +

R2

R3

]
· u2 = R2 · i1

or:
R2 · R3 · i1 − (R2 + R3) · u2 = 0

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XVI

We ended up with two equations in two unknowns, i.e., the two tearing variables:

(
R1 1

R2 · R3 −(R2 + R3)

)
·
(

i1
u2

)
=

(
u0

0

)

which can be solved for i1 and u2.

� Instead of solving six linear equations in six unknowns, we have “pushed the
zeros out of the matrix,” and ended up with two equations in two unknowns.

� In this sense, tearing can be considered a symbolic sparse matrix technique.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XVII

If we use Newton iteration instead of equation substitution, we need to place the
residual equations at the end of each set, rather than at the beginning. The set of
equations now takes the form:

u3 = u2

i3 = u3/R3

i2 = i1 − i3

u2new = R2 · i2

u1 = u0 − u3

i1new = u1/R1

We can formulate the following set of zero functions:

F =

(
f1
f2

)
=

(
i1new − i1
u2new − u2

)
=

(
0
0

)

Hence the Hessian is a matrix of size 2 × 2:

H =

(
h11 h12

h21 h22

)
=

(
∂f1/∂i1 ∂f1/∂u2

∂f2/∂i1 ∂f2/∂u2

)



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XVIII

Using algebraic differentiation:

d1u3 = 0

d1 i3 = d1u3/R3

d1 i2 = 1 − d1 i3

d1u2new = R2 · d1 i2

d1u1 = −d1u3

d1 i1new = d1u1/R1

d2u3 = 1

d2 i3 = d2u3/R3

d2 i2 = −d2 i3

d2u2new = R2 · d2 i2

d2u1 = −d2u3

d2 i1new = d2u1/R1

h11 = d1 i1new − 1

h12 = d2 i1new

h21 = d1u2new

h22 = d2u2new − 1

� The prefix d1 stands for the partial
derivative with respect to the first tearing
variable, i1, and d2 stands for the partial
derivative with respect to the second
tearing variable, u2. Since i1 and u2 are
mutually independent in this context, the
partial derivative of i1 with respect to u2

is zero, and vice-versa.

� For each additional tearing variable, the
causal model equations are replicated
once in the computation of the Hessian.
Hence given a system of n algebraic
equations in k < n tearing variables, we
require n · k + k2 equations to explicitly
compute the Hessian in symbolic form.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XIX

How can we determine the minimum number of tearing variables required?

� Unfortunately, this is a hard problem. It can be shown that this problem is
np-complete, i.e., the computational effort grows exponentially in the number of
equations forming the algebraic loop. Consequently, finding the minimal number
of tearing variables is not practical.

� Yet, it is possible to design a heuristic procedure that always results in a small
number of tearing variables. It often results in the minimal number, but this
cannot be guaranteed. The advantage of this heuristic procedure is that its
computational effort grows quadratically rather than exponentially in the size of
the algebraic system for most applications.

� Dymola implemented a set of heuristics for the efficient selection of tearing
variables as part of its model compiler. Yet, their heuristics have never been
published. These heuristics are treated as a trade secret, as this is considered to
offer a commercial advantage to the company.

� Dirk Zimmer has implemented an alternative set of heuristics in the model
compiler of his experimental Sol language as part of his Ph.D. dissertation.
These heuristics have been disclosed in his dissertation and are thus openly
available to all modeling and simulation researchers.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Tearing Algorithm

The Tearing Algorithm XX

Here is a very simple set of heuristics that works most of the time but not always. The
algorithm sometimes maneuvers itself into a corner.

1. Using the structure digraph, determine the equations with the largest number of
black lines attached to them.

2. For every one of these equations, follow its black lines, and determine those
variables with the largest number of black lines attached to them.

3. For every one of these variables, determine how many additional equations can
be made causal if that variable is assumed to be known.

4. Choose one of those variables as the next tearing variable that allows the largest
number of additional equations to be made causal.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm

There is a second symbolic algorithm for the solution of algebraic systems of equations
to be discussed that we call relaxation algorithm.

Contrary to the tearing algorithm, a general algorithm that can be applied to all
algebraic equation structures, the relaxation algorithm is limited to the solution of
linear algebraic equation systems only.

Yet, linear algebraic systems assume a special role within the set of algebraic equation
systems, and deserve special attention.

Within each Newton iteration of a non-linear algebraic equation system, there is
always a linear algebraic equation system to be solved.



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm II

When we write the Newton iteration as:

xnew = xold −H\F

we are effectively saying that:
xnew = xold − dx

where dx is the solution of the linear algebraic equation system:

H · dx = F

Hence indeed, a linear algebraic equation system must be solved within each Newton
iteration step of the original non-linear algebraic equation system.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm III

Relaxation is a symbolic implementation of the Gaussian elimination algorithm
without pivoting.

Let us demonstrate how the relaxation algorithm works by means of the same example
of a linear algebraic equation system in six equations and six unknowns that we had
used previously:

⎛
⎜⎜⎜⎜⎜⎝

1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

u1

i1
u2

i2
u3

i3

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
u0

0
0

⎞
⎟⎟⎟⎟⎟⎠

It is our goal to minimize the number of non-zero elements in the matrix above the
diagonal.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm IV

To this end, we sort the equations in the same way as we did for the tearing algorithm
with Newton iteration:

u3 = R3 · i3

u1 = u0 − u3

i1 =
u1

R1

u2 = u3

i2 =
u2

R2

i3 = i1 − i2

We now move all the unknowns to the left side of the equal sign and all the knows to
the right side. At the same time, we eliminate the denominators:

u3 − R3 · i3 = 0

u1 + u3 = u0

R1 · i1 − u1 = 0

u2 − u3 = 0

R2 · i2 − u2 = 0

i3 − i1 + i2 = 0

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm V

We now rewrite these equations in a matrix-vector form, whereby we number the
equations in the same order as above and list the variables in the same order as in the
causal equations:

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −R3

1 1 0 0 0 0
0 −1 R1 0 0 0
−1 0 0 1 0 0
0 0 0 −1 R2 0
0 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

u3

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
u0

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

There is now only a single non-zero element above the diagonal, and none of the
diagonal elements are zero.



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm VI

We can now apply Gaussian elimination without pivoting:

A
(n+1)
ij = A

(n)
ij − A

(n)
ik · A(n)

kk

−1 · A(n)
kj

b
(n+1)
i = b

(n)
i − A

(n)
ik · A(n)

kk

−1 · b(n)
k

We can apply this algorithm symbolically. After each step, we eliminate the first row
and the first column, i.e., the pivot row and the pivot column. Rather than
substituting expressions into the matrix, we introduce auxiliary variables where needed.

� If an element in the top row is zero, the elements underneath it don’t change at
all during the iteration.

� If an element in the leftmost column is zero, the elements to the right of it
don’t change.

� For all other elements, we introduce new symbolic constants.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm VII

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −R3

1 1 0 0 0 0
0 −1 R1 0 0 0
−1 0 0 1 0 0
0 0 0 −1 R2 0
0 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

u3

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
u0

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎝

1 0 0 0 c1

−1 R1 0 0 0
0 0 1 0 c2

0 0 −1 R2 0
0 −1 0 1 1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u0

0
0
0
0

⎞
⎟⎟⎟⎠

where c1 = R3, and c2 = −R3.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm VIII

⎛
⎜⎜⎜⎝

1 0 0 0 c1

−1 R1 0 0 0
0 0 1 0 c2

0 0 −1 R2 0
0 −1 0 1 1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u0

0
0
0
0

⎞
⎟⎟⎟⎠

⇒

⎛
⎜⎜⎝

R1 0 0 c3

0 1 0 c2

0 −1 R2 0
−1 0 1 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

i1
u2

i2
i3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c4

0
0
0

⎞
⎟⎟⎠

where c3 = c1, and c4 = u0.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm IX

⎛
⎜⎜⎝

R1 0 0 c3

0 1 0 c2

0 −1 R2 0
−1 0 1 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

i1
u2

i2
i3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c4

0
0
0

⎞
⎟⎟⎠

⇒
⎛
⎝ 1 0 c2

−1 R2 0
0 1 c5

⎞
⎠ ·

⎛
⎝u2

i2
i3

⎞
⎠ =

⎛
⎝ 0

0
c6

⎞
⎠

where c5 = 1 + c3
R1

, and c6 = c4
R1

.



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm X

⎛
⎝ 1 0 c2

−1 R2 0
0 1 c5

⎞
⎠ ·

⎛
⎝u2

i2
i3

⎞
⎠ =

⎛
⎝ 0

0
c6

⎞
⎠

⇒
(

R2 c7

1 c5

)
·
(

i2
i3

)
=

(
0
c6

)

where c7 = c2.

⇒ (
c8

) · (
i3

)
=

(
c6

)
where c8 = c5 − c7

R2
.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm XI

Hence we can replace the original set of equations by:

c1 = R3

c2 = −R3

c3 = c1

c4 = u0

c5 = 1 +
c3

R1

c6 =
c4

R1

c7 = c2

c8 = c5 − c7

R2

i3 =
c6

c8

i2 = − c7 · i3
R2

u2 = −c2 · i3
i1 =

c4 − c3 · i3
R1

u1 = u0 − c1 · i3
u3 = R3 · i3

which can be easily coded in Matlab.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm XII

However, there is no need to proceed with back-substitution beyond the determination
of the tearing variables. The remaining variables can be taken just as easily from the
original set of equations:

c1 = R3

c2 = −R3

c3 = c1

c4 = u0

c5 = 1 +
c3

R1

c6 =
c4

R1

c7 = c2

c8 = c5 − c7

R2

i3 =
c6

c8

u3 = R3 · i3
u1 = u0 − u3

i1 =
u1

R1

u2 = u3

i2 =
u2

R2

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm XIII

What would have happened if we had started out with the second set of causal
equations, i.e., those involving two tearing variables?

u3 = u2

i3 =
u3

R3

i2 = i1 − i3

u2 = R2 · i2

u1 = u0 − u3

i1 =
u1

R1

Moving all unknowns to the left side of the equal sign, we obtain:

u3 − u2 = 0

R3 · i3 − u3 = 0

i2 − i1 + i3 = 0

u2 − R2 · i2 = 0

u1 + u3 = u0

R1 · i1 − u1 = 0



Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm XIV

In matrix-vector form:

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0
−1 R3 0 0 0 0
0 1 1 0 0 −1
0 0 −R2 1 0 0
1 0 0 0 1 0
0 0 0 0 −1 R1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

u3

i3
i2
u2

u1

i1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
u0

0

⎞
⎟⎟⎟⎟⎟⎠

� This time around, there are two non-zero elements above the diagonal, one
involving the tearing variable u2, the other involving the tearing variable i1.

� As there are more non-zero elements above the diagonal, we shall in all
likelihood have to introduce more new constants into the matrix in the process
of symbolic Gaussian elimination.

� Consequently, the number of resulting equations will grow, and the solution will
be less efficient.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

The Relaxation Algorithm

The Relaxation Algorithm XV

� Finding a minimal set of non-zero elements above the diagonal of the matrix is
identical to finding a minimal set of tearing variables.

� Hence also this problem is np-complete.

� The same heuristic procedure that was proposed for tackling the problem of
finding a small (though not necessarily the minimal) set of tearing variables can
also be used to find a small (though not necessarily the smallest) set of non-zero
elements above the diagonal of the linear equation matrix for the relaxation
algorithm.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

Conclusions

Conclusions

� In this presentation, we looked at the problem of algebraic loops contained in
the set of DAEs extracted from an object-oriented description of the system to
be simulated.

� We demonstrated that the Tarjan algorithm for the causalization of the
equations will get stuck in this case. The equations forming the loop need to be
solved together.

� We then introduced two separate symbolic formula manipulation algorithms that
can be used for “squeezing the zeros out of the loop equations.” These are two
different symbolic sparse system solvers.

� One of these algorithms, the relaxation algorithm, can only be applied in the
case of linear systems, whereas the other, the tearing algorithm, is applicable
also for non-linear systems.

� The relaxation algorithm is more efficient in the case of linear systems, and for
this reason, it has its place. Yet due to the greater generality of the tearing
approach, Dymola and Sol only make use of tearing.

Numerical Simulation of Dynamic Systems XV

Differential Algebraic Equations II

References

References

1. Otter, M., H. Elmqvist, and F.E. Cellier (1996), “ ‘Relaxing’ - A Symbolic
Sparse Matrix Method Exploiting the Model Structure in Generating Efficient
Simulation Code,” Proc. Symposium on Modelling, Analysis, and Simulation,
CESA’96, IMACS MultiConference on Computational Engineering in Systems
Applications, Lille, France, vol.1, pp.1-12.

2. Zimmer, Dirk (2010), Equation-based Modeling of Variable-structure Systems,
Ph.D. Dissertation, Dept. of Computer Science, ETH Zurich, Switzerland.


